This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

CCS/LAUNCHXL-CC2640R2: Amount of data transmitted during advertising

Part Number: LAUNCHXL-CC2640R2
Other Parts Discussed in Thread: CC2650, SYSBIOS

Tool/software: Code Composer Studio

I am currently trying to measure the power consumption of Bluetooth stack only. I am using a simple peripheral example provided by TI. Since I am totally new for this environment I couldn't figure out how much data is transmitted during the advertisement.  I am using the host example with BTool as a central device. Is there anyone who can help me with this issue?

  • Hi Kahsay,

    Since you are new to this environment, I will recommend SimpleLink Academy. This is a series of tutorials with step-by-step instructions and a lot of information both on BLE and the TI BLE devices. Link: dev.ti.com/.../

    Specificlly you should take a look at the BLE Scanning and Advertising lab.

    We have an app note that specifically tells you how to measure power consumption on BLE devices: http://www.ti.com/lit/swra478
  • Hi Marie,

    Thank you for your help. I already used all the resources you have suggested me. But I couldn't figure out how much data is being transmitted during advertisement and also during connection. Could you help me on this, please?

  • Hi Kahsay,

    Please read through SimpleLink Academy - Bluetooth Low Energy Scanning and Advertising. dev.ti.com/.../
  • I do understood how the packet format is. But what I want to know is how it is implemented in Simple Perioheral example provided in the SDK.  How can I know how much data is transferred? This is my question if you get me.

    Regards,

    Kahsay

  • Hi Kashay,

    Please see the section on ADV packet format and the section on changing the ADV data in the SimpleLink Academy lab.
  • /******************************************************************************

    @file simple_peripheral.c

    @brief This file contains the Simple Peripheral sample application for use
    with the CC2650 Bluetooth Low Energy Protocol Stack.

    Group: CMCU, SCS
    Target Device: CC2640R2

    ******************************************************************************

    Copyright (c) 2013-2018, Texas Instruments Incorporated
    All rights reserved.

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions
    are met:

    * Redistributions of source code must retain the above copyright
    notice, this list of conditions and the following disclaimer.

    * Redistributions in binary form must reproduce the above copyright
    notice, this list of conditions and the following disclaimer in the
    documentation and/or other materials provided with the distribution.

    * Neither the name of Texas Instruments Incorporated nor the names of
    its contributors may be used to endorse or promote products derived
    from this software without specific prior written permission.

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
    THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
    PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
    CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
    OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
    WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
    OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
    EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

    ******************************************************************************
    Release Name: simplelink_cc2640r2_sdk_02_30_00_28
    Release Date: 2018-10-15 15:51:38
    *****************************************************************************/

    /*********************************************************************
    * INCLUDES
    */
    #include <string.h>

    #include <ti/sysbios/knl/Task.h>
    #include <ti/sysbios/knl/Clock.h>
    #include <ti/sysbios/knl/Event.h>
    #include <ti/sysbios/knl/Queue.h>

    #include <ti/display/Display.h>

    #if !(defined __TI_COMPILER_VERSION__)
    #include <intrinsics.h>
    #endif

    #include <ti/drivers/utils/List.h>

    #include <icall.h>
    #include "ExtFlash.h"
    #include "util.h"
    #include <bcomdef.h>
    /* This Header file contains all BLE API and icall structure definition */
    #include <icall_ble_api.h>

    #include <devinfoservice.h>
    #include <simple_gatt_profile.h>

    #ifdef USE_RCOSC
    #include <rcosc_calibration.h>
    #endif //USE_RCOSC

    #include <board.h>
    #include <board_key.h>

    #include <menu/two_btn_menu.h>

    #include "simple_peripheral_menu.h"
    #include "simple_peripheral.h"

    #ifdef PTM_MODE
    #include "npi_task.h" // To allow RX event registration
    #include "npi_ble.h" // To enable transmission of messages to UART
    #include "icall_hci_tl.h" // To allow ICall HCI Transport Layer
    #endif // PTM_MODE

    /*********************************************************************
    * MACROS
    */

    /*********************************************************************
    * CONSTANTS
    */

    // Address mode of the local device
    // Note: When using the DEFAULT_ADDRESS_MODE as ADDRMODE_RANDOM or
    // ADDRMODE_RP_WITH_RANDOM_ID, GAP_DeviceInit() should be called with
    // it's last parameter set to a static random address
    #define DEFAULT_ADDRESS_MODE ADDRMODE_PUBLIC

    // General discoverable mode: advertise indefinitely
    #define DEFAULT_DISCOVERABLE_MODE GAP_ADTYPE_FLAGS_GENERAL

    // Minimum connection interval (units of 1.25ms, 80=100ms) for parameter update request
    #define DEFAULT_DESIRED_MIN_CONN_INTERVAL 80

    // Maximum connection interval (units of 1.25ms, 104=130ms) for parameter update request
    #define DEFAULT_DESIRED_MAX_CONN_INTERVAL 104

    // Slave latency to use for parameter update request
    #define DEFAULT_DESIRED_SLAVE_LATENCY 0

    // Supervision timeout value (units of 10ms, 300=3s) for parameter update request
    #define DEFAULT_DESIRED_CONN_TIMEOUT 3000

    // Pass parameter updates to the app for it to decide.
    #define DEFAULT_PARAM_UPDATE_REQ_DECISION GAP_UPDATE_REQ_PASS_TO_APP

    // How often to perform periodic event (in ms)
    #define SP_PERIODIC_EVT_PERIOD 5000

    // How often to read current current RPA (in ms)
    #define SP_READ_RPA_EVT_PERIOD 3000

    // Delay (in ms) after connection establishment before sending a parameter update requst
    #define SP_SEND_PARAM_UPDATE_DELAY 6000

    // Task configuration
    #define SP_TASK_PRIORITY 1

    #ifndef SP_TASK_STACK_SIZE
    #define SP_TASK_STACK_SIZE 644
    #endif

    // Application events
    #define SP_STATE_CHANGE_EVT 0
    #define SP_CHAR_CHANGE_EVT 1
    #define SP_KEY_CHANGE_EVT 2
    #define SP_ADV_EVT 3
    #define SP_PAIR_STATE_EVT 4
    #define SP_PASSCODE_EVT 5
    #define SP_PERIODIC_EVT 6
    #define SP_READ_RPA_EVT 7
    #define SP_SEND_PARAM_UPDATE_EVT 8
    #define SP_CONN_EVT 9

    // Internal Events for RTOS application
    #define SP_ICALL_EVT ICALL_MSG_EVENT_ID // Event_Id_31
    #define SP_QUEUE_EVT UTIL_QUEUE_EVENT_ID // Event_Id_30

    // Bitwise OR of all RTOS events to pend on
    #define SP_ALL_EVENTS (SP_ICALL_EVT | \
    SP_QUEUE_EVT)

    // Size of string-converted device address ("0xXXXXXXXXXXXX")
    #define SP_ADDR_STR_SIZE 15

    // Row numbers for two-button menu
    #define SP_ROW_SEPARATOR_1 (TBM_ROW_APP + 0)
    #define SP_ROW_STATUS_1 (TBM_ROW_APP + 1)
    #define SP_ROW_STATUS_2 (TBM_ROW_APP + 2)
    #define SP_ROW_CONNECTION (TBM_ROW_APP + 3)
    #define SP_ROW_ADVSTATE (TBM_ROW_APP + 4)
    #define SP_ROW_RSSI (TBM_ROW_APP + 5)
    #define SP_ROW_IDA (TBM_ROW_APP + 6)
    #define SP_ROW_RPA (TBM_ROW_APP + 7)
    #define SP_ROW_DEBUG (TBM_ROW_APP + 8)

    // For storing the active connections
    #define SP_RSSI_TRACK_CHNLS 1 // Max possible channels can be GAP_BONDINGS_MAX
    #define SP_MAX_RSSI_STORE_DEPTH 5
    #define SP_INVALID_HANDLE 0xFFFF
    #define RSSI_2M_THRSHLD -30
    #define RSSI_1M_THRSHLD -40
    #define RSSI_S2_THRSHLD -50
    #define RSSI_S8_THRSHLD -60
    #define SP_PHY_NONE LL_PHY_NONE // No PHY set
    #define AUTO_PHY_UPDATE 0xFF

    // Spin if the expression is not true
    #define SIMPLEPERIPHERAL_ASSERT(expr) if (!(expr)) simple_peripheral_spin();

    /*********************************************************************
    * TYPEDEFS
    */

    // App event passed from stack modules. This type is defined by the application
    // since it can queue events to itself however it wants.
    typedef struct
    {
    uint8_t event; // event type
    void *pData; // pointer to message
    } spEvt_t;

    // Container to store passcode data when passing from gapbondmgr callback
    // to app event. See the pfnPairStateCB_t documentation from the gapbondmgr.h
    // header file for more information on each parameter.
    typedef struct
    {
    uint8_t state;
    uint16_t connHandle;
    uint8_t status;
    } spPairStateData_t;

    // Container to store passcode data when passing from gapbondmgr callback
    // to app event. See the pfnPasscodeCB_t documentation from the gapbondmgr.h
    // header file for more information on each parameter.
    typedef struct
    {
    uint8_t deviceAddr[B_ADDR_LEN];
    uint16_t connHandle;
    uint8_t uiInputs;
    uint8_t uiOutputs;
    uint32_t numComparison;
    } spPasscodeData_t;

    // Container to store advertising event data when passing from advertising
    // callback to app event. See the respective event in GapAdvScan_Event_IDs
    // in gap_advertiser.h for the type that pBuf should be cast to.
    typedef struct
    {
    uint32_t event;
    void *pBuf;
    } spGapAdvEventData_t;

    // Container to store information from clock expiration using a flexible array
    // since data is not always needed
    typedef struct
    {
    uint8_t event; //
    uint8_t data[];
    } spClockEventData_t;

    // List element for parameter update and PHY command status lists
    typedef struct
    {
    List_Elem elem;
    uint16_t connHandle;
    } spConnHandleEntry_t;

    // Connected device information
    typedef struct
    {
    uint16_t connHandle; // Connection Handle
    spClockEventData_t* pParamUpdateEventData;
    Clock_Struct* pUpdateClock; // pointer to clock struct
    int8_t rssiArr[SP_MAX_RSSI_STORE_DEPTH];
    uint8_t rssiCntr;
    int8_t rssiAvg;
    bool phyCngRq; // Set to true if PHY change request is in progress
    uint8_t currPhy;
    uint8_t rqPhy;
    uint8_t phyRqFailCnt; // PHY change request count
    bool isAutoPHYEnable; // Flag to indicate auto phy change
    } spConnRec_t;

    /*********************************************************************
    * GLOBAL VARIABLES
    */

    // Display Interface
    Display_Handle dispHandle = NULL;

    // Task configuration
    Task_Struct spTask;
    #if defined __TI_COMPILER_VERSION__
    #pragma DATA_ALIGN(spTaskStack, 8)
    #else
    #pragma data_alignment=8
    #endif
    uint8_t spTaskStack[SP_TASK_STACK_SIZE];

    /*********************************************************************
    * LOCAL VARIABLES
    */

    // Entity ID globally used to check for source and/or destination of messages
    static ICall_EntityID selfEntity;

