This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

RTOS/CC2640R2F: Idle Task Stack Overflow

Part Number: CC2640R2F

Tool/software: TI-RTOS

I have been using simplelink_cc2640r2_sdk_1_30_00_25 while developing software for a particular project. I want to finally port it to a newer version of the SDK, but I ran into an issue (actually, I ran into two issues: the first one is that newer SDKs seem to use a lot more program space than 1.30, but maybe that's a separate post!). For some reason, the idle task stack would inexplicably overflow. I started by first porting to 1.40, then 1.50, and finally 2.20, but this problem still existed. It seems to be related to making non-blocking I2C calls from the callback function for a clock instance that is being run periodically (6Hz).

I was able to duplicate the problem by adding something similar to the simplelink_cc2640r2_sdk_2_20_00_49 SimplePeripheral project. I am attaching the modified simple_peripheral.c, and was hoping someone could try it. SimplePeripheral_performPeriodicTask is called repeatedly from startup (no BLE connection required), and uses Display_printX to show idle task stack status, blink the LaunchPad green LED, and print out a value that was read via I2C from a BH1750 luminance dongle. If an idle stack overflow is detected, the red LED is lit. There is a second clock that runs at 6Hz. Its callback function initiates a non-blocking I2C write (to start a measurement) or read (to read the value) every other call. This works as expected in practice, but is not necessary for idle task stack testing purposes (i.e. no I2C device hookup is necessary). It may take a while (minutes), but this test will fail eventually (i.e. idle task stack overflow) pretty reliably.

I understand that TI-RTOS has a separate system stack that I would expect to be affected by interrupt handling and callbacks, but I do not understand why the idle task is affected. Is it possible to set a break point when the stack actually overflows?

Thanks for any help you can provide. Again, I have had no issues even doing more complicated things than this example using 1.30, so I am not sure what changed in the newer versions.

dave

/******************************************************************************

 @file       simple_peripheral.c

 @brief This file contains the Simple Peripheral sample application for use
        with the CC2650 Bluetooth Low Energy Protocol Stack.

 Group: CMCU, SCS
 Target Device: CC2640R2

 ******************************************************************************
 
 Copyright (c) 2013-2018, Texas Instruments Incorporated
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:

 *  Redistributions of source code must retain the above copyright
    notice, this list of conditions and the following disclaimer.

 *  Redistributions in binary form must reproduce the above copyright
    notice, this list of conditions and the following disclaimer in the
    documentation and/or other materials provided with the distribution.

 *  Neither the name of Texas Instruments Incorporated nor the names of
    its contributors may be used to endorse or promote products derived
    from this software without specific prior written permission.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 ******************************************************************************
 Release Name: simplelink_cc2640r2_sdk_02_20_00_49
 Release Date: 2018-07-16 14:49:35
 *****************************************************************************/

/*********************************************************************
 * INCLUDES
 */
#include <string.h>

#include <ti/sysbios/knl/Task.h>
#include <ti/sysbios/knl/Clock.h>
#include <ti/sysbios/knl/Event.h>
#include <ti/sysbios/knl/Queue.h>
#include <ti/display/Display.h>

#if defined( USE_FPGA ) || defined( DEBUG_SW_TRACE )
#include <driverlib/ioc.h>
#endif // USE_FPGA | DEBUG_SW_TRACE

#include <icall.h>
#include "util.h"
/* This Header file contains all BLE API and icall structure definition */
#include "icall_ble_api.h"

#include "devinfoservice.h"
#include "simple_gatt_profile.h"
#include "ll_common.h"

#include "peripheral.h"

#ifdef USE_RCOSC
#include "rcosc_calibration.h"
#endif //USE_RCOSC

#include "board_key.h"

#include "board.h"

#include "simple_peripheral.h"

/*********************************************************************
 * CONSTANTS
 */

// Advertising interval when device is discoverable (units of 625us, 160=100ms)
#define DEFAULT_ADVERTISING_INTERVAL          160

// General discoverable mode: advertise indefinitely
#define DEFAULT_DISCOVERABLE_MODE             GAP_ADTYPE_FLAGS_GENERAL

// Minimum connection interval (units of 1.25ms, 80=100ms) for automatic
// parameter update request
#define DEFAULT_DESIRED_MIN_CONN_INTERVAL     80

// Maximum connection interval (units of 1.25ms, 800=1000ms) for automatic
// parameter update request
#define DEFAULT_DESIRED_MAX_CONN_INTERVAL     800

// Slave latency to use for automatic parameter update request
#define DEFAULT_DESIRED_SLAVE_LATENCY         0

// Supervision timeout value (units of 10ms, 1000=10s) for automatic parameter
// update request
#define DEFAULT_DESIRED_CONN_TIMEOUT          1000

// After the connection is formed, the peripheral waits until the central
// device asks for its preferred connection parameters
#define DEFAULT_ENABLE_UPDATE_REQUEST         GAPROLE_LINK_PARAM_UPDATE_WAIT_REMOTE_PARAMS

// Connection Pause Peripheral time value (in seconds)
#define DEFAULT_CONN_PAUSE_PERIPHERAL         6

// How often to perform periodic event (in msec)
#define SBP_PERIODIC_EVT_PERIOD               5000

// Application specific event ID for HCI Connection Event End Events
#define SBP_HCI_CONN_EVT_END_EVT              0x0001

// Type of Display to open
#if !defined(Display_DISABLE_ALL)
  #if defined(BOARD_DISPLAY_USE_LCD) && (BOARD_DISPLAY_USE_LCD!=0)
    #define SBP_DISPLAY_TYPE Display_Type_LCD
  #elif defined (BOARD_DISPLAY_USE_UART) && (BOARD_DISPLAY_USE_UART!=0)
    #define SBP_DISPLAY_TYPE Display_Type_UART
  #else // !BOARD_DISPLAY_USE_LCD && !BOARD_DISPLAY_USE_UART
    #define SBP_DISPLAY_TYPE 0 // Option not supported
  #endif // BOARD_DISPLAY_USE_LCD && BOARD_DISPLAY_USE_UART
#else // BOARD_DISPLAY_USE_LCD && BOARD_DISPLAY_USE_UART
  #define SBP_DISPLAY_TYPE 0 // No Display
#endif // !Display_DISABLE_ALL

// Task configuration
#define SBP_TASK_PRIORITY                     1

#ifndef SBP_TASK_STACK_SIZE
#define SBP_TASK_STACK_SIZE                   644
#endif

// Application events
#define SBP_STATE_CHANGE_EVT                  0x0001
#define SBP_CHAR_CHANGE_EVT                   0x0002
#define SBP_PAIRING_STATE_EVT                 0x0004
#define SBP_PASSCODE_NEEDED_EVT               0x0008
#define SBP_CONN_EVT                          0x0010

// Internal Events for RTOS application
#define SBP_ICALL_EVT                         ICALL_MSG_EVENT_ID // Event_Id_31
#define SBP_QUEUE_EVT                         UTIL_QUEUE_EVENT_ID // Event_Id_30
#define SBP_PERIODIC_EVT                      Event_Id_00

// Bitwise OR of all events to pend on
#define SBP_ALL_EVENTS                        (SBP_ICALL_EVT        | \
                                               SBP_QUEUE_EVT        | \
                                               SBP_PERIODIC_EVT)


