Hello, I need to use a Nokia 5110 display with a TM4C123GXL TIVA for a project.
I found a ready with the implementation code. I copied the code snippets for just a single file, compiled and no error appears, but nothing is shown on the display screen. The pin-out as shown in this code, have re-checked everything. But my difficulty is to understand the code that actually appear the test text on the screen.
The code that I got to adapt this at this link (users.ece.utexas.edu/.../arm) -> Ctrl + F -> 5110
#include <stdint.h> #include <stdbool.h> #include "driverlib/sysctl.h" //#include "inc/hw_memmap.h" //#include "inc/hw_types.h" //#include "inc/hw_gpio.h" //#include "driverlib/gpio.h" //#include "inc/tm4c123gh6pm.h" //#include "driverlib/pin_map.h" //Mapping of peripherals to pins for all parts. "GPIOPinTypeUART" //#include "driverlib/uart.h" /* *************************** Pinagem | Pinou*************************** // Red SparkFun Nokia 5110 (LCD-10168) ----------------------------------- Signal (Nokia 5110) LaunchPad pin 3.3V (VCC, pin 1) power Ground (GND, pin 2) ground SSI0Fss (SCE, pin 3) connected to PA3 Reset (RST, pin 4) connected to PA7 Data/Command (D/C, pin 5) connected to PA6 SSI0Tx (DN, pin 6) connected to PA5 SSI0Clk (SCLK, pin 7) connected to PA2 */ /* SYSDIV2 Divisor Clock (MHz) 0 1 reserved 1 2 reserved 2 3 reserved 3 4 reserved 4 5 80.000 5 6 66.667 6 7 reserved 7 8 50.000 8 9 44.444 9 10 40.000 10 11 36.364 11 12 33.333 12 13 30.769 13 14 28.571 14 15 26.667 15 16 25.000 16 17 23.529 17 18 22.222 18 19 21.053 19 20 20.000 20 21 19.048 21 22 18.182 22 23 17.391 23 24 16.667 24 25 16.000 25 26 15.385 26 27 14.815 27 28 14.286 28 29 13.793 29 30 13.333 30 31 12.903 31 32 12.500 32 33 12.121 33 34 11.765 34 35 11.429 35 36 11.111 36 37 10.811 37 38 10.526 38 39 10.256 39 40 10.000 40 41 9.756 41 42 9.524 42 43 9.302 43 44 9.091 44 45 8.889 45 46 8.696 46 47 8.511 47 48 8.333 48 49 8.163 49 50 8.000 50 51 7.843 51 52 7.692 52 53 7.547 53 54 7.407 54 55 7.273 55 56 7.143 56 57 7.018 57 58 6.897 58 59 6.780 59 60 6.667 60 61 6.557 61 62 6.452 62 63 6.349 63 64 6.250 64 65 6.154 65 66 6.061 66 67 5.970 67 68 5.882 68 69 5.797 69 70 5.714 70 71 5.634 71 72 5.556 72 73 5.479 73 74 5.405 74 75 5.333 75 76 5.263 76 77 5.195 77 78 5.128 78 79 5.063 79 80 5.000 80 81 4.938 81 82 4.878 82 83 4.819 83 84 4.762 84 85 4.706 85 86 4.651 86 87 4.598 87 88 4.545 88 89 4.494 89 90 4.444 90 91 4.396 91 92 4.348 92 93 4.301 93 94 4.255 94 95 4.211 95 96 4.167 96 97 4.124 97 98 4.082 98 99 4.040 99 100 4.000 100 101 3.960 101 102 3.922 