    // Event globally used to post local events and pend on system and
    // local events.
    static ICall_SyncHandle syncEvent;

    // Queue object used for app messages
    static Queue_Struct appMsgQueue;
    static Queue_Handle appMsgQueueHandle;

    // Clock instance for internal periodic events. Only one is needed since
    // GattServApp will handle notifying all connected GATT clients
    static Clock_Struct clkPeriodic;
    // Clock instance for RPA read events.
    static Clock_Struct clkRpaRead;

    // Memory to pass periodic event ID to clock handler
    spClockEventData_t argPeriodic =
    { .event = SP_PERIODIC_EVT };

    // Memory to pass RPA read event ID to clock handler
    spClockEventData_t argRpaRead =
    { .event = SP_READ_RPA_EVT };

    // Per-handle connection info
    static spConnRec_t connList[MAX_NUM_BLE_CONNS];

    // Current connection handle as chosen by menu
    static uint16_t menuConnHandle = CONNHANDLE_INVALID;

    // List to store connection handles for set phy command status's
    static List_List setPhyCommStatList;

    // List to store connection handles for queued param updates
    static List_List paramUpdateList;

    // GAP GATT Attributes
    static uint8_t attDeviceName[GAP_DEVICE_NAME_LEN] = "Simple Peripheral";

    // Advertisement data
    static uint8_t advertData[] =
    {
    0x02, // length of this data
    GAP_ADTYPE_FLAGS,
    DEFAULT_DISCOVERABLE_MODE | GAP_ADTYPE_FLAGS_BREDR_NOT_SUPPORTED,

    // service UUID, to notify central devices what services are included
    // in this peripheral
    0x03, // length of this data
    GAP_ADTYPE_16BIT_MORE, // some of the UUID's, but not all
    LO_UINT16(SIMPLEPROFILE_SERV_UUID),
    HI_UINT16(SIMPLEPROFILE_SERV_UUID)
    };

    // Scan Response Data
    static uint8_t scanRspData[] =
    {
    // complete name
    17, // length of this data
    GAP_ADTYPE_LOCAL_NAME_COMPLETE,
    'S',
    'i',
    'm',
    'p',
    'l',
    'e',
    'P',
    'e',
    'r',
    'i',
    'p',
    'h',
    'e',
    'r',
    'a',
    'l',

    // connection interval range
    5, // length of this data
    GAP_ADTYPE_SLAVE_CONN_INTERVAL_RANGE,
    LO_UINT16(DEFAULT_DESIRED_MIN_CONN_INTERVAL), // 100ms
    HI_UINT16(DEFAULT_DESIRED_MIN_CONN_INTERVAL),
    LO_UINT16(DEFAULT_DESIRED_MAX_CONN_INTERVAL), // 1s
    HI_UINT16(DEFAULT_DESIRED_MAX_CONN_INTERVAL),

    // Tx power level
    2, // length of this data
    GAP_ADTYPE_POWER_LEVEL,
    0 // 0dBm
    };

    // Advertising handles
    static uint8 advHandleLegacy;
    static uint8 advHandleLongRange;

    // Address mode
    static GAP_Addr_Modes_t addrMode = DEFAULT_ADDRESS_MODE;

    #if defined(BLE_V42_FEATURES) && (BLE_V42_FEATURES & PRIVACY_1_2_CFG)
    // Current Random Private Address
    static uint8 rpa[B_ADDR_LEN] = {0};
    #endif // PRIVACY_1_2_CFG

    /*********************************************************************
    * LOCAL FUNCTIONS
    */

    static void SimplePeripheral_init( void );
    static void SimplePeripheral_taskFxn(UArg a0, UArg a1);

    static uint8_t SimplePeripheral_processStackMsg(ICall_Hdr *pMsg);
    static uint8_t SimplePeripheral_processGATTMsg(gattMsgEvent_t *pMsg);
    static void SimplePeripheral_processGapMessage(gapEventHdr_t *pMsg);
    static void SimplePeripheral_advCallback(uint32_t event, void *pBuf, uintptr_t arg);
    static void SimplePeripheral_processAdvEvent(spGapAdvEventData_t *pEventData);
    static void SimplePeripheral_processAppMsg(spEvt_t *pMsg);
    static void SimplePeripheral_processCharValueChangeEvt(uint8_t paramId);
    static void SimplePeripheral_performPeriodicTask(void);
    #if defined(BLE_V42_FEATURES) && (BLE_V42_FEATURES & PRIVACY_1_2_CFG)
    static void SimplePeripheral_updateRPA(void);
    #endif // PRIVACY_1_2_CFG
    static void SimplePeripheral_clockHandler(UArg arg);
    #if defined(GAP_BOND_MGR)
    static void SimplePeripheral_passcodeCb(uint8_t *pDeviceAddr, uint16_t connHandle,
    uint8_t uiInputs, uint8_t uiOutputs,
    uint32_t numComparison);
    static void SimplePeripheral_pairStateCb(uint16_t connHandle, uint8_t state,
    uint8_t status);
    #endif
    static void SimplePeripheral_processPairState(spPairStateData_t *pPairState);
    static void SimplePeripheral_processPasscode(spPasscodeData_t *pPasscodeData);
    static void SimplePeripheral_charValueChangeCB(uint8_t paramId);
    static status_t SimplePeripheral_enqueueMsg(uint8_t event, void *pData);
    static void SimplePeripheral_keyChangeHandler(uint8 keys);
    static void SimplePeripheral_handleKeys(uint8_t keys);
    static void SimplePeripheral_processCmdCompleteEvt(hciEvt_CmdComplete_t *pMsg);
    static void SimplePeripheral_initPHYRSSIArray(void);
    static void SimplePeripheral_updatePHYStat(uint16_t eventCode, uint8_t *pMsg);
    static uint8_t SimplePeripheral_addConn(uint16_t connHandle);
    static uint8_t SimplePeripheral_getConnIndex(uint16_t connHandle);
    static uint8_t SimplePeripheral_removeConn(uint16_t connHandle);
    static void SimplePeripheral_processParamUpdate(uint16_t connHandle);
    static status_t SimplePeripheral_startAutoPhyChange(uint16_t connHandle);
    static status_t SimplePeripheral_stopAutoPhyChange(uint16_t connHandle);
    static status_t SimplePeripheral_setPhy(uint16_t connHandle, uint8_t allPhys,
    uint8_t txPhy, uint8_t rxPhy,
    uint16_t phyOpts);
    static uint8_t SimplePeripheral_clearConnListEntry(uint16_t connHandle);
    static void SimplePeripheral_menuSwitchCb(tbmMenuObj_t* pMenuObjCurr,
    tbmMenuObj_t* pMenuObjNext);
    static void SimplePeripheral_connEvtCB(Gap_ConnEventRpt_t *pReport);
    static void SimplePeripheral_processConnEvt(Gap_ConnEventRpt_t *pReport);
    #ifdef PTM_MODE
    void simple_peripheral_handleNPIRxInterceptEvent(uint8_t *pMsg); // Declaration
    static void simple_peripheral_sendToNPI(uint8_t *buf, uint16_t len); // Declaration
    #endif // PTM_MODE

    /*********************************************************************
    * EXTERN FUNCTIONS
    */
    extern void AssertHandler(uint8 assertCause, uint8 assertSubcause);

    /*********************************************************************
    * PROFILE CALLBACKS
    */

    #if defined(GAP_BOND_MGR)
    // GAP Bond Manager Callbacks
    static gapBondCBs_t SimplePeripheral_BondMgrCBs =
    {
    SimplePeripheral_passcodeCb, // Passcode callback
    SimplePeripheral_pairStateCb // Pairing/Bonding state Callback
    };
    #endif

    // Simple GATT Profile Callbacks
    static simpleProfileCBs_t SimplePeripheral_simpleProfileCBs =
    {
    SimplePeripheral_charValueChangeCB // Simple GATT Characteristic value change callback
    };

    /*********************************************************************
    * PUBLIC FUNCTIONS
    */

    /*********************************************************************
    * @fn simple_peripheral_spin
    *
    * @brief Spin forever
    *
    * @param none
    */
    static void simple_peripheral_spin(void)
    {
    volatile uint8_t x = 0;

    while(1)
    {
    x++;
    }
    }

    #ifdef PTM_MODE
    /*********************************************************************
    * @fn simple_peripheral_handleNPIRxInterceptEvent
    *
    * @brief Intercept an NPI RX serial message and queue for this application.
    *
    * @param pMsg - a NPIMSG_msg_t containing the intercepted message.
    *
    * @return none.
    */
    void simple_peripheral_handleNPIRxInterceptEvent(uint8_t *pMsg)
    {
    // Send Command via HCI TL
    HCI_TL_SendToStack(((NPIMSG_msg_t *)pMsg)->pBuf);

    // The data is stored as a message, free this first.
    ICall_freeMsg(((NPIMSG_msg_t *)pMsg)->pBuf);

    // Free container.
    ICall_free(pMsg);
    }

    /*********************************************************************
    * @fn simple_peripheral_sendToNPI
    *
    * @brief Create an NPI packet and send to NPI to transmit.
    *
    * @param buf - pointer HCI event or data.
    *
    * @param len - length of buf in bytes.
    *
    * @return none
    */
    static void simple_peripheral_sendToNPI(uint8_t *buf, uint16_t len)
    {
    npiPkt_t *pNpiPkt = (npiPkt_t *)ICall_allocMsg(sizeof(npiPkt_t) + len);

    if (pNpiPkt)
    {
    pNpiPkt->hdr.event = buf[0]; //Has the event status code in first byte of payload
    pNpiPkt->hdr.status = 0xFF;
    pNpiPkt->pktLen = len;
    pNpiPkt->pData = (uint8 *)(pNpiPkt + 1);

    memcpy(pNpiPkt->pData, buf, len);

    // Send to NPI
    // Note: there is no need to free this packet. NPI will do that itself.
    NPITask_sendToHost((uint8_t *)pNpiPkt);
    }
    }
    #endif // PTM_MODE

    /*********************************************************************
    * @fn SimplePeripheral_createTask
    *
    * @brief Task creation function for the Simple Peripheral.
    */
    void SimplePeripheral_createTask(void)
    {
    Task_Params taskParams;

    // Configure task
    Task_Params_init(&taskParams);
    taskParams.stack = spTaskStack;
    taskParams.stackSize = SP_TASK_STACK_SIZE;
    taskParams.priority = SP_TASK_PRIORITY;

    Task_construct(&spTask, SimplePeripheral_taskFxn, &taskParams, NULL);
    }

    /*********************************************************************
    * @fn SimplePeripheral_init
    *
    * @brief Called during initialization and contains application
    * specific initialization (ie. hardware initialization/setup,
    * table initialization, power up notification, etc), and
    * profile initialization/setup.
    */
    static void SimplePeripheral_init(void)
    {
    Board_shutDownExtFlash();


    // ******************************************************************
    // N0 STACK API CALLS CAN OCCUR BEFORE THIS CALL TO ICall_registerApp
    // ******************************************************************
    // Register the current thread as an ICall dispatcher application
    // so that the application can send and receive messages.
    ICall_registerApp(&selfEntity, &syncEvent);