// Set the register cause to the registration bit-mask
#define CONNECTION_EVENT_REGISTER_BIT_SET(RegisterCause) (connectionEventRegisterCauseBitMap |= RegisterCause )
// Remove the register cause from the registration bit-mask
#define CONNECTION_EVENT_REGISTER_BIT_REMOVE(RegisterCause) (connectionEventRegisterCauseBitMap &= (~RegisterCause) )
// Gets whether the current App is registered to the receive connection events
#define CONNECTION_EVENT_IS_REGISTERED (connectionEventRegisterCauseBitMap > 0)
// Gets whether the RegisterCause was registered to recieve connection event
#define CONNECTION_EVENT_REGISTRATION_CAUSE(RegisterCause) (connectionEventRegisterCauseBitMap & RegisterCause )

/*********************************************************************
 * TYPEDEFS
 */

// App event passed from profiles.
typedef struct
{
  appEvtHdr_t hdr;  // event header.
  uint8_t *pData;  // event data
} sbpEvt_t;

/*********************************************************************
 * GLOBAL VARIABLES
 */

// Display Interface
Display_Handle dispHandle = NULL;

/*********************************************************************
 * LOCAL VARIABLES
 */

// Entity ID globally used to check for source and/or destination of messages
static ICall_EntityID selfEntity;

// Event globally used to post local events and pend on system and
// local events.
static ICall_SyncHandle syncEvent;

// Clock instances for internal periodic events.
static Clock_Struct periodicClock;

// Queue object used for app messages
static Queue_Struct appMsg;
static Queue_Handle appMsgQueue;

// Task configuration
Task_Struct sbpTask;
Char sbpTaskStack[SBP_TASK_STACK_SIZE];

// Scan response data (max size = 31 bytes)
static uint8_t scanRspData[] =
{
  // complete name
  0x14,   // length of this data
  GAP_ADTYPE_LOCAL_NAME_COMPLETE,
  'S',
  'i',
  'm',
  'p',
  'l',
  'e',
  'B',
  'L',
  'E',
  'P',
  'e',
  'r',
  'i',
  'p',
  'h',
  'e',
  'r',
  'a',
  'l',

  // connection interval range
  0x05,   // length of this data
  GAP_ADTYPE_SLAVE_CONN_INTERVAL_RANGE,
  LO_UINT16(DEFAULT_DESIRED_MIN_CONN_INTERVAL),   // 100ms
  HI_UINT16(DEFAULT_DESIRED_MIN_CONN_INTERVAL),
  LO_UINT16(DEFAULT_DESIRED_MAX_CONN_INTERVAL),   // 1s
  HI_UINT16(DEFAULT_DESIRED_MAX_CONN_INTERVAL),

  // Tx power level
  0x02,   // length of this data
  GAP_ADTYPE_POWER_LEVEL,
  0       // 0dBm
};

// Advertisement data (max size = 31 bytes, though this is
// best kept short to conserve power while advertising)
static uint8_t advertData[] =
{
  // Flags: this field sets the device to use general discoverable
  // mode (advertises indefinitely) instead of general
  // discoverable mode (advertise for 30 seconds at a time)
  0x02,   // length of this data
  GAP_ADTYPE_FLAGS,
  DEFAULT_DISCOVERABLE_MODE | GAP_ADTYPE_FLAGS_BREDR_NOT_SUPPORTED,

  // service UUID, to notify central devices what services are included
  // in this peripheral
  0x03,   // length of this data
  GAP_ADTYPE_16BIT_MORE,      // some of the UUID's, but not all
  LO_UINT16(SIMPLEPROFILE_SERV_UUID),
  HI_UINT16(SIMPLEPROFILE_SERV_UUID)
};

// GAP GATT Attributes
static uint8_t attDeviceName[GAP_DEVICE_NAME_LEN] = "Simple Peripheral";

// Globals used for ATT Response retransmission
static gattMsgEvent_t *pAttRsp = NULL;
static uint8_t rspTxRetry = 0;

/*********************************************************************
 * LOCAL FUNCTIONS
 */

static void SimplePeripheral_init( void );
static void SimplePeripheral_taskFxn(UArg a0, UArg a1);

static uint8_t SimplePeripheral_processStackMsg(ICall_Hdr *pMsg);
static uint8_t SimplePeripheral_processGATTMsg(gattMsgEvent_t *pMsg);
static void SimplePeripheral_processAppMsg(sbpEvt_t *pMsg);
static void SimplePeripheral_processStateChangeEvt(gaprole_States_t newState);
static void SimplePeripheral_processCharValueChangeEvt(uint8_t paramID);
static void SimplePeripheral_performPeriodicTask(void);
static void SimplePeripheral_clockHandler(UArg arg);

static void SimplePeripheral_sendAttRsp(void);
static void SimplePeripheral_freeAttRsp(uint8_t status);

static void SimplePeripheral_passcodeCB(uint8_t *deviceAddr, uint16_t connHandle,
                                           uint8_t uiInputs, uint8_t uiOutputs);
static void SimplePeripheral_pairStateCB(uint16_t connHandle, uint8_t state,
                                         uint8_t status);
static void SimplePeripheral_processPairState(uint8_t state, uint8_t status);
static void SimplePeripheral_processPasscode(uint8_t uiOutputs);

static void SimplePeripheral_stateChangeCB(gaprole_States_t newState);
static void SimplePeripheral_charValueChangeCB(uint8_t paramID);
static uint8_t SimplePeripheral_enqueueMsg(uint8_t event, uint8_t state,
                                              uint8_t *pData);

static void SimplePeripheral_connEvtCB(Gap_ConnEventRpt_t *pReport);
static void SimplePeripheral_processConnEvt(Gap_ConnEventRpt_t *pReport);



/*********************************************************************
 * EXTERN FUNCTIONS
 */
extern void AssertHandler(uint8 assertCause, uint8 assertSubcause);

/*********************************************************************
 * PROFILE CALLBACKS
 */

// Peripheral GAPRole Callbacks
static gapRolesCBs_t SimplePeripheral_gapRoleCBs =
{
  SimplePeripheral_stateChangeCB     // GAPRole State Change Callbacks
};

// GAP Bond Manager Callbacks
// These are set to NULL since they are not needed. The application
// is set up to only perform justworks pairing.
static gapBondCBs_t simplePeripheral_BondMgrCBs =
{
  (pfnPasscodeCB_t) SimplePeripheral_passcodeCB, // Passcode callback
  SimplePeripheral_pairStateCB                   // Pairing / Bonding state Callback
};

// Simple GATT Profile Callbacks
static simpleProfileCBs_t SimplePeripheral_simpleProfileCBs =
{
  SimplePeripheral_charValueChangeCB // Simple GATT Characteristic value change callback
};

/*********************************************************************
 * PUBLIC FUNCTIONS
 */

/*********************************************************************
 * The following typedef and global handle the registration to connection event
 */
typedef enum
{
   NOT_REGISTER       = 0,
   FOR_AOA_SCAN       = 1,
   FOR_ATT_RSP        = 2,
   FOR_AOA_SEND       = 4,
   FOR_TOF_SEND       = 8
}connectionEventRegisterCause_u;

// Handle the registration and un-registration for the connection event, since only one can be registered.
uint32_t       connectionEventRegisterCauseBitMap = NOT_REGISTER; //see connectionEventRegisterCause_u