    #ifdef USE_RCOSC
    RCOSC_enableCalibration();
    #endif // USE_RCOSC

    // Create an RTOS queue for message from profile to be sent to app.
    appMsgQueueHandle = Util_constructQueue(&appMsgQueue);

    // Create one-shot clock for internal periodic events.
    Util_constructClock(&clkPeriodic, SimplePeripheral_clockHandler,
    SP_PERIODIC_EVT_PERIOD, 0, false, (UArg)&argPeriodic);

    // Set the Device Name characteristic in the GAP GATT Service
    // For more information, see the section in the User's Guide:
    // software-dl.ti.com/.../
    GGS_SetParameter(GGS_DEVICE_NAME_ATT, GAP_DEVICE_NAME_LEN, attDeviceName);

    // Configure GAP
    {
    uint16_t paramUpdateDecision = DEFAULT_PARAM_UPDATE_REQ_DECISION;

    // Pass all parameter update requests to the app for it to decide
    GAP_SetParamValue(GAP_PARAM_LINK_UPDATE_DECISION, paramUpdateDecision);
    }

    #if defined(GAP_BOND_MGR)
    // Setup the GAP Bond Manager. For more information see the GAP Bond Manager
    // section in the User's Guide:
    // software-dl.ti.com/.../
    {
    // Don't send a pairing request after connecting; the peer device must
    // initiate pairing
    uint8_t pairMode = GAPBOND_PAIRING_MODE_WAIT_FOR_REQ;
    // Use authenticated pairing: require passcode.
    uint8_t mitm = TRUE;
    // This device only has display capabilities. Therefore, it will display the
    // passcode during pairing. However, since the default passcode is being
    // used, there is no need to display anything.
    uint8_t ioCap = GAPBOND_IO_CAP_DISPLAY_ONLY;
    // Request bonding (storing long-term keys for re-encryption upon subsequent
    // connections without repairing)
    uint8_t bonding = TRUE;

    GAPBondMgr_SetParameter(GAPBOND_PAIRING_MODE, sizeof(uint8_t), &pairMode);
    GAPBondMgr_SetParameter(GAPBOND_MITM_PROTECTION, sizeof(uint8_t), &mitm);
    GAPBondMgr_SetParameter(GAPBOND_IO_CAPABILITIES, sizeof(uint8_t), &ioCap);
    GAPBondMgr_SetParameter(GAPBOND_BONDING_ENABLED, sizeof(uint8_t), &bonding);
    }
    #endif

    // Initialize GATT attributes
    GGS_AddService(GATT_ALL_SERVICES); // GAP GATT Service
    GATTServApp_AddService(GATT_ALL_SERVICES); // GATT Service
    DevInfo_AddService(); // Device Information Service
    SimpleProfile_AddService(GATT_ALL_SERVICES); // Simple GATT Profile

    // Setup the SimpleProfile Characteristic Values
    // For more information, see the GATT and GATTServApp sections in the User's Guide:
    // software-dl.ti.com/.../
    {
    uint8_t charValue1 = 1;
    uint8_t charValue2 = 2;
    uint8_t charValue3 = 3;
    uint8_t charValue4 = 4;
    uint8_t charValue5[SIMPLEPROFILE_CHAR5_LEN] = { 1, 2, 3, 4, 5 };

    SimpleProfile_SetParameter(SIMPLEPROFILE_CHAR1, sizeof(uint8_t),
    &charValue1);
    SimpleProfile_SetParameter(SIMPLEPROFILE_CHAR2, sizeof(uint8_t),
    &charValue2);
    SimpleProfile_SetParameter(SIMPLEPROFILE_CHAR3, sizeof(uint8_t),
    &charValue3);
    SimpleProfile_SetParameter(SIMPLEPROFILE_CHAR4, sizeof(uint8_t),
    &charValue4);
    SimpleProfile_SetParameter(SIMPLEPROFILE_CHAR5, SIMPLEPROFILE_CHAR5_LEN,
    charValue5);
    }

    // Register callback with SimpleGATTprofile
    SimpleProfile_RegisterAppCBs(&SimplePeripheral_simpleProfileCBs);

    #if defined(GAP_BOND_MGR)
    // Start Bond Manager and register callback
    VOID GAPBondMgr_Register(&SimplePeripheral_BondMgrCBs);
    #endif

    // Register with GAP for HCI/Host messages. This is needed to receive HCI
    // events. For more information, see the HCI section in the User's Guide:
    // software-dl.ti.com/.../
    GAP_RegisterForMsgs(selfEntity);

    // Register for GATT local events and ATT Responses pending for transmission
    GATT_RegisterForMsgs(selfEntity);

    // Set default values for Data Length Extension
    // Extended Data Length Feature is already enabled by default
    {
    // Set initial values to maximum, RX is set to max. by default(251 octets, 2120us)
    // Some brand smartphone is essentially needing 251/2120, so we set them here.
    #define APP_SUGGESTED_PDU_SIZE 251 //default is 27 octets(TX)
    #define APP_SUGGESTED_TX_TIME 2120 //default is 328us(TX)

    // This API is documented in hci.h
    // See the LE Data Length Extension section in the BLE5-Stack User's Guide for information on using this command:
    // software-dl.ti.com/.../
    HCI_LE_WriteSuggestedDefaultDataLenCmd(APP_SUGGESTED_PDU_SIZE, APP_SUGGESTED_TX_TIME);
    }

    // Initialize GATT Client
    GATT_InitClient();

    // Init key debouncer
    Board_initKeys(SimplePeripheral_keyChangeHandler);

    // Initialize Connection List
    SimplePeripheral_clearConnListEntry(CONNHANDLE_ALL);

    //Initialize GAP layer for Peripheral role and register to receive GAP events
    GAP_DeviceInit(GAP_PROFILE_PERIPHERAL, selfEntity, addrMode, NULL);

    // Initialize array to store connection handle and RSSI values
    SimplePeripheral_initPHYRSSIArray();

    // The type of display is configured based on the BOARD_DISPLAY_USE...
    // preprocessor definitions
    dispHandle = Display_open(Display_Type_ANY, NULL);

    // Initialize Two-Button Menu module
    TBM_SET_TITLE(&spMenuMain, "Simple Peripheral");
    tbm_setItemStatus(&spMenuMain, TBM_ITEM_NONE, TBM_ITEM_ALL);

    tbm_initTwoBtnMenu(dispHandle, &spMenuMain, 2, SimplePeripheral_menuSwitchCb);
    Display_printf(dispHandle, SP_ROW_SEPARATOR_1, 0, "====================");

    #ifdef PTM_MODE
    // Intercept NPI RX events.
    NPITask_registerIncomingRXEventAppCB(simple_peripheral_handleNPIRxInterceptEvent, INTERCEPT);

    // Register for Command Status information
    HCI_TL_Init(NULL, (HCI_TL_CommandStatusCB_t) simple_peripheral_sendToNPI, NULL, selfEntity);

    // Register for Events
    HCI_TL_getCmdResponderID(ICall_getLocalMsgEntityId(ICALL_SERVICE_CLASS_BLE_MSG, selfEntity));

    // Inform Stack to Initialize PTM
    HCI_EXT_EnablePTMCmd();
    #endif // PTM_MODE
    }

    /*********************************************************************
    * @fn SimplePeripheral_taskFxn
    *
    * @brief Application task entry point for the Simple Peripheral.
    *
    * @param a0, a1 - not used.
    */
    static void SimplePeripheral_taskFxn(UArg a0, UArg a1)
    {
    // Initialize application
    SimplePeripheral_init();

    // Application main loop
    for (;;)
    {
    uint32_t events;

    // Waits for an event to be posted associated with the calling thread.
    // Note that an event associated with a thread is posted when a
    // message is queued to the message receive queue of the thread
    events = Event_pend(syncEvent, Event_Id_NONE, SP_ALL_EVENTS,
    ICALL_TIMEOUT_FOREVER);

    if (events)
    {
    ICall_EntityID dest;
    ICall_ServiceEnum src;
    ICall_HciExtEvt *pMsg = NULL;

    // Fetch any available messages that might have been sent from the stack
    if (ICall_fetchServiceMsg(&src, &dest,
    (void **)&pMsg) == ICALL_ERRNO_SUCCESS)
    {
    uint8 safeToDealloc = TRUE;

    if ((src == ICALL_SERVICE_CLASS_BLE) && (dest == selfEntity))
    {
    ICall_Stack_Event *pEvt = (ICall_Stack_Event *)pMsg;

    // Check for BLE stack events first
    if (pEvt->signature != 0xffff)
    {
    // Process inter-task message
    safeToDealloc = SimplePeripheral_processStackMsg((ICall_Hdr *)pMsg);
    }
    }

    if (pMsg && safeToDealloc)
    {
    ICall_freeMsg(pMsg);
    }
    }

    // If RTOS queue is not empty, process app message.
    if (events & SP_QUEUE_EVT)
    {
    while (!Queue_empty(appMsgQueueHandle))
    {
    spEvt_t *pMsg = (spEvt_t *)Util_dequeueMsg(appMsgQueueHandle);
    if (pMsg)
    {
    // Process message.
    SimplePeripheral_processAppMsg(pMsg);

    // Free the space from the message.
    ICall_free(pMsg);
    }
    }
    }
    }
    }
    }

    /*********************************************************************
    * @fn SimplePeripheral_processStackMsg
    *
    * @brief Process an incoming stack message.
    *
    * @param pMsg - message to process
    *
    * @return TRUE if safe to deallocate incoming message, FALSE otherwise.
    */
    static uint8_t SimplePeripheral_processStackMsg(ICall_Hdr *pMsg)
    {
    // Always dealloc pMsg unless set otherwise
    uint8_t safeToDealloc = TRUE;

    switch (pMsg->event)
    {
    case GAP_MSG_EVENT:
    SimplePeripheral_processGapMessage((gapEventHdr_t*) pMsg);
    break;

    case GATT_MSG_EVENT:
    // Process GATT message
    safeToDealloc = SimplePeripheral_processGATTMsg((gattMsgEvent_t *)pMsg);
    break;

    case HCI_GAP_EVENT_EVENT:
    {
    // Process HCI message
    switch(pMsg->status)
    {
    case HCI_COMMAND_COMPLETE_EVENT_CODE:
    // Process HCI Command Complete Events here
    {
    SimplePeripheral_processCmdCompleteEvt((hciEvt_CmdComplete_t *) pMsg);
    break;
    }

    case HCI_BLE_HARDWARE_ERROR_EVENT_CODE:
    AssertHandler(HAL_ASSERT_CAUSE_HARDWARE_ERROR,0);
    break;

    // HCI Commands Events
    case HCI_COMMAND_STATUS_EVENT_CODE:
    {
    hciEvt_CommandStatus_t *pMyMsg = (hciEvt_CommandStatus_t *)pMsg;
    switch ( pMyMsg->cmdOpcode )
    {
    case HCI_LE_SET_PHY:
    {
    if (pMyMsg->cmdStatus == HCI_ERROR_CODE_UNSUPPORTED_REMOTE_FEATURE)
    {
    Display_printf(dispHandle, SP_ROW_STATUS_1, 0,
    "PHY Change failure, peer does not support this");
    }
    else
    {
    Display_printf(dispHandle, SP_ROW_STATUS_1, 0,
    "PHY Update Status Event: 0x%x",
    pMyMsg->cmdStatus);
    }

    SimplePeripheral_updatePHYStat(HCI_LE_SET_PHY, (uint8_t *)pMsg);
    break;
    }

    default:
    break;
    }
    break;
    }

    // LE Events
    case HCI_LE_EVENT_CODE:
    {
    hciEvt_BLEPhyUpdateComplete_t *pPUC =
    (hciEvt_BLEPhyUpdateComplete_t*) pMsg;

    // A Phy Update Has Completed or Failed
    if (pPUC->BLEEventCode == HCI_BLE_PHY_UPDATE_COMPLETE_EVENT)
    {
    if (pPUC->status != SUCCESS)
    {
    Display_printf(dispHandle, SP_ROW_STATUS_1, 0,
    "PHY Change failure");
    }
    else
    {
    // Only symmetrical PHY is supported.
    // rxPhy should be equal to txPhy.
    Display_printf(dispHandle, SP_ROW_STATUS_2, 0,
    "PHY Updated to %s",
    (pPUC->rxPhy == PHY_UPDATE_COMPLETE_EVENT_1M) ? "1M" :
    (pPUC->rxPhy == PHY_UPDATE_COMPLETE_EVENT_2M) ? "2M" :
    (pPUC->rxPhy == PHY_UPDATE_COMPLETE_EVENT_CODED) ? "CODED" : "Unexpected PHY Value");
    }

    SimplePeripheral_updatePHYStat(HCI_BLE_PHY_UPDATE_COMPLETE_EVENT, (uint8_t *)pMsg);
    }
    break;
    }

    default:
    break;
    }

    break;
    }

    default:
    // do nothing
    break;
    }

    #ifdef PTM_MODE
    // Check for NPI Messages
    hciPacket_t *pBuf = (hciPacket_t *)pMsg;

    // Serialized HCI Event
    if (pBuf->hdr.event == HCI_CTRL_TO_HOST_EVENT)
    {
    uint16_t len = 0;

    // Determine the packet length
    switch(pBuf->pData[0])
    {
    case HCI_EVENT_PACKET:
    len = HCI_EVENT_MIN_LENGTH + pBuf->pData[2];
    break;

    case HCI_ACL_DATA_PACKET:
    len = HCI_DATA_MIN_LENGTH + BUILD_UINT16(pBuf->pData[3], pBuf->pData[4]);
    break;

    default:
    break;
    }

    // Send to Remote Host.
    simple_peripheral_sendToNPI(pBuf->pData, len);

    // Free buffers if needed.
    switch (pBuf->pData[0])
    {
    case HCI_ACL_DATA_PACKET:
    case HCI_SCO_DATA_PACKET:
    BM_free(pBuf->pData);
    default:
    break;
    }
    }
    #endif // PTM_MODE

    return (safeToDealloc);
    }

    /*********************************************************************
    * @fn SimplePeripheral_processGATTMsg
    *
    * @brief Process GATT messages and events.
    *
    * @return TRUE if safe to deallocate incoming message, FALSE otherwise.
    */
    static uint8_t SimplePeripheral_processGATTMsg(gattMsgEvent_t *pMsg)
    {
    if (pMsg->method == ATT_FLOW_CTRL_VIOLATED_EVENT)
    {
    // ATT request-response or indication-confirmation flow control is
    // violated. All subsequent ATT requests or indications will be dropped.
    // The app is informed in case it wants to drop the connection.

    // Display the opcode of the message that caused the violation.
    Display_printf(dispHandle, SP_ROW_STATUS_1, 0, "FC Violated: %d", pMsg->msg.flowCtrlEvt.opcode);
    }
    else if (pMsg->method == ATT_MTU_UPDATED_EVENT)
    {
    // MTU size updated
    Display_printf(dispHandle, SP_ROW_STATUS_1, 0, "MTU Size: %d", pMsg->msg.mtuEvt.MTU);
    }

    // Free message payload. Needed only for ATT Protocol messages
    GATT_bm_free(&pMsg->msg, pMsg->method);

    // It's safe to free the incoming message
    return (TRUE);
    }

    /*********************************************************************
    * @fn SimplePeripheral_processAppMsg
    *
    * @brief Process an incoming callback from a profile.
    *
    * @param pMsg - message to process
    *
    * @return None.
    */
    static void SimplePeripheral_processAppMsg(spEvt_t *pMsg)
    {
    bool dealloc = TRUE;

    switch (pMsg->event)
    {
    case SP_CHAR_CHANGE_EVT:
    SimplePeripheral_processCharValueChangeEvt(*(uint8_t*)(pMsg->pData));
    break;

    case SP_KEY_CHANGE_EVT:
    SimplePeripheral_handleKeys(*(uint8_t*)(pMsg->pData));
    break;

    case SP_ADV_EVT:
    SimplePeripheral_processAdvEvent((spGapAdvEventData_t*)(pMsg->pData));
    break;

    case SP_PAIR_STATE_EVT:
    SimplePeripheral_processPairState((spPairStateData_t*)(pMsg->pData));
    break;

    case SP_PASSCODE_EVT:
    SimplePeripheral_processPasscode((spPasscodeData_t*)(pMsg->pData));
    break;

    case SP_PERIODIC_EVT:
    SimplePeripheral_performPeriodicTask();
    break;

    #if defined(BLE_V42_FEATURES) && (BLE_V42_FEATURES & PRIVACY_1_2_CFG)
    case SP_READ_RPA_EVT:
    SimplePeripheral_updateRPA();
    break;
    #endif // PRIVACY_1_2_CFG

    case SP_SEND_PARAM_UPDATE_EVT:
    {
    // Extract connection handle from data
    uint16_t connHandle = *(uint16_t *)(((spClockEventData_t *)pMsg->pData)->data);

    SimplePeripheral_processParamUpdate(connHandle);

    // This data is not dynamically allocated
    dealloc = FALSE;
    break;
    }

    case SP_CONN_EVT:
    SimplePeripheral_processConnEvt((Gap_ConnEventRpt_t *)(pMsg->pData));
    break;

    default:
    // Do nothing.
    break;
    }

    // Free message data if it exists and we are to dealloc
    if ((dealloc == TRUE) && (pMsg->pData != NULL))
    {
    ICall_free(pMsg->pData);
    }
    }

    /*********************************************************************
    * @fn SimplePeripheral_processGapMessage
    *
    * @brief Process an incoming GAP event.
    *
    * @param pMsg - message to process
    */
    static void SimplePeripheral_processGapMessage(gapEventHdr_t *pMsg)
    {
    switch(pMsg->opcode)
    {
    case GAP_DEVICE_INIT_DONE_EVENT:
    {
    bStatus_t status = FAILURE;

    gapDeviceInitDoneEvent_t *pPkt = (gapDeviceInitDoneEvent_t *)pMsg;

    if(pPkt->hdr.status == SUCCESS)
    {
    // Store the system ID
    uint8_t systemId[DEVINFO_SYSTEM_ID_LEN];

    // use 6 bytes of device address for 8 bytes of system ID value
    systemId[0] = pPkt->devAddr[0];
    systemId[1] = pPkt->devAddr[1];
    systemId[2] = pPkt->devAddr[2];

    // set middle bytes to zero
    systemId[4] = 0x00;
    systemId[3] = 0x00;

    // shift three bytes up
    systemId[7] = pPkt->devAddr[5];
    systemId[6] = pPkt->devAddr[4];
    systemId[5] = pPkt->devAddr[3];

    // Set Device Info Service Parameter
    DevInfo_SetParameter(DEVINFO_SYSTEM_ID, DEVINFO_SYSTEM_ID_LEN, systemId);

    Display_printf(dispHandle, SP_ROW_STATUS_1, 0, "Initialized");

    // Setup and start Advertising
    // For more information, see the GAP section in the User's Guide:
    // software-dl.ti.com/.../

    // Temporary memory for advertising parameters for set #1. These will be copied
    // by the GapAdv module
    GapAdv_params_t advParamLegacy = GAPADV_PARAMS_LEGACY_SCANN_CONN;

    // Create Advertisement set #1 and assign handle
    status = GapAdv_create(&SimplePeripheral_advCallback, &advParamLegacy,
    &advHandleLegacy);
    SIMPLEPERIPHERAL_ASSERT(status == SUCCESS);

    // Load advertising data for set #1 that is statically allocated by the app
    status = GapAdv_loadByHandle(advHandleLegacy, GAP_ADV_DATA_TYPE_ADV,
    sizeof(advertData), advertData);
    SIMPLEPERIPHERAL_ASSERT(status == SUCCESS);

    // Load scan response data for set #1 that is statically allocated by the app
    status = GapAdv_loadByHandle(advHandleLegacy, GAP_ADV_DATA_TYPE_SCAN_RSP,
    sizeof(scanRspData), scanRspData);
    SIMPLEPERIPHERAL_ASSERT(status == SUCCESS);

    // Set event mask for set #1
    status = GapAdv_setEventMask(advHandleLegacy,
    GAP_ADV_EVT_MASK_START_AFTER_ENABLE |
    GAP_ADV_EVT_MASK_END_AFTER_DISABLE |
    GAP_ADV_EVT_MASK_SET_TERMINATED);

    // Enable legacy advertising for set #1
    status = GapAdv_enable(advHandleLegacy, GAP_ADV_ENABLE_OPTIONS_USE_MAX , 0);
    SIMPLEPERIPHERAL_ASSERT(status == SUCCESS);

    // Use long range params to create long range set #2
    GapAdv_params_t advParamLongRange = GAPADV_PARAMS_AE_LONG_RANGE_CONN;

    // Create Advertisement set #2 and assign handle
    status = GapAdv_create(&SimplePeripheral_advCallback, &advParamLongRange,
    &advHandleLongRange);
    SIMPLEPERIPHERAL_ASSERT(status == SUCCESS);

    // Load advertising data for set #2 that is statically allocated by the app
    status = GapAdv_loadByHandle(advHandleLongRange, GAP_ADV_DATA_TYPE_ADV,
    sizeof(advertData), advertData);
    SIMPLEPERIPHERAL_ASSERT(status == SUCCESS);

    // Load scan response data for set #2 that is statically allocated by the app
    status = GapAdv_loadByHandle(advHandleLongRange, GAP_ADV_DATA_TYPE_SCAN_RSP,
    sizeof(scanRspData), scanRspData);
    SIMPLEPERIPHERAL_ASSERT(status == SUCCESS);

    // Set event mask for set #2
    status = GapAdv_setEventMask(advHandleLongRange,
    GAP_ADV_EVT_MASK_START_AFTER_ENABLE |
    GAP_ADV_EVT_MASK_END_AFTER_DISABLE |
    GAP_ADV_EVT_MASK_SET_TERMINATED);

    // Enable long range advertising for set #2
    status = GapAdv_enable(advHandleLongRange, GAP_ADV_ENABLE_OPTIONS_USE_MAX , 0);
    SIMPLEPERIPHERAL_ASSERT(status == SUCCESS);