/*********************************************************************
 * @fn      SimplePeripheral_RegistertToAllConnectionEvent()
 *
 * @brief   register to receive connection events for all the connection
 *
 * @param connectionEventRegisterCause represents the reason for registration
 *
 * @return @ref SUCCESS
 *
 */
bStatus_t SimplePeripheral_RegistertToAllConnectionEvent (connectionEventRegisterCause_u connectionEventRegisterCause)
{
  bStatus_t status = SUCCESS;

  // in case  there is no registration for the connection event, make the registration
  if (!CONNECTION_EVENT_IS_REGISTERED)
  {
    status = GAP_RegisterConnEventCb(SimplePeripheral_connEvtCB, GAP_CB_REGISTER, LINKDB_CONNHANDLE_ALL);
  }
  if(status == SUCCESS)
  {
    //add the reason bit to the bitamap.
    CONNECTION_EVENT_REGISTER_BIT_SET(connectionEventRegisterCause);
  }

  return(status);
}

/*********************************************************************
 * @fn      SimplePeripheral_UnRegistertToAllConnectionEvent()
 *
 * @brief   Unregister connection events
 *
 * @param connectionEventRegisterCause represents the reason for registration
 *
 * @return @ref SUCCESS
 *
 */
bStatus_t SimplePeripheral_UnRegistertToAllConnectionEvent (connectionEventRegisterCause_u connectionEventRegisterCause)
{
  bStatus_t status = SUCCESS;

  CONNECTION_EVENT_REGISTER_BIT_REMOVE(connectionEventRegisterCause);
  // in case  there is no more registration for the connection event than unregister
  if (!CONNECTION_EVENT_IS_REGISTERED)
  {
    GAP_RegisterConnEventCb(SimplePeripheral_connEvtCB, GAP_CB_UNREGISTER, LINKDB_CONNHANDLE_ALL);
  }

  return(status);
}

 /*********************************************************************
 * @fn      SimplePeripheral_createTask
 *
 * @brief   Task creation function for the Simple Peripheral.
 *
 * @param   None.
 *
 * @return  None.
 */
void SimplePeripheral_createTask(void)
{
  Task_Params taskParams;

  // Configure task
  Task_Params_init(&taskParams);
  taskParams.stack = sbpTaskStack;
  taskParams.stackSize = SBP_TASK_STACK_SIZE;
  taskParams.priority = SBP_TASK_PRIORITY;

  Task_construct(&sbpTask, SimplePeripheral_taskFxn, &taskParams, NULL);
}

/*********************************************************************
 * @fn      SimplePeripheral_init
 *
 * @brief   Called during initialization and contains application
 *          specific initialization (ie. hardware initialization/setup,
 *          table initialization, power up notification, etc), and
 *          profile initialization/setup.
 *
 * @param   None.
 *
 * @return  None.
 */
static void SimplePeripheral_init(void)
{
  // ******************************************************************
  // N0 STACK API CALLS CAN OCCUR BEFORE THIS CALL TO ICall_registerApp
  // ******************************************************************
  // Register the current thread as an ICall dispatcher application
  // so that the application can send and receive messages.
  ICall_registerApp(&selfEntity, &syncEvent);

#ifdef USE_RCOSC
  RCOSC_enableCalibration();
#endif // USE_RCOSC

#if defined( USE_FPGA )
  // configure RF Core SMI Data Link
  IOCPortConfigureSet(IOID_12, IOC_PORT_RFC_GPO0, IOC_STD_OUTPUT);
  IOCPortConfigureSet(IOID_11, IOC_PORT_RFC_GPI0, IOC_STD_INPUT);

  // configure RF Core SMI Command Link
  IOCPortConfigureSet(IOID_10, IOC_IOCFG0_PORT_ID_RFC_SMI_CL_OUT, IOC_STD_OUTPUT);
  IOCPortConfigureSet(IOID_9, IOC_IOCFG0_PORT_ID_RFC_SMI_CL_IN, IOC_STD_INPUT);

  // configure RF Core tracer IO
  IOCPortConfigureSet(IOID_8, IOC_PORT_RFC_TRC, IOC_STD_OUTPUT);
#else // !USE_FPGA
  #if defined( DEBUG_SW_TRACE )
    // configure RF Core tracer IO
    IOCPortConfigureSet(IOID_8, IOC_PORT_RFC_TRC, IOC_STD_OUTPUT | IOC_CURRENT_4MA | IOC_SLEW_ENABLE);
  #endif // DEBUG_SW_TRACE
#endif // USE_FPGA

  // Create an RTOS queue for message from profile to be sent to app.
  appMsgQueue = Util_constructQueue(&appMsg);

  // Create one-shot clocks for internal periodic events.
  Util_constructClock(&periodicClock, SimplePeripheral_clockHandler,
                      SBP_PERIODIC_EVT_PERIOD, 0, TRUE, SBP_PERIODIC_EVT);

  dispHandle = Display_open(SBP_DISPLAY_TYPE, NULL);

  // Set GAP Parameters: After a connection was established, delay in seconds
  // before sending when GAPRole_SetParameter(GAPROLE_PARAM_UPDATE_ENABLE,...)
  // uses GAPROLE_LINK_PARAM_UPDATE_INITIATE_BOTH_PARAMS or
  // GAPROLE_LINK_PARAM_UPDATE_INITIATE_APP_PARAMS
  // For current defaults, this has no effect.
  GAP_SetParamValue(TGAP_CONN_PAUSE_PERIPHERAL, DEFAULT_CONN_PAUSE_PERIPHERAL);

  // Setup the Peripheral GAPRole Profile. For more information see the User's
  // Guide:
  // http://software-dl.ti.com/lprf/sdg-latest/html/
  {
    // Device starts advertising upon initialization of GAP
    uint8_t initialAdvertEnable = TRUE;

    // By setting this to zero, the device will go into the waiting state after
    // being discoverable for 30.72 second, and will not being advertising again
    // until re-enabled by the application
    uint16_t advertOffTime = 0;

    uint8_t enableUpdateRequest = DEFAULT_ENABLE_UPDATE_REQUEST;
    uint16_t desiredMinInterval = DEFAULT_DESIRED_MIN_CONN_INTERVAL;
    uint16_t desiredMaxInterval = DEFAULT_DESIRED_MAX_CONN_INTERVAL;
    uint16_t desiredSlaveLatency = DEFAULT_DESIRED_SLAVE_LATENCY;
    uint16_t desiredConnTimeout = DEFAULT_DESIRED_CONN_TIMEOUT;

    // Set the Peripheral GAPRole Parameters
    GAPRole_SetParameter(GAPROLE_ADVERT_ENABLED, sizeof(uint8_t),
                         &initialAdvertEnable);
    GAPRole_SetParameter(GAPROLE_ADVERT_OFF_TIME, sizeof(uint16_t),
                         &advertOffTime);

    GAPRole_SetParameter(GAPROLE_SCAN_RSP_DATA, sizeof(scanRspData),
                         scanRspData);
    GAPRole_SetParameter(GAPROLE_ADVERT_DATA, sizeof(advertData), advertData);

    GAPRole_SetParameter(GAPROLE_PARAM_UPDATE_ENABLE, sizeof(uint8_t),
                         &enableUpdateRequest);
    GAPRole_SetParameter(GAPROLE_MIN_CONN_INTERVAL, sizeof(uint16_t),
                         &desiredMinInterval);
    GAPRole_SetParameter(GAPROLE_MAX_CONN_INTERVAL, sizeof(uint16_t),
                         &desiredMaxInterval);
    GAPRole_SetParameter(GAPROLE_SLAVE_LATENCY, sizeof(uint16_t),
                         &desiredSlaveLatency);
    GAPRole_SetParameter(GAPROLE_TIMEOUT_MULTIPLIER, sizeof(uint16_t),
                         &desiredConnTimeout);
  }