    // Display device address
    Display_printf(dispHandle, SP_ROW_IDA, 0, "%s Addr: %s",
    (addrMode <= ADDRMODE_RANDOM) ? "Dev" : "ID",
    Util_convertBdAddr2Str(pPkt->devAddr));

    #if defined(BLE_V42_FEATURES) && (BLE_V42_FEATURES & PRIVACY_1_2_CFG)
    if (addrMode > ADDRMODE_RANDOM)
    {
    SimplePeripheral_updateRPA();

    // Create one-shot clock for RPA check event.
    Util_constructClock(&clkRpaRead, SimplePeripheral_clockHandler,
    SP_READ_RPA_EVT_PERIOD, 0, true,
    (UArg) &argRpaRead);
    }
    #endif // PRIVACY_1_2_CFG
    }

    break;
    }

    case GAP_LINK_ESTABLISHED_EVENT:
    {
    gapEstLinkReqEvent_t *pPkt = (gapEstLinkReqEvent_t *)pMsg;

    // Display the amount of current connections
    uint8_t numActive = linkDB_NumActive();
    Display_printf(dispHandle, SP_ROW_STATUS_2, 0, "Num Conns: %d",
    (uint16_t)numActive);

    if (pPkt->hdr.status == SUCCESS)
    {
    // Add connection to list and start RSSI
    SimplePeripheral_addConn(pPkt->connectionHandle);

    // Display the address of this connection
    Display_printf(dispHandle, SP_ROW_STATUS_1, 0, "Connected to %s",
    Util_convertBdAddr2Str(pPkt->devAddr));

    // Enable connection selection option
    tbm_setItemStatus(&spMenuMain, SP_ITEM_SELECT_CONN, TBM_ITEM_NONE);

    // Start Periodic Clock.
    // Util_startClock(&clkPeriodic);
    }

    if (numActive < MAX_NUM_BLE_CONNS)
    {
    // Start advertising since there is room for more connections
    GapAdv_enable(advHandleLegacy, GAP_ADV_ENABLE_OPTIONS_USE_MAX , 0);
    GapAdv_enable(advHandleLongRange, GAP_ADV_ENABLE_OPTIONS_USE_MAX , 0);
    }
    else
    {
    // Stop advertising since there is no room for more connections
    GapAdv_disable(advHandleLongRange, GAP_ADV_ENABLE_OPTIONS_USE_MAX , 0);
    GapAdv_disable(advHandleLegacy, GAP_ADV_ENABLE_OPTIONS_USE_MAX , 0);
    }

    break;
    }

    case GAP_LINK_TERMINATED_EVENT:
    {
    gapTerminateLinkEvent_t *pPkt = (gapTerminateLinkEvent_t *)pMsg;

    // Display the amount of current connections
    uint8_t numActive = linkDB_NumActive();
    Display_printf(dispHandle, SP_ROW_STATUS_1, 0, "Device Disconnected!");
    Display_printf(dispHandle, SP_ROW_STATUS_2, 0, "Num Conns: %d",
    (uint16_t)numActive);

    // Remove the connection from the list and disable RSSI if needed
    SimplePeripheral_removeConn(pPkt->connectionHandle);

    // If no active connections
    if (numActive == 0)
    {
    // Stop periodic clock
    Util_stopClock(&clkPeriodic);

    // Disable Connection Selection option
    tbm_setItemStatus(&spMenuMain, TBM_ITEM_NONE, SP_ITEM_SELECT_CONN);
    }

    // Start advertising since there is room for more connections
    GapAdv_enable(advHandleLegacy, GAP_ADV_ENABLE_OPTIONS_USE_MAX , 0);
    GapAdv_enable(advHandleLongRange, GAP_ADV_ENABLE_OPTIONS_USE_MAX , 0);

    // Clear remaining lines
    Display_clearLine(dispHandle, SP_ROW_CONNECTION);

    break;
    }

    case GAP_UPDATE_LINK_PARAM_REQ_EVENT:
    {
    gapUpdateLinkParamReqReply_t rsp;

    gapUpdateLinkParamReqEvent_t *pReq = (gapUpdateLinkParamReqEvent_t *)pMsg;

    rsp.connectionHandle = pReq->req.connectionHandle;

    // Only accept connection intervals with slave latency of 0
    // This is just an example of how the application can send a response
    if(pReq->req.connLatency == 0)
    {
    rsp.intervalMin = pReq->req.intervalMin;
    rsp.intervalMax = pReq->req.intervalMax;
    rsp.connLatency = pReq->req.connLatency;
    rsp.connTimeout = pReq->req.connTimeout;
    rsp.accepted = TRUE;
    }
    else
    {
    rsp.accepted = FALSE;
    }

    // Send Reply
    VOID GAP_UpdateLinkParamReqReply(&rsp);

    break;
    }

    case GAP_LINK_PARAM_UPDATE_EVENT:
    {
    gapLinkUpdateEvent_t *pPkt = (gapLinkUpdateEvent_t *)pMsg;

    // Get the address from the connection handle
    linkDBInfo_t linkInfo;
    linkDB_GetInfo(pPkt->connectionHandle, &linkInfo);

    if(pPkt->status == SUCCESS)
    {
    // Display the address of the connection update
    Display_printf(dispHandle, SP_ROW_STATUS_2, 0, "Link Param Updated: %s",
    Util_convertBdAddr2Str(linkInfo.addr));
    }
    else
    {
    // Display the address of the connection update failure
    Display_printf(dispHandle, SP_ROW_STATUS_2, 0,
    "Link Param Update Failed 0x%x: %s", pPkt->opcode,
    Util_convertBdAddr2Str(linkInfo.addr));
    }

    // Check if there are any queued parameter updates
    spConnHandleEntry_t *connHandleEntry = (spConnHandleEntry_t *)List_get(&paramUpdateList);
    if (connHandleEntry != NULL)
    {
    // Attempt to send queued update now
    SimplePeripheral_processParamUpdate(connHandleEntry->connHandle);

    // Free list element
    ICall_free(connHandleEntry);
    }

    break;
    }

    default:
    Display_clearLines(dispHandle, SP_ROW_STATUS_1, SP_ROW_STATUS_2);
    break;
    }
    }

    /*********************************************************************
    * @fn SimplePeripheral_charValueChangeCB
    *
    * @brief Callback from Simple Profile indicating a characteristic
    * value change.
    *
    * @param paramId - parameter Id of the value that was changed.
    *
    * @return None.
    */
    static void SimplePeripheral_charValueChangeCB(uint8_t paramId)
    {
    uint8_t *pValue = ICall_malloc(sizeof(uint8_t));

    if (pValue)
    {
    *pValue = paramId;

    if (SimplePeripheral_enqueueMsg(SP_CHAR_CHANGE_EVT, pValue) != SUCCESS)
    {
    ICall_free(pValue);
    }
    }
    }

    /*********************************************************************
    * @fn SimplePeripheral_processCharValueChangeEvt
    *
    * @brief Process a pending Simple Profile characteristic value change
    * event.
    *
    * @param paramID - parameter ID of the value that was changed.
    */
    static void SimplePeripheral_processCharValueChangeEvt(uint8_t paramId)
    {
    uint8_t newValue;

    switch(paramId)
    {
    case SIMPLEPROFILE_CHAR1:
    SimpleProfile_GetParameter(SIMPLEPROFILE_CHAR1, &newValue);

    Display_printf(dispHandle, SP_ROW_STATUS_1, 0, "Char 1: %d", (uint16_t)newValue);
    break;

    case SIMPLEPROFILE_CHAR3:
    SimpleProfile_GetParameter(SIMPLEPROFILE_CHAR3, &newValue);

    Display_printf(dispHandle, SP_ROW_STATUS_1, 0, "Char 3: %d", (uint16_t)newValue);
    break;

    default:
    // should not reach here!
    break;
    }
    }

    /*********************************************************************
    * @fn SimplePeripheral_performPeriodicTask
    *
    * @brief Perform a periodic application task. This function gets called
    * every five seconds (SP_PERIODIC_EVT_PERIOD). In this example,
    * the value of the third characteristic in the SimpleGATTProfile
    * service is retrieved from the profile, and then copied into the
    * value of the the fourth characteristic.
    *
    * @param None.
    *
    * @return None.
    */
    static void SimplePeripheral_performPeriodicTask(void)
    {
    uint8_t valueToCopy;

    // Call to retrieve the value of the third characteristic in the profile
    if (SimpleProfile_GetParameter(SIMPLEPROFILE_CHAR3, &valueToCopy) == SUCCESS)
    {
    // Call to set that value of the fourth characteristic in the profile.
    // Note that if notifications of the fourth characteristic have been
    // enabled by a GATT client device, then a notification will be sent
    // every time this function is called.
    SimpleProfile_SetParameter(SIMPLEPROFILE_CHAR4, sizeof(uint8_t),
    &valueToCopy);
    }
    }

    #if defined(BLE_V42_FEATURES) && (BLE_V42_FEATURES & PRIVACY_1_2_CFG)
    /*********************************************************************
    * @fn SimplePeripheral_updateRPA
    *
    * @brief Read the current RPA from the stack and update display
    * if the RPA has changed.
    *
    * @param None.
    *
    * @return None.
    */
    static void SimplePeripheral_updateRPA(void)
    {
    uint8_t* pRpaNew;

    // Read the current RPA.
    pRpaNew = GAP_GetDevAddress(FALSE);

    if (memcmp(pRpaNew, rpa, B_ADDR_LEN))
    {
    // If the RPA has changed, update the display
    Display_printf(dispHandle, SP_ROW_RPA, 0, "RP Addr: %s",
    Util_convertBdAddr2Str(pRpaNew));
    memcpy(rpa, pRpaNew, B_ADDR_LEN);
    }
    }
    #endif // PRIVACY_1_2_CFG

    /*********************************************************************
    * @fn SimplePeripheral_clockHandler
    *
    * @brief Handler function for clock timeouts.
    *
    * @param arg - event type
    *
    * @return None.
    */
    static void SimplePeripheral_clockHandler(UArg arg)
    {
    spClockEventData_t *pData = (spClockEventData_t *)arg;

    if (pData->event == SP_PERIODIC_EVT)
    {
    // Start the next period
    //Util_startClock(&clkPeriodic);

    // Post event to wake up the application
    SimplePeripheral_enqueueMsg(SP_PERIODIC_EVT, NULL);
    }
    else if (pData->event == SP_READ_RPA_EVT)
    {
    // Start the next period
    //Util_startClock(&clkRpaRead);

    // Post event to read the current RPA
    SimplePeripheral_enqueueMsg(SP_READ_RPA_EVT, NULL);
    }
    else if (pData->event == SP_SEND_PARAM_UPDATE_EVT)
    {
    // Send message to app
    SimplePeripheral_enqueueMsg(SP_SEND_PARAM_UPDATE_EVT, pData);
    }
    }

    /*********************************************************************
    * @fn SimplePeripheral_keyChangeHandler
    *
    * @brief Key event handler function
    *
    * @param keys - bitmap of pressed keys
    *
    * @return none
    */
    static void SimplePeripheral_keyChangeHandler(uint8_t keys)
    {
    uint8_t *pValue = ICall_malloc(sizeof(uint8_t));

    if (pValue)
    {
    *pValue = keys;

    if(SimplePeripheral_enqueueMsg(SP_KEY_CHANGE_EVT, pValue) != SUCCESS)
    {
    ICall_free(pValue);
    }
    }
    }

    /*********************************************************************
    * @fn SimplePeripheral_handleKeys
    *
    * @brief Handles all key events for this device.
    *
    * @param keys - bit field for key events. Valid entries:
    * KEY_LEFT
    * KEY_RIGHT
    */
    static void SimplePeripheral_handleKeys(uint8_t keys)
    {
    if (keys & KEY_LEFT)
    {
    // Check if the key is still pressed. Workaround for possible bouncing.
    if (PIN_getInputValue(Board_PIN_BUTTON0) == 0)
    {
    tbm_buttonLeft();
    }
    }
    else if (keys & KEY_RIGHT)
    {
    // Check if the key is still pressed. Workaround for possible bouncing.
    if (PIN_getInputValue(Board_PIN_BUTTON1) == 0)
    {
    tbm_buttonRight();
    }
    }
    }

    /*********************************************************************
    * @fn SimplePeripheral_doSetConnPhy
    *
    * @brief Set PHY preference.
    *
    * @param index - 0: 1M PHY
    * 1: 2M PHY
    * 2: 1M + 2M PHY
    * 3: CODED PHY (Long range)
    * 4: 1M + 2M + CODED PHY
    *
    * @return always true
    */
    bool SimplePeripheral_doSetConnPhy(uint8 index)
    {
    bool status = TRUE;

    static uint8_t phy[] = {
    HCI_PHY_1_MBPS, HCI_PHY_2_MBPS, HCI_PHY_1_MBPS | HCI_PHY_2_MBPS,
    HCI_PHY_CODED, HCI_PHY_1_MBPS | HCI_PHY_2_MBPS | HCI_PHY_CODED,
    AUTO_PHY_UPDATE
    };

    uint8_t connIndex = SimplePeripheral_getConnIndex(menuConnHandle);
    SIMPLEPERIPHERAL_ASSERT(connIndex < MAX_NUM_BLE_CONNS);

    // Set Phy Preference on the current connection. Apply the same value
    // for RX and TX.
    // If auto PHY update is not selected and if auto PHY update is enabled, then
    // stop auto PHY update
    // Note PHYs are already enabled by default in build_config.opt in stack project.
    if(phy[index] != AUTO_PHY_UPDATE)
    {
    // Cancel RSSI reading and auto phy changing
    SimplePeripheral_stopAutoPhyChange(connList[connIndex].connHandle);

    SimplePeripheral_setPhy(menuConnHandle, 0, phy[index], phy[index], 0);

    Display_printf(dispHandle, SP_ROW_STATUS_1, 0, "PHY preference: %s",
    TBM_GET_ACTION_DESC(&spMenuConnPhy, index));
    }
    else
    {
    // Start RSSI read for auto PHY update (if it is disabled)
    SimplePeripheral_startAutoPhyChange(menuConnHandle);
    }

    return status;
    }
    /*********************************************************************
    * @fn SimplePeripheral_advCallback
    *
    * @brief GapAdv module callback
    *
    * @param pMsg - message to process
    */
    static void SimplePeripheral_advCallback(uint32_t event, void *pBuf, uintptr_t arg)
    {
    spGapAdvEventData_t *pData = ICall_malloc(sizeof(spGapAdvEventData_t));

    if (pData)
    {
    pData->event = event;
    pData->pBuf = pBuf;

    if(SimplePeripheral_enqueueMsg(SP_ADV_EVT, pData) != SUCCESS)
    {
    ICall_free(pData);
    }
    }
    }

    /*********************************************************************
    * @fn SimplePeripheral_processAdvEvent
    *
    * @brief Process advertising event in app context
    *
    * @param pEventData
    */
    static void SimplePeripheral_processAdvEvent(spGapAdvEventData_t *pEventData)
    {
    switch (pEventData->event)
    {
    case GAP_EVT_ADV_START_AFTER_ENABLE:
    Display_printf(dispHandle, SP_ROW_ADVSTATE, 0, "Adv Set %d Enabled",
    *(uint8_t *)(pEventData->pBuf));
    break;

    case GAP_EVT_ADV_END_AFTER_DISABLE:
    Display_printf(dispHandle, SP_ROW_ADVSTATE, 0, "Adv Set %d Disabled",
    *(uint8_t *)(pEventData->pBuf));
    break;

    case GAP_EVT_ADV_START:
    break;

    case GAP_EVT_ADV_END:
    break;

    case GAP_EVT_ADV_SET_TERMINATED:
    {
    #ifndef Display_DISABLE_ALL
    GapAdv_setTerm_t *advSetTerm = (GapAdv_setTerm_t *)(pEventData->pBuf);
    #endif
    Display_printf(dispHandle, SP_ROW_ADVSTATE, 0, "Adv Set %d disabled after conn %d",
    advSetTerm->handle, advSetTerm->connHandle );
    }
    break;

    case GAP_EVT_SCAN_REQ_RECEIVED:
    break;

    case GAP_EVT_INSUFFICIENT_MEMORY:
    break;

    default:
    break;
    }

    // All events have associated memory to free except the insufficient memory
    // event
    if (pEventData->event != GAP_EVT_INSUFFICIENT_MEMORY)
    {
    ICall_free(pEventData->pBuf);
    }
    }

    #if defined(GAP_BOND_MGR)
    /*********************************************************************
    * @fn SimplePeripheral_pairStateCb
    *
    * @brief Pairing state callback.
    *
    * @return none
    */
    static void SimplePeripheral_pairStateCb(uint16_t connHandle, uint8_t state,
    uint8_t status)
    {
    spPairStateData_t *pData = ICall_malloc(sizeof(spPairStateData_t));

    // Allocate space for the event data.
    if (pData)
    {
    pData->state = state;
    pData->connHandle = connHandle;
    pData->status = status;

    // Queue the event.
    if(SimplePeripheral_enqueueMsg(SP_PAIR_STATE_EVT, pData) != SUCCESS)
    {
    ICall_free(pData);
    }
    }
    }

    /*********************************************************************
    * @fn SimplePeripheral_passcodeCb
    *
    * @brief Passcode callback.
    *
    * @return none
    */
    static void SimplePeripheral_passcodeCb(uint8_t *pDeviceAddr,
    uint16_t connHandle,
    uint8_t uiInputs,
    uint8_t uiOutputs,
    uint32_t numComparison)
    {
    spPasscodeData_t *pData = ICall_malloc(sizeof(spPasscodeData_t));

    // Allocate space for the passcode event.
    if (pData )
    {
    pData->connHandle = connHandle;
    memcpy(pData->deviceAddr, pDeviceAddr, B_ADDR_LEN);
    pData->uiInputs = uiInputs;
    pData->uiOutputs = uiOutputs;
    pData->numComparison = numComparison;

    // Enqueue the event.
    if(SimplePeripheral_enqueueMsg(SP_PASSCODE_EVT, pData) != SUCCESS)
    {
    ICall_free(pData);
    }
    }
    }
    #endif

    /*********************************************************************
    * @fn SimplePeripheral_processPairState
    *
    * @brief Process the new paring state.
    *
    * @return none
    */
    static void SimplePeripheral_processPairState(spPairStateData_t *pPairData)
    {
    uint8_t state = pPairData->state;
    uint8_t status = pPairData->status;

    switch (state)
    {
    case GAPBOND_PAIRING_STATE_STARTED:
    Display_printf(dispHandle, SP_ROW_CONNECTION, 0, "Pairing started");
    break;

    case GAPBOND_PAIRING_STATE_COMPLETE:
    if (status == SUCCESS)
    {
    Display_printf(dispHandle, SP_ROW_CONNECTION, 0, "Pairing success");
    }
    else
    {
    Display_printf(dispHandle, SP_ROW_CONNECTION, 0, "Pairing fail: %d", status);
    }
    break;

    case GAPBOND_PAIRING_STATE_ENCRYPTED:
    if (status == SUCCESS)
    {
    Display_printf(dispHandle, SP_ROW_CONNECTION, 0, "Encryption success");
    }
    else
    {
    Display_printf(dispHandle, SP_ROW_CONNECTION, 0, "Encryption failed: %d", status);
    }
    break;

    case GAPBOND_PAIRING_STATE_BOND_SAVED:
    if (status == SUCCESS)
    {
    Display_printf(dispHandle, SP_ROW_CONNECTION, 0, "Bond save success");
    }
    else
    {
    Display_printf(dispHandle, SP_ROW_CONNECTION, 0, "Bond save failed: %d", status);
    }
    break;

    default:
    break;
    }
    }

    /*********************************************************************
    * @fn SimplePeripheral_processPasscode
    *
    * @brief Process the Passcode request.
    *
    * @return none
    */
    static void SimplePeripheral_processPasscode(spPasscodeData_t *pPasscodeData)
    {
    // Display passcode to user
    if (pPasscodeData->uiOutputs != 0)
    {
    Display_printf(dispHandle, SP_ROW_CONNECTION, 0, "Passcode: %d",
    B_APP_DEFAULT_PASSCODE);
    }

    #if defined(GAP_BOND_MGR)
    // Send passcode response
    GAPBondMgr_PasscodeRsp(pPasscodeData->connHandle , SUCCESS,
    B_APP_DEFAULT_PASSCODE);
    #endif
    }

    /*********************************************************************
    * @fn SimplePeripheral_connEvtCB
    *
    * @brief Connection event callback.
    *
    * @param pReport pointer to connection event report
    */
    static void SimplePeripheral_connEvtCB(Gap_ConnEventRpt_t *pReport)
    {
    // Enqueue the event for processing in the app context.
    if(SimplePeripheral_enqueueMsg(SP_CONN_EVT, pReport) != SUCCESS)
    {
    ICall_free(pReport);
    }
    }

    /*********************************************************************
    * @fn SimplePeripheral_processConnEvt
    *
    * @brief Process connection event.
    *
    * @param pReport pointer to connection event report
    */
    static void SimplePeripheral_processConnEvt(Gap_ConnEventRpt_t *pReport)
    {
    // Get index from handle
    uint8_t connIndex = SimplePeripheral_getConnIndex(pReport->handle);

    SIMPLEPERIPHERAL_ASSERT(connIndex < MAX_NUM_BLE_CONNS);

    // If auto phy change is enabled
    if (connList[connIndex].isAutoPHYEnable == TRUE)
    {
    // Read the RSSI
    HCI_ReadRssiCmd(pReport->handle);
    }
    }


    /*********************************************************************
    * @fn SimplePeripheral_enqueueMsg
    *
    * @brief Creates a message and puts the message in RTOS queue.
    *
    * @param event - message event.
    * @param state - message state.
    */
    static status_t SimplePeripheral_enqueueMsg(uint8_t event, void *pData)
    {
    uint8_t success;
    spEvt_t *pMsg = ICall_malloc(sizeof(spEvt_t));