  // Set the Device Name characteristic in the GAP GATT Service
  // For more information, see the section in the User's Guide:
  // http://software-dl.ti.com/lprf/sdg-latest/html
  GGS_SetParameter(GGS_DEVICE_NAME_ATT, GAP_DEVICE_NAME_LEN, attDeviceName);

  // Set GAP Parameters to set the advertising interval
  // For more information, see the GAP section of the User's Guide:
  // http://software-dl.ti.com/lprf/sdg-latest/html
  {
    // Use the same interval for general and limited advertising.
    // Note that only general advertising will occur based on the above configuration
    uint16_t advInt = DEFAULT_ADVERTISING_INTERVAL;

    GAP_SetParamValue(TGAP_LIM_DISC_ADV_INT_MIN, advInt);
    GAP_SetParamValue(TGAP_LIM_DISC_ADV_INT_MAX, advInt);
    GAP_SetParamValue(TGAP_GEN_DISC_ADV_INT_MIN, advInt);
    GAP_SetParamValue(TGAP_GEN_DISC_ADV_INT_MAX, advInt);
  }

#if 0
  // Setup the GAP Bond Manager. For more information see the section in the
  // User's Guide:
  // http://software-dl.ti.com/lprf/sdg-latest/html/
  {
    // Don't send a pairing request after connecting; the peer device must
    // initiate pairing
    uint8_t pairMode = GAPBOND_PAIRING_MODE_WAIT_FOR_REQ;
    // Use authenticated pairing: require passcode.
    uint8_t mitm = TRUE;
    // This device only has display capabilities. Therefore, it will display the
    // passcode during pairing. However, since the default passcode is being
    // used, there is no need to display anything.
    uint8_t ioCap = GAPBOND_IO_CAP_DISPLAY_ONLY;
    // Request bonding (storing long-term keys for re-encryption upon subsequent
    // connections without repairing)
    uint8_t bonding = TRUE;

    GAPBondMgr_SetParameter(GAPBOND_PAIRING_MODE, sizeof(uint8_t), &pairMode);
    GAPBondMgr_SetParameter(GAPBOND_MITM_PROTECTION, sizeof(uint8_t), &mitm);
    GAPBondMgr_SetParameter(GAPBOND_IO_CAPABILITIES, sizeof(uint8_t), &ioCap);
    GAPBondMgr_SetParameter(GAPBOND_BONDING_ENABLED, sizeof(uint8_t), &bonding);
  }
#endif

  // Initialize GATT attributes
  GGS_AddService(GATT_ALL_SERVICES);           // GAP GATT Service
  GATTServApp_AddService(GATT_ALL_SERVICES);   // GATT Service
  DevInfo_AddService();                        // Device Information Service
  SimpleProfile_AddService(GATT_ALL_SERVICES); // Simple GATT Profile

  // Setup the SimpleProfile Characteristic Values
  // For more information, see the sections in the User's Guide:
  // http://software-dl.ti.com/lprf/sdg-latest/html/
  {
    uint8_t charValue1 = 1;
    uint8_t charValue2 = 2;
    uint8_t charValue3 = 3;
    uint8_t charValue4 = 4;
    uint8_t charValue5[SIMPLEPROFILE_CHAR5_LEN] = { 1, 2, 3, 4, 5 };

    SimpleProfile_SetParameter(SIMPLEPROFILE_CHAR1, sizeof(uint8_t),
                               &charValue1);
    SimpleProfile_SetParameter(SIMPLEPROFILE_CHAR2, sizeof(uint8_t),
                               &charValue2);
    SimpleProfile_SetParameter(SIMPLEPROFILE_CHAR3, sizeof(uint8_t),
                               &charValue3);
    SimpleProfile_SetParameter(SIMPLEPROFILE_CHAR4, sizeof(uint8_t),
                               &charValue4);
    SimpleProfile_SetParameter(SIMPLEPROFILE_CHAR5, SIMPLEPROFILE_CHAR5_LEN,
                               charValue5);
  }

  // Register callback with SimpleGATTprofile
  SimpleProfile_RegisterAppCBs(&SimplePeripheral_simpleProfileCBs);

  // Start the Device
  VOID GAPRole_StartDevice(&SimplePeripheral_gapRoleCBs);

#if 0
  // Start Bond Manager and register callback
  VOID GAPBondMgr_Register(&simplePeripheral_BondMgrCBs);
#endif

  // Register with GAP for HCI/Host messages. This is needed to receive HCI
  // events. For more information, see the section in the User's Guide:
  // http://software-dl.ti.com/lprf/sdg-latest/html
  GAP_RegisterForMsgs(selfEntity);

  // Register for GATT local events and ATT Responses pending for transmission
  GATT_RegisterForMsgs(selfEntity);

  //Set default values for Data Length Extension
  {
    //Set initial values to maximum, RX is set to max. by default(251 octets, 2120us)
    #define APP_SUGGESTED_PDU_SIZE 251 //default is 27 octets(TX)
    #define APP_SUGGESTED_TX_TIME 2120 //default is 328us(TX)

    //This API is documented in hci.h
    //See the LE Data Length Extension section in the BLE-Stack User's Guide for information on using this command:
    //http://software-dl.ti.com/lprf/sdg-latest/html/cc2640/index.html
    //HCI_LE_WriteSuggestedDefaultDataLenCmd(APP_SUGGESTED_PDU_SIZE, APP_SUGGESTED_TX_TIME);
  }

#if !defined (USE_LL_CONN_PARAM_UPDATE)
  // Get the currently set local supported LE features
  // The HCI will generate an HCI event that will get received in the main
  // loop
  HCI_LE_ReadLocalSupportedFeaturesCmd();
#endif // !defined (USE_LL_CONN_PARAM_UPDATE)

  Display_print0(dispHandle, 0, 0, "BLE Peripheral");
}

/*********************************************************************
 * @fn      SimplePeripheral_taskFxn
 *
 * @brief   Application task entry point for the Simple Peripheral.
 *
 * @param   a0, a1 - not used.
 *
 * @return  None.
 */
static void SimplePeripheral_taskFxn(UArg a0, UArg a1)
{
  // Initialize application
  SimplePeripheral_init();

  void LedInit(void);
  LedInit();

  // Application main loop
  for (;;)
  {
    uint32_t events;

    // Waits for an event to be posted associated with the calling thread.
    // Note that an event associated with a thread is posted when a
    // message is queued to the message receive queue of the thread
    events = Event_pend(syncEvent, Event_Id_NONE, SBP_ALL_EVENTS,
                        ICALL_TIMEOUT_FOREVER);

    if (events)
    {
      ICall_EntityID dest;
      ICall_ServiceEnum src;
      ICall_HciExtEvt *pMsg = NULL;

      // Fetch any available messages that might have been sent from the stack
      if (ICall_fetchServiceMsg(&src, &dest,
                                (void **)&pMsg) == ICALL_ERRNO_SUCCESS)
      {
        uint8 safeToDealloc = TRUE;

        if ((src == ICALL_SERVICE_CLASS_BLE) && (dest == selfEntity))
        {
          ICall_Stack_Event *pEvt = (ICall_Stack_Event *)pMsg;

          if (pEvt->signature != 0xffff)
          {
            // Process inter-task message
            safeToDealloc = SimplePeripheral_processStackMsg((ICall_Hdr *)pMsg);
          }
        }

        if (pMsg && safeToDealloc)
        {
          ICall_freeMsg(pMsg);
        }
      }

      // If RTOS queue is not empty, process app message.
      if (events & SBP_QUEUE_EVT)
      {
        while (!Queue_empty(appMsgQueue))
        {
          sbpEvt_t *pMsg = (sbpEvt_t *)Util_dequeueMsg(appMsgQueue);
          if (pMsg)
          {
            // Process message.
            SimplePeripheral_processAppMsg(pMsg);

            // Free the space from the message.
            ICall_free(pMsg);
          }
        }
      }

      if (events & SBP_PERIODIC_EVT)
      {
        Util_startClock(&periodicClock);

        // Perform periodic application task
        SimplePeripheral_performPeriodicTask();
      }
    }
  }
}

/*********************************************************************
 * @fn      SimplePeripheral_processStackMsg
 *
 * @brief   Process an incoming stack message.
 *
 * @param   pMsg - message to process
 *
 * @return  TRUE if safe to deallocate incoming message, FALSE otherwise.
 */
static uint8_t SimplePeripheral_processStackMsg(ICall_Hdr *pMsg)
{
  uint8_t safeToDealloc = TRUE;

  switch (pMsg->event)
  {
    case GATT_MSG_EVENT:
      // Process GATT message
      safeToDealloc = SimplePeripheral_processGATTMsg((gattMsgEvent_t *)pMsg);
      break;

    case HCI_GAP_EVENT_EVENT:
      {

        // Process HCI message
        switch(pMsg->status)
        {
          case HCI_COMMAND_COMPLETE_EVENT_CODE:
            // Process HCI Command Complete Event
            {

#if !defined (USE_LL_CONN_PARAM_UPDATE)
              // This code will disable the use of the LL_CONNECTION_PARAM_REQ
              // control procedure (for connection parameter updates, the
              // L2CAP Connection Parameter Update procedure will be used
              // instead). To re-enable the LL_CONNECTION_PARAM_REQ control
              // procedures, define the symbol USE_LL_CONN_PARAM_UPDATE
              // The L2CAP Connection Parameter Update procedure is used to
              // support a delta between the minimum and maximum connection
              // intervals required by some iOS devices.

              // Parse Command Complete Event for opcode and status
              hciEvt_CmdComplete_t* command_complete = (hciEvt_CmdComplete_t*) pMsg;
              uint8_t   pktStatus = command_complete->pReturnParam[0];

              //find which command this command complete is for
              switch (command_complete->cmdOpcode)
              {
                case HCI_LE_READ_LOCAL_SUPPORTED_FEATURES:
                  {
                    if (pktStatus == SUCCESS)
                    {
                      uint8_t featSet[8];

                      // Get current feature set from received event (bits 1-9
                      // of the returned data
                      memcpy( featSet, &command_complete->pReturnParam[1], 8 );

                      // Clear bit 1 of byte 0 of feature set to disable LL
                      // Connection Parameter Updates
                      CLR_FEATURE_FLAG( featSet[0], LL_FEATURE_CONN_PARAMS_REQ );

                      // Update controller with modified features
                      HCI_EXT_SetLocalSupportedFeaturesCmd( featSet );
                    }
                  }
                  break;

                default:
                  //do nothing
                  break;
              }
#endif // !defined (USE_LL_CONN_PARAM_UPDATE)

            }
            break;

          case HCI_BLE_HARDWARE_ERROR_EVENT_CODE:
            AssertHandler(HAL_ASSERT_CAUSE_HARDWARE_ERROR,0);
            break;

          default:
            break;
        }
      }
      break;

      default:
        // do nothing
        break;

    }

  return (safeToDealloc);
}

/*********************************************************************
 * @fn      SimplePeripheral_processGATTMsg
 *
 * @brief   Process GATT messages and events.
 *
 * @return  TRUE if safe to deallocate incoming message, FALSE otherwise.
 */
static uint8_t SimplePeripheral_processGATTMsg(gattMsgEvent_t *pMsg)
{
  // See if GATT server was unable to transmit an ATT response
  if (pMsg->hdr.status == blePending)
  {
    // No HCI buffer was available. Let's try to retransmit the response
    // on the next connection event.
    if( SimplePeripheral_RegistertToAllConnectionEvent(FOR_ATT_RSP) == SUCCESS)
    {
      // First free any pending response
      SimplePeripheral_freeAttRsp(FAILURE);

      // Hold on to the response message for retransmission
      pAttRsp = pMsg;

      // Don't free the response message yet
      return (FALSE);
    }
  }
  else if (pMsg->method == ATT_FLOW_CTRL_VIOLATED_EVENT)
  {
    // ATT request-response or indication-confirmation flow control is
    // violated. All subsequent ATT requests or indications will be dropped.
    // The app is informed in case it wants to drop the connection.

    // Display the opcode of the message that caused the violation.
    Display_print1(dispHandle, 5, 0, "FC Violated: %d", pMsg->msg.flowCtrlEvt.opcode);
  }
  else if (pMsg->method == ATT_MTU_UPDATED_EVENT)
  {
    // MTU size updated
    Display_print1(dispHandle, 5, 0, "MTU Size: %d", pMsg->msg.mtuEvt.MTU);
  }

  // Free message payload. Needed only for ATT Protocol messages
  GATT_bm_free(&pMsg->msg, pMsg->method);

  // It's safe to free the incoming message
  return (TRUE);
}

/*********************************************************************
 * @fn      SimplePeripheral_processConnEvt
 *
 * @brief   Process connection event.
 *
 * @param pReport pointer to connection event report
 */
static void SimplePeripheral_processConnEvt(Gap_ConnEventRpt_t *pReport)
{

  if( CONNECTION_EVENT_REGISTRATION_CAUSE(FOR_ATT_RSP))
  {
    // The GATT server might have returned a blePending as it was trying
    // to process an ATT Response. Now that we finished with this
    // connection event, let's try sending any remaining ATT Responses
    // on the next connection event.
    // Try to retransmit pending ATT Response (if any)
    SimplePeripheral_sendAttRsp();
  }

}

/*********************************************************************
 *
 * @brief   Send a pending ATT response message.
 *
 * @param   none
 *
 * @return  none
 */
static void SimplePeripheral_sendAttRsp(void)
{
  // See if there's a pending ATT Response to be transmitted
  if (pAttRsp != NULL)
  {
    uint8_t status;

    // Increment retransmission count
    rspTxRetry++;

    // Try to retransmit ATT response till either we're successful or
    // the ATT Client times out (after 30s) and drops the connection.
    status = GATT_SendRsp(pAttRsp->connHandle, pAttRsp->method, &(pAttRsp->msg));
    if ((status != blePending) && (status != MSG_BUFFER_NOT_AVAIL))
    {
      // Disable connection event end notice
      SimplePeripheral_UnRegistertToAllConnectionEvent (FOR_ATT_RSP);
      // We're done with the response message
      SimplePeripheral_freeAttRsp(status);
    }
    else
    {
      // Continue retrying
      Display_print1(dispHandle, 5, 0, "Rsp send retry: %d", rspTxRetry);
    }
  }
}