    // Create dynamic pointer to message.
    if(pMsg)
    {
    pMsg->event = event;
    pMsg->pData = pData;

    // Enqueue the message.
    success = Util_enqueueMsg(appMsgQueueHandle, syncEvent, (uint8_t *)pMsg);
    return (success) ? SUCCESS : FAILURE;
    }

    return(bleMemAllocError);
    }

    /*********************************************************************
    * @fn SimplePeripheral_doSelectConn
    *
    * @brief Select a connection to communicate with
    *
    * @param index - item index from the menu
    *
    * @return always true
    */
    bool SimplePeripheral_doSelectConn(uint8_t index)
    {
    menuConnHandle = connList[index].connHandle;

    // Set the menu title and go to this connection's context
    TBM_SET_TITLE(&spMenuPerConn, TBM_GET_ACTION_DESC(&spMenuSelectConn, index));

    // Clear non-connection-related message
    Display_clearLine(dispHandle, SP_ROW_CONNECTION);

    tbm_goTo(&spMenuPerConn);

    return (true);
    }

    /*********************************************************************
    * @fn SimplePeripheral_addConn
    *
    * @brief Add a device to the connected device list
    *
    * @return index of the connected device list entry where the new connection
    * info is put in.
    * if there is no room, MAX_NUM_BLE_CONNS will be returned.
    */
    static uint8_t SimplePeripheral_addConn(uint16_t connHandle)
    {
    uint8_t i;
    uint8_t status = bleNoResources;

    // Try to find an available entry
    for (i = 0; i < MAX_NUM_BLE_CONNS; i++)
    {
    if (connList[i].connHandle == CONNHANDLE_INVALID)
    {
    // Found available entry to put a new connection info in
    connList[i].connHandle = connHandle;

    // Allocate data to send through clock handler
    connList[i].pParamUpdateEventData = ICall_malloc(sizeof(spClockEventData_t) +
    sizeof (uint16_t));
    if(connList[i].pParamUpdateEventData)
    {
    connList[i].pParamUpdateEventData->event = SP_SEND_PARAM_UPDATE_EVT;
    *((uint16_t *)connList[i].pParamUpdateEventData->data) = connHandle;

    // Create a clock object and start
    connList[i].pUpdateClock
    = (Clock_Struct*) ICall_malloc(sizeof(Clock_Struct));

    if (connList[i].pUpdateClock)
    {
    Util_constructClock(connList[i].pUpdateClock,
    SimplePeripheral_clockHandler,
    SP_SEND_PARAM_UPDATE_DELAY, 0, true,
    (UArg) (connList[i].pParamUpdateEventData));
    }
    else
    {
    ICall_free(connList[i].pParamUpdateEventData);
    }
    }
    else
    {
    status = bleMemAllocError;
    }

    // Set default PHY to 1M
    connList[i].currPhy = HCI_PHY_1_MBPS;

    break;
    }
    }

    return status;
    }

    /*********************************************************************
    * @fn SimplePeripheral_getConnIndex
    *
    * @brief Find index in the connected device list by connHandle
    *
    * @return the index of the entry that has the given connection handle.
    * if there is no match, MAX_NUM_BLE_CONNS will be returned.
    */
    static uint8_t SimplePeripheral_getConnIndex(uint16_t connHandle)
    {
    uint8_t i;

    for (i = 0; i < MAX_NUM_BLE_CONNS; i++)
    {
    if (connList[i].connHandle == connHandle)
    {
    return i;
    }
    }

    return(MAX_NUM_BLE_CONNS);
    }

    /*********************************************************************
    * @fn SimplePeripheral_getConnIndex
    *
    * @brief Find index in the connected device list by connHandle
    *
    * @return SUCCESS if connHandle found valid index or bleInvalidRange
    * if index wasn't found. CONNHANDLE_ALL will always succeed.
    */
    static uint8_t SimplePeripheral_clearConnListEntry(uint16_t connHandle)
    {
    uint8_t i;
    // Set to invalid connection index initially
    uint8_t connIndex = MAX_NUM_BLE_CONNS;

    if(connHandle != CONNHANDLE_ALL)
    {
    // Get connection index from handle
    connIndex = SimplePeripheral_getConnIndex(connHandle);
    if(connIndex >= MAX_NUM_BLE_CONNS)
    {
    return(bleInvalidRange);
    }
    }

    // Clear specific handle or all handles
    for(i = 0; i < MAX_NUM_BLE_CONNS; i++)
    {
    if((connIndex == i) || (connHandle == CONNHANDLE_ALL))
    {
    connList[i].connHandle = CONNHANDLE_INVALID;
    connList[i].currPhy = 0;
    connList[i].phyCngRq = 0;
    connList[i].phyRqFailCnt = 0;
    connList[i].rqPhy = 0;
    memset(connList[i].rssiArr, 0, SP_MAX_RSSI_STORE_DEPTH);
    connList[i].rssiAvg = 0;
    connList[i].rssiCntr = 0;
    connList[i].isAutoPHYEnable = FALSE;
    }
    }

    return(SUCCESS);
    }

    /*********************************************************************
    * @fn SimplePeripheral_removeConn
    *
    * @brief Remove a device from the connected device list
    *
    * @return index of the connected device list entry where the new connection
    * info is removed from.
    * if connHandle is not found, MAX_NUM_BLE_CONNS will be returned.
    */
    static uint8_t SimplePeripheral_removeConn(uint16_t connHandle)
    {
    uint8_t connIndex = SimplePeripheral_getConnIndex(connHandle);

    if(connIndex != MAX_NUM_BLE_CONNS)
    {
    Clock_Struct* pUpdateClock = connList[connIndex].pUpdateClock;

    if (pUpdateClock != NULL)
    {
    // Stop and destruct the RTOS clock if it's still alive
    if (Util_isActive(pUpdateClock))
    {
    Util_stopClock(pUpdateClock);
    }

    // Destruct the clock object
    Clock_destruct(pUpdateClock);
    // Free clock struct
    ICall_free(pUpdateClock);
    // Free ParamUpdateEventData
    ICall_free(connList[connIndex].pParamUpdateEventData);
    }
    // Stop Auto PHY Change
    SimplePeripheral_stopAutoPhyChange(connHandle);
    // Clear Connection List Entry
    SimplePeripheral_clearConnListEntry(connHandle);
    }

    return connIndex;
    }

    /*********************************************************************
    * @fn SimplePeripheral_processParamUpdate
    *
    * @brief Process a parameters update request
    *
    * @return None
    */
    static void SimplePeripheral_processParamUpdate(uint16_t connHandle)
    {
    gapUpdateLinkParamReq_t req;
    uint8_t connIndex;

    req.connectionHandle = connHandle;
    req.connLatency = DEFAULT_DESIRED_SLAVE_LATENCY;
    req.connTimeout = DEFAULT_DESIRED_CONN_TIMEOUT;
    req.intervalMin = DEFAULT_DESIRED_MIN_CONN_INTERVAL;
    req.intervalMax = DEFAULT_DESIRED_MAX_CONN_INTERVAL;

    connIndex = SimplePeripheral_getConnIndex(connHandle);
    SIMPLEPERIPHERAL_ASSERT(connIndex < MAX_NUM_BLE_CONNS);

    // Deconstruct the clock object
    Clock_destruct(connList[connIndex].pUpdateClock);
    // Free clock struct
    ICall_free(connList[connIndex].pUpdateClock);
    connList[connIndex].pUpdateClock = NULL;
    // Free ParamUpdateEventData
    ICall_free(connList[connIndex].pParamUpdateEventData);

    // Send parameter update
    bStatus_t status = GAP_UpdateLinkParamReq(&req);

    // If there is an ongoing update, queue this for when the udpate completes
    if (status == bleAlreadyInRequestedMode)
    {
    spConnHandleEntry_t *connHandleEntry = ICall_malloc(sizeof(spConnHandleEntry_t));
    if (connHandleEntry)
    {
    connHandleEntry->connHandle = connHandle;

    List_put(&paramUpdateList, (List_Elem *)&connHandleEntry);
    }
    }
    }

    /*********************************************************************
    * @fn SimpleCentral_processCmdCompleteEvt
    *
    * @brief Process an incoming OSAL HCI Command Complete Event.
    *
    * @param pMsg - message to process
    *
    * @return none
    */
    static void SimplePeripheral_processCmdCompleteEvt(hciEvt_CmdComplete_t *pMsg)
    {
    uint8_t status = pMsg->pReturnParam[0];

    //Find which command this command complete is for
    switch (pMsg->cmdOpcode)
    {
    case HCI_READ_RSSI:
    {
    int8 rssi = (int8)pMsg->pReturnParam[3];

    // Display RSSI value, if RSSI is higher than threshold, change to faster PHY
    if (status == SUCCESS)
    {
    uint16_t handle = BUILD_UINT16(pMsg->pReturnParam[1], pMsg->pReturnParam[2]);

    uint8_t index = SimplePeripheral_getConnIndex(handle);
    SIMPLEPERIPHERAL_ASSERT(index < MAX_NUM_BLE_CONNS);

    if (rssi != LL_RSSI_NOT_AVAILABLE)
    {
    connList[index].rssiArr[connList[index].rssiCntr++] = rssi;
    connList[index].rssiCntr %= SP_MAX_RSSI_STORE_DEPTH;

    int16_t sum_rssi = 0;
    for(uint8_t cnt=0; cnt<SP_MAX_RSSI_STORE_DEPTH; cnt++)
    {
    sum_rssi += connList[index].rssiArr[cnt];
    }
    connList[index].rssiAvg = (uint32_t)(sum_rssi/SP_MAX_RSSI_STORE_DEPTH);

    uint8_t phyRq = SP_PHY_NONE;
    uint8_t phyRqS = SP_PHY_NONE;
    uint8_t phyOpt = LL_PHY_OPT_NONE;

    if(connList[index].phyCngRq == FALSE)
    {
    if((connList[index].rssiAvg >= RSSI_2M_THRSHLD) &&
    (connList[index].currPhy != HCI_PHY_2_MBPS) &&
    (connList[index].currPhy != SP_PHY_NONE))
    {
    // try to go to higher data rate
    phyRqS = phyRq = HCI_PHY_2_MBPS;
    }
    else if((connList[index].rssiAvg < RSSI_2M_THRSHLD) &&
    (connList[index].rssiAvg >= RSSI_1M_THRSHLD) &&
    (connList[index].currPhy != HCI_PHY_1_MBPS) &&
    (connList[index].currPhy != SP_PHY_NONE))
    {
    // try to go to legacy regular data rate
    phyRqS = phyRq = HCI_PHY_1_MBPS;
    }
    else if((connList[index].rssiAvg >= RSSI_S2_THRSHLD) &&
    (connList[index].rssiAvg < RSSI_1M_THRSHLD) &&
    (connList[index].currPhy != SP_PHY_NONE))
    {
    // try to go to lower data rate S=2(500kb/s)
    phyRqS = HCI_PHY_CODED;
    phyOpt = LL_PHY_OPT_S2;
    phyRq = BLE5_CODED_S2_PHY;
    }
    else if(connList[index].rssiAvg < RSSI_S2_THRSHLD )
    {
    // try to go to lowest data rate S=8(125kb/s)
    phyRqS = HCI_PHY_CODED;
    phyOpt = LL_PHY_OPT_S8;
    phyRq = BLE5_CODED_S8_PHY;
    }
    if((phyRq != SP_PHY_NONE) &&
    // First check if the request for this phy change is already not honored then don't request for change
    (((connList[index].rqPhy == phyRq) &&
    (connList[index].phyRqFailCnt < 2)) ||
    (connList[index].rqPhy != phyRq)))
    {
    //Initiate PHY change based on RSSI
    SimplePeripheral_setPhy(connList[index].connHandle, 0,
    phyRqS, phyRqS, phyOpt);
    connList[index].phyCngRq = TRUE;