/*********************************************************************
 * @fn      SimplePeripheral_freeAttRsp
 *
 * @brief   Free ATT response message.
 *
 * @param   status - response transmit status
 *
 * @return  none
 */
static void SimplePeripheral_freeAttRsp(uint8_t status)
{
  // See if there's a pending ATT response message
  if (pAttRsp != NULL)
  {
    // See if the response was sent out successfully
    if (status == SUCCESS)
    {
      Display_print1(dispHandle, 5, 0, "Rsp sent retry: %d", rspTxRetry);
    }
    else
    {
      // Free response payload
      GATT_bm_free(&pAttRsp->msg, pAttRsp->method);

      Display_print1(dispHandle, 5, 0, "Rsp retry failed: %d", rspTxRetry);
    }

    // Free response message
    ICall_freeMsg(pAttRsp);

    // Reset our globals
    pAttRsp = NULL;
    rspTxRetry = 0;
  }
}

/*********************************************************************
 * @fn      SimplePeripheral_processAppMsg
 *
 * @brief   Process an incoming callback from a profile.
 *
 * @param   pMsg - message to process
 *
 * @return  None.
 */
static void SimplePeripheral_processAppMsg(sbpEvt_t *pMsg)
{
  switch (pMsg->hdr.event)
  {
    case SBP_STATE_CHANGE_EVT:
      {
        SimplePeripheral_processStateChangeEvt((gaprole_States_t)pMsg->
                                                hdr.state);
      }
      break;

    case SBP_CHAR_CHANGE_EVT:
      {
        SimplePeripheral_processCharValueChangeEvt(pMsg->hdr.state);
      }
      break;

    // Pairing event
    case SBP_PAIRING_STATE_EVT:
      {
        SimplePeripheral_processPairState(pMsg->hdr.state, *pMsg->pData);

        ICall_free(pMsg->pData);
        break;
      }

    // Passcode event
    case SBP_PASSCODE_NEEDED_EVT:
      {
        SimplePeripheral_processPasscode(*pMsg->pData);

        ICall_free(pMsg->pData);
        break;
      }

	case SBP_CONN_EVT:
      {
        SimplePeripheral_processConnEvt((Gap_ConnEventRpt_t *)(pMsg->pData));

        ICall_free(pMsg->pData);
        break;
	  }

    default:
      // Do nothing.
      break;
  }
}

/*********************************************************************
 * @fn      SimplePeripheral_stateChangeCB
 *
 * @brief   Callback from GAP Role indicating a role state change.
 *
 * @param   newState - new state
 *
 * @return  None.
 */
static void SimplePeripheral_stateChangeCB(gaprole_States_t newState)
{
  SimplePeripheral_enqueueMsg(SBP_STATE_CHANGE_EVT, newState, NULL);
}

/*********************************************************************
 * @fn      SimplePeripheral_processStateChangeEvt
 *
 * @brief   Process a pending GAP Role state change event.
 *
 * @param   newState - new state
 *
 * @return  None.
 */
static void SimplePeripheral_processStateChangeEvt(gaprole_States_t newState)
{
#ifdef PLUS_BROADCASTER
  static bool firstConnFlag = false;
#endif // PLUS_BROADCASTER

  switch ( newState )
  {
    case GAPROLE_STARTED:
      {
        uint8_t ownAddress[B_ADDR_LEN];
        uint8_t systemId[DEVINFO_SYSTEM_ID_LEN];

        GAPRole_GetParameter(GAPROLE_BD_ADDR, ownAddress);

        // use 6 bytes of device address for 8 bytes of system ID value
        systemId[0] = ownAddress[0];
        systemId[1] = ownAddress[1];
        systemId[2] = ownAddress[2];

        // set middle bytes to zero
        systemId[4] = 0x00;
        systemId[3] = 0x00;

        // shift three bytes up
        systemId[7] = ownAddress[5];
        systemId[6] = ownAddress[4];
        systemId[5] = ownAddress[3];

        DevInfo_SetParameter(DEVINFO_SYSTEM_ID, DEVINFO_SYSTEM_ID_LEN, systemId);

        // Display device address
        Display_print0(dispHandle, 1, 0, Util_convertBdAddr2Str(ownAddress));
        Display_print0(dispHandle, 2, 0, "Initialized");
      }
      break;

    case GAPROLE_ADVERTISING:
      Display_print0(dispHandle, 2, 0, "Advertising");
      break;

#ifdef PLUS_BROADCASTER
    // After a connection is dropped, a device in PLUS_BROADCASTER will continue
    // sending non-connectable advertisements and shall send this change of
    // state to the application.  These are then disabled here so that sending
    // connectable advertisements can resume.
    case GAPROLE_ADVERTISING_NONCONN:
      {
        uint8_t advertEnabled = FALSE;

        // Disable non-connectable advertising.
        GAPRole_SetParameter(GAPROLE_ADV_NONCONN_ENABLED, sizeof(uint8_t),
                           &advertEnabled);

        advertEnabled = TRUE;

        // Enabled connectable advertising.
        GAPRole_SetParameter(GAPROLE_ADVERT_ENABLED, sizeof(uint8_t),
                             &advertEnabled);

        // Reset flag for next connection.
        firstConnFlag = false;

        SimplePeripheral_freeAttRsp(bleNotConnected);
      }
      break;
#endif //PLUS_BROADCASTER

    case GAPROLE_CONNECTED:
      {
        linkDBInfo_t linkInfo;
        uint8_t numActive = 0;

        Util_startClock(&periodicClock);

        numActive = linkDB_NumActive();

        // Use numActive to determine the connection handle of the last
        // connection
        if ( linkDB_GetInfo( numActive - 1, &linkInfo ) == SUCCESS )
        {
          Display_print1(dispHandle, 2, 0, "Num Conns: %d", (uint16_t)numActive);
          Display_print0(dispHandle, 3, 0, Util_convertBdAddr2Str(linkInfo.addr));
        }
        else
        {
          uint8_t peerAddress[B_ADDR_LEN];

          GAPRole_GetParameter(GAPROLE_CONN_BD_ADDR, peerAddress);

          Display_print0(dispHandle, 2, 0, "Connected");
          Display_print0(dispHandle, 3, 0, Util_convertBdAddr2Str(peerAddress));
        }

        #ifdef PLUS_BROADCASTER
          // Only turn advertising on for this state when we first connect
          // otherwise, when we go from connected_advertising back to this state
          // we will be turning advertising back on.
          if (firstConnFlag == false)
          {
            uint8_t advertEnabled = FALSE; // Turn on Advertising

            // Disable connectable advertising.
            GAPRole_SetParameter(GAPROLE_ADVERT_ENABLED, sizeof(uint8_t),
                                 &advertEnabled);

            // Set to true for non-connectable advertising.
            advertEnabled = TRUE;

            // Enable non-connectable advertising.
            GAPRole_SetParameter(GAPROLE_ADV_NONCONN_ENABLED, sizeof(uint8_t),
                                 &advertEnabled);
            firstConnFlag = true;
          }
        #endif // PLUS_BROADCASTER
      }
      break;

    case GAPROLE_CONNECTED_ADV:
      Display_print0(dispHandle, 2, 0, "Connected Advertising");
      break;

    case GAPROLE_WAITING:
//      Util_stopClock(&periodicClock);
      SimplePeripheral_freeAttRsp(bleNotConnected);

      Display_print0(dispHandle, 2, 0, "Disconnected");

      // Clear remaining lines
      Display_clearLines(dispHandle, 3, 5);
      break;

    case GAPROLE_WAITING_AFTER_TIMEOUT:
      SimplePeripheral_freeAttRsp(bleNotConnected);

      Display_print0(dispHandle, 2, 0, "Timed Out");

      // Clear remaining lines
      Display_clearLines(dispHandle, 3, 5);

      #ifdef PLUS_BROADCASTER
        // Reset flag for next connection.
        firstConnFlag = false;
      #endif // PLUS_BROADCASTER
      break;

    case GAPROLE_ERROR:
      Display_print0(dispHandle, 2, 0, "Error");
      break;

    default:
      Display_clearLine(dispHandle, 2);
      break;
  }

}

/*********************************************************************
 * @fn      SimplePeripheral_charValueChangeCB
 *
 * @brief   Callback from Simple Profile indicating a characteristic
 *          value change.
 *
 * @param   paramID - parameter ID of the value that was changed.
 *
 * @return  None.
 */
static void SimplePeripheral_charValueChangeCB(uint8_t paramID)
{
  SimplePeripheral_enqueueMsg(SBP_CHAR_CHANGE_EVT, paramID, 0);
}

/*********************************************************************
 * @fn      SimplePeripheral_processCharValueChangeEvt
 *
 * @brief   Process a pending Simple Profile characteristic value change
 *          event.
 *
 * @param   paramID - parameter ID of the value that was changed.
 *
 * @return  None.
 */
static void SimplePeripheral_processCharValueChangeEvt(uint8_t paramID)
{
  uint8_t newValue;

  switch(paramID)
  {
    case SIMPLEPROFILE_CHAR1:
      SimpleProfile_GetParameter(SIMPLEPROFILE_CHAR1, &newValue);

      Display_print1(dispHandle, 4, 0, "Char 1: %d", (uint16_t)newValue);
      break;

    case SIMPLEPROFILE_CHAR3:
      SimpleProfile_GetParameter(SIMPLEPROFILE_CHAR3, &newValue);

      Display_print1(dispHandle, 4, 0, "Char 3: %d", (uint16_t)newValue);
      break;

    default:
      // should not reach here!
      break;
  }
}

/*********************************************************************
 * @fn      SimplePeripheral_performPeriodicTask
 *
 * @brief   Perform a periodic application task. This function gets called
 *          every five seconds (SBP_PERIODIC_EVT_PERIOD). In this example,
 *          the value of the third characteristic in the SimpleGATTProfile
 *          service is retrieved from the profile, and then copied into the
 *          value of the the fourth characteristic.
 *
 * @param   None.
 *
 * @return  None.
 */
static void SimplePeripheral_performPeriodicTask(void)
{
    void showIdleStack(void);
    showIdleStack();

  uint8_t valueToCopy;

  // Call to retrieve the value of the third characteristic in the profile
  if (SimpleProfile_GetParameter(SIMPLEPROFILE_CHAR3, &valueToCopy) == SUCCESS)
  {
    // Call to set that value of the fourth characteristic in the profile.
    // Note that if notifications of the fourth characteristic have been
    // enabled by a GATT client device, then a notification will be sent
    // every time this function is called.
    SimpleProfile_SetParameter(SIMPLEPROFILE_CHAR4, sizeof(uint8_t),
                               &valueToCopy);
  }
}

/*********************************************************************
 * @fn      SimplePeripheral_pairStateCB
 *
 * @brief   Pairing state callback.
 *
 * @return  none
 */
static void SimplePeripheral_pairStateCB(uint16_t connHandle, uint8_t state,
                                            uint8_t status)
{
  uint8_t *pData;

  // Allocate space for the event data.
  if ((pData = ICall_malloc(sizeof(uint8_t))))
  {
    *pData = status;

    // Queue the event.
    SimplePeripheral_enqueueMsg(SBP_PAIRING_STATE_EVT, state, pData);
  }
}

/*********************************************************************
 * @fn      SimplePeripheral_processPairState
 *
 * @brief   Process the new paring state.
 *
 * @return  none
 */
static void SimplePeripheral_processPairState(uint8_t state, uint8_t status)
{
  if (state == GAPBOND_PAIRING_STATE_STARTED)
  {
    Display_print0(dispHandle, 2, 0, "Pairing started");
  }
  else if (state == GAPBOND_PAIRING_STATE_COMPLETE)
  {
    if (status == SUCCESS)
    {
      Display_print0(dispHandle, 2, 0, "Pairing success");
    }
    else
    {
      Display_print1(dispHandle, 2, 0, "Pairing fail: %d", status);
    }
  }
  else if (state == GAPBOND_PAIRING_STATE_BONDED)
  {
    if (status == SUCCESS)
    {
      Display_print0(dispHandle, 2, 0, "Bonding success");
    }
  }
  else if (state == GAPBOND_PAIRING_STATE_BOND_SAVED)
  {
    if (status == SUCCESS)
    {
      Display_print0(dispHandle, 2, 0, "Bond save success");
    }
    else
    {
      Display_print1(dispHandle, 2, 0, "Bond save failed: %d", status);
    }
  }
}

/*********************************************************************
 * @fn      SimplePeripheral_passcodeCB
 *
 * @brief   Passcode callback.
 *
 * @return  none
 */
static void SimplePeripheral_passcodeCB(uint8_t *deviceAddr, uint16_t connHandle,
                                           uint8_t uiInputs, uint8_t uiOutputs)
{
  uint8_t *pData;

  // Allocate space for the passcode event.
  if ((pData = ICall_malloc(sizeof(uint8_t))))
  {
    *pData = uiOutputs;

    // Enqueue the event.
    SimplePeripheral_enqueueMsg(SBP_PASSCODE_NEEDED_EVT, 0, pData);
  }
}

/*********************************************************************
 * @fn      SimplePeripheral_processPasscode
 *
 * @brief   Process the Passcode request.
 *
 * @return  none
 */
static void SimplePeripheral_processPasscode(uint8_t uiOutputs)
{
  // This app uses a default passcode. A real-life scenario would handle all
  // pairing scenarios and likely generate this randomly.
  uint32_t passcode = B_APP_DEFAULT_PASSCODE;

  // Display passcode to user
  if (uiOutputs != 0)
  {
    Display_print1(dispHandle, 4, 0, "Passcode: %d", passcode);
  }

  uint16_t connectionHandle;
  GAPRole_GetParameter(GAPROLE_CONNHANDLE, &connectionHandle);

  // Send passcode response
  GAPBondMgr_PasscodeRsp(connectionHandle, SUCCESS, passcode);
}

/*********************************************************************
 * @fn      SimplePeripheral_clockHandler
 *
 * @brief   Handler function for clock timeouts.
 *
 * @param   arg - event type
 *
 * @return  None.
 */
static void SimplePeripheral_clockHandler(UArg arg)
{
  // Wake up the application.
  Event_post(syncEvent, arg);
}

/*********************************************************************
 * @fn      SimplePeripheral_connEvtCB
 *
 * @brief   Connection event callback.
 *
 * @param pReport pointer to connection event report
 */
static void SimplePeripheral_connEvtCB(Gap_ConnEventRpt_t *pReport)
{
  // Enqueue the event for processing in the app context.
  if( SimplePeripheral_enqueueMsg(SBP_CONN_EVT, 0 ,(uint8_t *) pReport) == FALSE)
  {
    ICall_freeMsg(pReport);
  }