    // If it a request for different phy than failed request, reset the count
    if(connList[index].rqPhy != phyRq)
    {
    // then reset the request phy counter and requested phy
    connList[index].phyRqFailCnt = 0;
    }

    if(phyOpt == LL_PHY_OPT_NONE)
    {
    connList[index].rqPhy = phyRq;
    }
    else if(phyOpt == LL_PHY_OPT_S2)
    {
    connList[index].rqPhy = BLE5_CODED_S2_PHY;
    }
    else
    {
    connList[index].rqPhy = BLE5_CODED_S8_PHY;
    }

    } // end of if ((phyRq != SP_PHY_NONE) && ...
    } // end of if (connList[index].phyCngRq == FALSE)
    } // end of if (rssi != LL_RSSI_NOT_AVAILABLE)

    Display_printf(dispHandle, SP_ROW_RSSI, 0,
    "RSSI:%d dBm, AVG RSSI:%d dBm",
    (uint32_t)(rssi),
    connList[index].rssiAvg);

    } // end of if (status == SUCCESS)
    break;
    }

    case HCI_LE_READ_PHY:
    {
    if (status == SUCCESS)
    {
    Display_printf(dispHandle, SP_ROW_RSSI + 2, 0, "RXPh: %d, TXPh: %d",
    pMsg->pReturnParam[3], pMsg->pReturnParam[4]);
    }
    break;
    }

    default:
    break;
    } // end of switch (pMsg->cmdOpcode)
    }

    /*********************************************************************
    * @fn SimplePeripheral_initPHYRSSIArray
    *
    * @brief Initializes the array of structure/s to store data related
    * RSSI based auto PHy change
    *
    * @param connHandle - the connection handle
    *
    * @param addr - pointer to device address
    *
    * @return index of connection handle
    */
    static void SimplePeripheral_initPHYRSSIArray(void)
    {
    //Initialize array to store connection handle and RSSI values
    memset(connList, 0, sizeof(connList));
    for (uint8_t index = 0; index < MAX_NUM_BLE_CONNS; index++)
    {
    connList[index].connHandle = SP_INVALID_HANDLE;
    }
    }
    /*********************************************************************
    // Set default PHY to 1M
    * @fn SimplePeripheral_startAutoPhyChange
    *
    * @brief Start periodic RSSI reads on a link.
    *
    * @param connHandle - connection handle of link
    * @param devAddr - device address
    *
    * @return SUCCESS: Terminate started
    * bleIncorrectMode: No link
    * bleNoResources: No resources
    */
    static status_t SimplePeripheral_startAutoPhyChange(uint16_t connHandle)
    {
    status_t status = FAILURE;

    // Get connection index from handle
    uint8_t connIndex = SimplePeripheral_getConnIndex(connHandle);
    SIMPLEPERIPHERAL_ASSERT(connIndex < MAX_NUM_BLE_CONNS);

    // Start Connection Event notice for RSSI calculation
    status = Gap_RegisterConnEventCb(SimplePeripheral_connEvtCB, GAP_CB_REGISTER, connHandle);

    // Flag in connection info if successful
    if (status == SUCCESS)
    {
    connList[connIndex].isAutoPHYEnable = TRUE;
    }

    return status;
    }

    /*********************************************************************
    * @fn SimplePeripheral_stopAutoPhyChange
    *
    * @brief Cancel periodic RSSI reads on a link.
    *
    * @param connHandle - connection handle of link
    *
    * @return SUCCESS: Operation successful
    * bleIncorrectMode: No link
    */
    static status_t SimplePeripheral_stopAutoPhyChange(uint16_t connHandle)
    {
    // Get connection index from handle
    uint8_t connIndex = SimplePeripheral_getConnIndex(connHandle);
    SIMPLEPERIPHERAL_ASSERT(connIndex < MAX_NUM_BLE_CONNS);

    // Stop connection event notice
    Gap_RegisterConnEventCb(NULL, GAP_CB_UNREGISTER, connHandle);

    // Also update the phychange request status for active RSSI tracking connection
    connList[connIndex].phyCngRq = FALSE;
    connList[connIndex].isAutoPHYEnable = FALSE;

    return SUCCESS;
    }

    /*********************************************************************
    * @fn SimplePeripheral_setPhy
    *
    * @brief Call the HCI set phy API and and add the handle to a
    * list to match it to an incoming command status event
    */
    static status_t SimplePeripheral_setPhy(uint16_t connHandle, uint8_t allPhys,
    uint8_t txPhy, uint8_t rxPhy,
    uint16_t phyOpts)
    {
    // Allocate list entry to store handle for command status
    spConnHandleEntry_t *connHandleEntry = ICall_malloc(sizeof(spConnHandleEntry_t));

    if (connHandleEntry)
    {
    connHandleEntry->connHandle = connHandle;

    // Add entry to the phy command status list
    List_put(&setPhyCommStatList, (List_Elem *)connHandleEntry);

    // Send PHY Update
    HCI_LE_SetPhyCmd(connHandle, allPhys, txPhy, rxPhy, phyOpts);
    }

    return SUCCESS;
    }

    /*********************************************************************
    * @fn SimplePeripheral_updatePHYStat
    *
    * @brief Update the auto phy update state machine
    *
    * @param connHandle - the connection handle
    *
    * @return None
    */
    static void SimplePeripheral_updatePHYStat(uint16_t eventCode, uint8_t *pMsg)
    {
    uint8_t connIndex;

    switch (eventCode)
    {
    case HCI_LE_SET_PHY:
    {
    // Get connection handle from list
    spConnHandleEntry_t *connHandleEntry =
    (spConnHandleEntry_t *)List_get(&setPhyCommStatList);

    if (connHandleEntry)
    {
    // Get index from connection handle
    connIndex = SimplePeripheral_getConnIndex(connHandleEntry->connHandle);

    ICall_free(connHandleEntry);

    // Is this connection still valid?
    if (connIndex < MAX_NUM_BLE_CONNS)
    {
    hciEvt_CommandStatus_t *pMyMsg = (hciEvt_CommandStatus_t *)pMsg;

    if (pMyMsg->cmdStatus == HCI_ERROR_CODE_UNSUPPORTED_REMOTE_FEATURE)
    {
    // Update the phychange request status for active RSSI tracking connection
    connList[connIndex].phyCngRq = FALSE;
    connList[connIndex].phyRqFailCnt++;
    }
    }
    }
    break;
    }

    // LE Event - a Phy update has completed or failed
    case HCI_BLE_PHY_UPDATE_COMPLETE_EVENT:
    {
    hciEvt_BLEPhyUpdateComplete_t *pPUC =
    (hciEvt_BLEPhyUpdateComplete_t*) pMsg;

    if(pPUC)
    {
    // Get index from connection handle
    connIndex = SimplePeripheral_getConnIndex(pPUC->connHandle);

    // Is this connection still valid?
    if (connIndex < MAX_NUM_BLE_CONNS)
    {
    // Update the phychange request status for active RSSI tracking connection
    connList[connIndex].phyCngRq = FALSE;

    if (pPUC->status == SUCCESS)
    {
    connList[connIndex].currPhy = pPUC->rxPhy;
    }
    if(pPUC->rxPhy != connList[connIndex].rqPhy)
    {
    connList[connIndex].phyRqFailCnt++;
    }
    else
    {
    // Reset the request phy counter and requested phy
    connList[connIndex].phyRqFailCnt = 0;
    connList[connIndex].rqPhy = 0;
    }
    }
    }

    break;
    }

    default:
    break;
    } // end of switch (eventCode)
    }

    /*********************************************************************
    * @fn SimplePeripheral_menuSwitchCb
    *
    * @brief Detect menu context switching
    *
    * @param pMenuObjCurr - the current menu object
    * @param pMenuObjNext - the menu object the context is about to switch to
    *
    * @return none
    */
    static void SimplePeripheral_menuSwitchCb(tbmMenuObj_t* pMenuObjCurr,
    tbmMenuObj_t* pMenuObjNext)
    {
    uint8_t NUMB_ACTIVE_CONNS = linkDB_NumActive();

    // interested in only the events of
    // entering scMenuConnect, spMenuSelectConn, and scMenuMain for now
    if (pMenuObjNext == &spMenuSelectConn)
    {
    static uint8_t* pAddrs;
    uint8_t* pAddrTemp;

    if (pAddrs != NULL)
    {
    ICall_free(pAddrs);
    }

    // Allocate buffer to display addresses
    pAddrs = ICall_malloc(NUMB_ACTIVE_CONNS * SP_ADDR_STR_SIZE);

    if (pAddrs == NULL)
    {
    TBM_SET_NUM_ITEM(&spMenuSelectConn, 0);
    }
    else
    {
    uint8_t i;

    TBM_SET_NUM_ITEM(&spMenuSelectConn, MAX_NUM_BLE_CONNS);

    pAddrTemp = pAddrs;

    // Add active connection info to the menu object
    for (i = 0; i < MAX_NUM_BLE_CONNS; i++)
    {
    if (connList[i].connHandle != CONNHANDLE_INVALID)
    {
    // Get the address from the connection handle
    linkDBInfo_t linkInfo;
    linkDB_GetInfo(connList[i].connHandle, &linkInfo);
    // This connection is active. Set the corresponding menu item with
    // the address of this connection and enable the item.
    memcpy(pAddrTemp, Util_convertBdAddr2Str(linkInfo.addr),
    SP_ADDR_STR_SIZE);
    TBM_SET_ACTION_DESC(&spMenuSelectConn, i, pAddrTemp);
    tbm_setItemStatus(&spMenuSelectConn, (1 << i), SP_ITEM_NONE);
    pAddrTemp += SP_ADDR_STR_SIZE;
    }
    else
    {
    // This connection is not active. Disable the corresponding menu item.
    tbm_setItemStatus(&spMenuSelectConn, SP_ITEM_NONE, (1 << i));
    }
    }
    }
    }
    else if (pMenuObjNext == &spMenuMain)
    {
    // Now we are not in a specific connection's context

    // Clear connection-related message
    Display_clearLine(dispHandle, SP_ROW_CONNECTION);
    }
    }
    /*********************************************************************
    *********************************************************************/

  • Hi Kahsay,

    I think your comment/question didn't make it to your latest post?
  • Hi Kahsay,

    Did you find the problem?

    I will close this thread due to inactivity.
  • Dear Marie,

    No, I didn't find any solution. I will come back to you soon. I am a little bit busy with another task.

    Regards,

    Kahsay