}

/*********************************************************************
 *
 * @brief   Creates a message and puts the message in RTOS queue.
 *
 * @param   event - message event.
 * @param   state - message state.
 * @param   pData - message data pointer.
 *
 * @return  TRUE or FALSE
 */
static uint8_t SimplePeripheral_enqueueMsg(uint8_t event, uint8_t state,
                                           uint8_t *pData)
{
  sbpEvt_t *pMsg = ICall_malloc(sizeof(sbpEvt_t));

  // Create dynamic pointer to message.
  if (pMsg)
  {
    pMsg->hdr.event = event;
    pMsg->hdr.state = state;
    pMsg->pData = pData;

    // Enqueue the message.
    return Util_enqueueMsg(appMsgQueue, syncEvent, (uint8_t *)pMsg);
  }

  return FALSE;
}
/*********************************************************************
*********************************************************************/

#include <ti/drivers/I2C.h>
#include <ti/drivers/i2c/I2CCC26XX.h>

#define MAX_BLINK_RATE   6
#define MIN_BLINK_PERIOD ((int)(1000 / MAX_BLINK_RATE))

//#define DISPLAY_IN_I2C

#define BH1750FVI_ADDR_L  0x23

static Clock_Struct led_timer;
static uint8_t txBuffer[1];
static uint8_t rxBuffer[2] = {0,0};
static uint8_t green = 0;
static uint16_t luxv = 0;

static const PIN_Config led_pin_table[] =
{
    Board_RLED | PIN_GPIO_OUTPUT_EN | PIN_GPIO_LOW | PIN_PUSHPULL | PIN_DRVSTR_MAX,
    Board_GLED | PIN_GPIO_OUTPUT_EN | PIN_GPIO_HIGH | PIN_PUSHPULL | PIN_DRVSTR_MAX,
    PIN_TERMINATE
};
static PIN_State led_pin_state;

static PIN_Handle led_pin_handle;

uint16_t bh1750GetMeasurement(void);

static void i2cCB(I2C_Handle i2c, I2C_Transaction *transaction, bool status)
{
    if (!status)
    {
//        Display_print0(dispHandle, 5, 0, "I2C failed");
    }
    else if ((green&1) == 0)
    {
        luxv = (rxBuffer[0] << 8) | rxBuffer[1];
#ifdef DISPLAY_IN_I2C
        unsigned ilux = (unsigned)((float)luxv/1.2);
        Display_print1(dispHandle, 3, 0, "lux_level= %d", ilux);
#endif
    }

    I2C_close(i2c);
}

static void ledClockHandler(UArg update_state)
{
    PIN_setOutputValue(led_pin_handle, Board_GLED, 1&(green++));

    I2C_Params i2c_params;
    I2C_Params_init(&i2c_params);
    i2c_params.bitRate = I2C_400kHz;
    i2c_params.transferCallbackFxn = i2cCB;
    i2c_params.transferMode = I2C_MODE_CALLBACK;
    I2C_Handle i2c = I2C_open(Board_I2C0, &i2c_params);
    if (i2c == NULL)
    {
        Display_print0(dispHandle, 5, 0, "Error Initializing I2C");
        return;
    }

    I2C_Transaction i2cTransaction;
    i2cTransaction.slaveAddress = BH1750FVI_ADDR_L;
    i2cTransaction.writeBuf = txBuffer;
    i2cTransaction.readBuf = rxBuffer;
    if (1&green)
    {
        i2cTransaction.writeCount = 1;
        i2cTransaction.readCount = 0;
        txBuffer[0] = 0x20; // One Time H-Resolution Mode
    }
    else
    {
        i2cTransaction.writeCount = 0;
        i2cTransaction.readCount = 2;
    }
    if (I2C_transfer(i2c, &i2cTransaction) == 0)
    {
        Display_print0(dispHandle, 5, 0, "I2C_transfer error");
        I2C_close(i2c);
    }
}

void LedInit(void)
{
    led_pin_handle = PIN_open(&led_pin_state, led_pin_table);

    I2C_init();
    I2C_Handle i2c = I2C_open(Board_I2C0, NULL); // use default parameters with blocking and 100kHz clock

    if (i2c == NULL)
    {
        Display_print0(dispHandle, 5, 0, "Error Initializing I2C");
    }
    else
    {
        // send power up command to BH1750
        uint8_t txBuffer[1];
        I2C_Transaction i2cTransaction;

        txBuffer[0] = 0x01; // power up device
        i2cTransaction.slaveAddress = BH1750FVI_ADDR_L;
        i2cTransaction.writeBuf = txBuffer;
        i2cTransaction.writeCount = 1;
        i2cTransaction.readBuf = NULL;
        i2cTransaction.readCount = 0;

        if (I2C_transfer(i2c, &i2cTransaction) == 0)
        {
            Display_print0(dispHandle, 5, 0, "BH1750 wake up failed");
        }

        I2C_close(i2c);
    }

    Util_constructClock(&led_timer, ledClockHandler, MIN_BLINK_PERIOD, MIN_BLINK_PERIOD,
                        TRUE, TRUE);
}

void showIdleStack(void)
{
    // idle task (static) stats
    Task_Object *task = Task_Object_get(NULL, 0);
    Task_Stat stat;
    Task_stat(task, &stat);
    Display_print3(dispHandle, 4, 0, "idle task: curr= %d max= %d/%d",
                   (uint32_t)stat.stack + stat.stackSize - (uint32_t)stat.sp,
                   stat.used, (int32_t)stat.stackSize);
    if (stat.used >= stat.stackSize)
    {
        PIN_setOutputValue(led_pin_handle, Board_RLED, 1);
        Display_print0(dispHandle, 5, 0, "IDLE TASK STACK OVERFLOW!");
    }

#ifndef DISPLAY_IN_I2C
    unsigned ilux = (unsigned)((float)luxv/1.2);
    Display_print1(dispHandle, 3, 0, "lux_level= %d", ilux);
#endif
}

  • Hello Dave,

    This sounds like a printf buffer overflow. Can you try disabling the debug printf to see if this fixes your problem?

    The reason it may be crashing on the idle task is because this is the time the mcu uses to print out everything through the console.

    Regards,
    AB
  • Hi AB,

    Thanks for responding. Still happens (red light turns on), but it does take longer (try it, if you can). And that still does not explain what changed between 1.30 and 1.40/1.50/2.20.

    dave
  • Has anyone had the opportunity to verify this? You just need to take the standard Simple Peripheral LaunchPad example from simplelink_cc2640r2_sdk_2_20_00_49, and replace simple_peripheral.c with the slightly modified one I attached before. It does not actually need an attached I2C device. This happens even if the print statements are commented out. The red LED will turn on when the idle task stack overflows.

    Thanks!

    dave

  • Hey Dave,

    I've looked into your concern and was able to verify that the red LED turns on.

    Take a look at the TI-RTOS Kernel User's Guide, section 3.6.4. After removing the '=' from your conditional in the showIdleStack function, I could not reproduce the overflow.

    Please let me know if this resolves the issue on your end.

  • Hi Ammar,

    Thanks for looking into this. Sorry for the late response.

    I have been assuming that stat.used == stat.stackSize means an overflow occurred because I think the maximum used--at least as provided by that variable--seems to be clipped to stackSize, i.e. I have never seen a value for stat.used that is strictly greater than stat.stackSize. That is why red LED is never turned on if you change ">=" to ">". BTW, If you run the original program without the I2C calls but with showIdleStack enabled with print statements, the idle stack usage never even gets near the stack size. Something about the I2C calls dramatically increases the idle stack usage.

    dave