102 103 3.883 103 104 3.846 104 105 3.810 105 106 3.774 106 107 3.738 107 108 3.704 108 109 3.670 109 110 3.636 110 111 3.604 111 112 3.571 112 113 3.540 113 114 3.509 114 115 3.478 115 116 3.448 116 117 3.419 117 118 3.390 118 119 3.361 119 120 3.333 120 121 3.306 121 122 3.279 122 123 3.252 123 124 3.226 124 125 3.200 125 126 3.175 126 127 3.150 127 128 3.125 */ // *************************** Tamanho da tela | WINDOWS SIZE *************************** #define SCREENW 84 #define SCREENH 48 // *************************** Definições | DEFINES *************************** #define DC (*((volatile uint32_t *)0x40004100)) #define DC_COMMAND 0 #define DC_DATA 0x40 #define RESET (*((volatile uint32_t *)0x40004200)) #define RESET_LOW 0 #define RESET_HIGH 0x80 #define GPIO_PORTA_DIR_R (*((volatile uint32_t *)0x40004400)) #define GPIO_PORTA_AFSEL_R (*((volatile uint32_t *)0x40004420)) #define GPIO_PORTA_DEN_R (*((volatile uint32_t *)0x4000451C)) #define GPIO_PORTA_AMSEL_R (*((volatile uint32_t *)0x40004528)) #define GPIO_PORTA_PCTL_R (*((volatile uint32_t *)0x4000452C)) #define SSI0_CR0_R (*((volatile uint32_t *)0x40008000)) #define SSI0_CR1_R (*((volatile uint32_t *)0x40008004)) #define SSI0_DR_R (*((volatile uint32_t *)0x40008008)) #define SSI0_SR_R (*((volatile uint32_t *)0x4000800C)) #define SSI0_CPSR_R (*((volatile uint32_t *)0x40008010)) #define SSI0_CC_R (*((volatile uint32_t *)0x40008FC8)) #define SSI_CR0_SCR_M 0x0000FF00 // SSI Serial Clock Rate #define SSI_CR0_SPH 0x00000080 // SSI Serial Clock Phase #define SSI_CR0_SPO 0x00000040 // SSI Serial Clock Polarity #define SSI_CR0_FRF_M 0x00000030 // SSI Frame Format Select #define SSI_CR0_FRF_MOTO 0x00000000 // Freescale SPI Frame Format #define SSI_CR0_DSS_M 0x0000000F // SSI Data Size Select #define SSI_CR0_DSS_8 0x00000007 // 8-bit data #define SSI_CR1_MS 0x00000004 // SSI Master/Slave Select #define SSI_CR1_SSE 0x00000002 // SSI Synchronous Serial Port // Enable #define SSI_SR_BSY 0x00000010 // SSI Busy Bit #define SSI_SR_TNF 0x00000002 // SSI Transmit FIFO Not Full #define SSI_CPSR_CPSDVSR_M 0x000000FF // SSI Clock Prescale Divisor #define SSI_CC_CS_M 0x0000000F // SSI Baud Clock Source #define SSI_CC_CS_SYSPLL 0x00000000 // Either the system clock (if the // PLL bypass is in effect) or the // PLL output (default) #define SYSCTL_RCGC1_R (*((volatile uint32_t *)0x400FE104)) #define SYSCTL_RCGC2_R (*((volatile uint32_t *)0x400FE108)) #define SYSCTL_RCGC1_SSI0 0x00000010 // SSI0 Clock Gating Control #define SYSCTL_RCGC2_GPIOA 0x00000001 // port A Clock Gating Control // *************************** Definições Nokia5110.h | MORE DEFINES *************************** #define MAX_X 84 #define MAX_Y 48 #define CONTRAST 0xB1 // *************************** Definições PLL | DEFINES PLL *************************** #define SYSCTL_RIS_R (*((volatile uint32_t *)0x400FE050)) #define SYSCTL_RIS_PLLLRIS 0x00000040 // PLL Lock Raw Interrupt Status #define SYSCTL_RCC_R (*((volatile uint32_t *)0x400FE060)) #define SYSCTL_RCC_XTAL_M 0x000007C0 // Crystal Value #define SYSCTL_RCC_XTAL_6MHZ 0x000002C0 // 6 MHz Crystal #define SYSCTL_RCC_XTAL_8MHZ 0x00000380 // 8 MHz Crystal #define SYSCTL_RCC_XTAL_16MHZ 0x00000540 // 16 MHz Crystal #define SYSCTL_RCC2_R (*((volatile uint32_t *)0x400FE070)) #define SYSCTL_RCC2_USERCC2 0x80000000 // Use RCC2 #define SYSCTL_RCC2_DIV400 0x40000000 // Divide PLL as 400 MHz vs. 200 // MHz #define SYSCTL_RCC2_SYSDIV2_M 0x1F800000 // System Clock Divisor 2 #define SYSCTL_RCC2_SYSDIV2LSB 0x00400000 // Additional LSB for SYSDIV2 #define SYSCTL_RCC2_PWRDN2 0x00002000 // Power-Down PLL 2 #define SYSCTL_RCC2_BYPASS2 0x00000800 // PLL Bypass 2 #define SYSCTL_RCC2_OSCSRC2_M 0x00000070 // Oscillator Source 2 #define SYSCTL_RCC2_OSCSRC2_MO 0x00000000 // MOSC #define SYSDIV2 7 // *************************** Definições usadas no Exemplo *************************** #define PIN_SCE 7 //Pin 3 on LCD #define PIN_RESET 6 //Pin 4 on LCD #define PIN_DC 5 //Pin 5 on LCD #define PIN_SDIN 4 //Pin 6 on LCD #define PIN_SCLK 3 //Pin 7 on LCD //The DC pin tells the LCD if we are sending a command or data #define LCD_COMMAND 0 #define LCD_DATA 1 //You may find a different size screen, but this one is 84 by 48 pixels #define LCD_X 84 #define LCD_Y 48 // *************************** Enumerações, Constantes e Variáveis | ENUMS, CONSTANTS AND VARIABLES*************************** enum typeOfWrite{ COMMAND, // the transmission is an LCD command DATA // the transmission is data }; // This table contains the hex values that represent pixels // for a font that is 5 pixels wide and 8 pixels high static const uint8_t ASCII[][5] = { {0x00, 0x00, 0x00, 0x00, 0x00} // 20 ,{0x00, 0x00, 0x5f, 0x00, 0x00} // 21 ! ,{0x00, 0x07, 0x00, 0x07, 0x00} // 22 " ,{0x14, 0x7f, 0x14, 0x7f, 0x14} // 23 # ,{0x24, 0x2a, 0x7f, 0x2a, 0x12} // 24 $ ,{0x23, 0x13, 0x08, 0x64, 0x62} // 25 % ,{0x36, 0x49, 0x55, 0x22, 0x50} // 26 & ,{0x00, 0x05, 0x03, 0x00, 0x00} // 27 ' ,{0x00, 0x1c, 0x22, 0x41, 0x00} // 28 ( ,{0x00, 0x41, 0x22, 0x1c, 0x00} // 29 ) ,{0x14, 0x08, 0x3e, 0x08, 0x14} // 2a * ,{0x08, 0x08, 0x3e, 0x08, 0x08} // 2b + ,{0x00, 0x50, 0x30, 0x00, 0x00} // 2c , ,{0x08, 0x08, 0x08, 0x08, 0x08} // 2d - ,{0x00, 0x60, 0x60, 0x00, 0x00} // 2e . ,{0x20, 0x10, 0x08, 0x04, 0x02} // 2f / ,{0x3e, 0x51, 0x49, 0x45, 0x3e} // 30 0 ,{0x00, 0x42, 0x7f, 0x40, 0x00} // 31 1 ,{0x42, 0x61, 0x51, 0x49, 0x46} // 32 2 ,{0x21, 0x41, 0x45, 0x4b, 0x31} // 33 3 ,{0x18, 0x14, 0x12, 0x7f, 0x10} // 34 4 ,{0x27, 0x45, 0x45, 0x45, 0x39} // 35 5 ,{0x3c, 0x4a, 0x49, 0x49, 0x30} // 36 6 ,{0x01, 0x71, 0x09, 0x05, 0x03} // 37 7 ,{0x36, 0x49, 0x49, 0x49, 0x36} // 38 8 ,{0x06, 0x49, 0x49, 0x29, 0x1e} // 39 9 ,{0x00, 0x36, 0x36, 0x00, 0x00} // 3a : ,{0x00, 0x56, 0x36, 0x00, 0x00} // 3b ; ,{0x08, 0x14, 0x22, 0x41, 0x00} // 3c < ,{0x14, 0x14, 0x14, 0x14, 0x14} // 3d = ,{0x00, 0x41, 0x22, 0x14, 0x08} // 3e > ,{0x02, 0x01, 0x51, 0x09, 0x06} // 3f ? ,{0x32, 0x49, 0x79, 0x41, 0x3e} // 40 @ ,{0x7e, 0x11, 0x11, 0x11, 0x7e} // 41 A ,{0x7f, 0x49, 0x49, 0x49, 0x36} // 42 B ,{0x3e, 0x41, 0x41, 0x41, 0x22} // 43 C ,{0x7f, 0x41, 0x41, 0x22, 0x1c} // 44 D ,{0x7f, 0x49, 0x49, 0x49, 0x41} // 45 E ,{0x7f, 0x09, 0x09, 0x09, 0x01} // 46 F ,{0x3e, 0x41, 0x49, 0x49, 0x7a} // 47 G ,{0x7f, 0x08, 0x08, 0x08, 0x7f} // 48 H ,{0x00, 0x41, 0x7f, 0x41, 0x00} // 49 I ,{0x20, 0x40, 0x41, 0x3f, 0x01} // 4a J ,{0x7f, 0x08, 0x14, 0x22, 0x41} // 4b K ,{0x7f, 0x40, 0x40, 0x40, 0x40} // 4c L ,{0x7f, 0x02, 0x0c, 0x02, 0x7f} // 4d M ,{0x7f, 0x04, 0x08, 0x10, 0x7f} // 4e N ,{0x3e, 0x41, 0x41, 0x41, 0x3e} // 4f O ,{0x7f, 0x09, 0x09, 0x09, 0x06} // 50 P ,{0x3e, 0x41, 0x51, 0x21, 0x5e} // 51 Q ,{0x7f, 0x09, 0x19, 0x29, 0x46} // 52 R ,{0x46, 0x49, 0x49, 0x49, 0x31} // 53 S ,{0x01, 0x01, 0x7f, 0x01, 0x01} // 54 T ,{0x3f, 0x40, 0x40, 0x40, 0x3f} // 55 U ,{0x1f, 0x20, 0x40, 0x20, 0x1f} // 56 V ,{0x3f, 0x40, 0x38, 0x40, 0x3f} // 57 W ,{0x63, 0x14, 0x08, 0x14, 0x63} // 58 X ,{0x07, 0x08, 0x70, 0x08, 0x07} // 59 Y ,{0x61, 0x51, 0x49, 0x45, 0x43} // 5a Z ,{0x00, 0x7f, 0x41, 0x41, 0x00} // 5b [ ,{0x02, 0x04, 0x08, 0x10, 0x20} // 5c '\' ,{0x00, 0x41, 0x41, 0x7f, 0x00} // 5d ] ,{0x04, 0x02, 0x01, 0x02, 0x04} // 5e ^ ,{0x40, 0x40, 0x40, 0x40, 0x40} // 5f _ ,{0x00, 0x01, 0x02, 0x04, 0x00} // 60 ` ,{0x20, 0x54, 0x54, 0x54, 0x78} // 61 a ,{0x7f, 0x48, 0x44, 0x44, 0x38} // 62 b ,{0x38, 0x44, 0x44, 0x44, 0x20} // 63 c ,{0x38, 0x44, 0x44, 0x48, 0x7f} // 64 d ,{0x38, 0x54, 0x54, 0x54, 0x18} // 65 e ,{0x08, 0x7e, 0x09, 0x01, 0x02} // 66 f ,{0x0c, 0x52, 0x52, 0x52, 0x3e} // 67 g ,{0x7f, 0x08, 0x04, 0x04, 0x78} // 68 h ,{0x00, 0x44, 0x7d, 0x40, 0x00} // 69 i ,{0x20, 0x40, 0x44, 0x3d, 0x00} // 6a j ,{0x7f, 0x10, 0x28, 0x44, 0x00} // 6b k ,{0x00, 0x41, 0x7f, 0x40, 0x00} // 6c l ,{0x7c, 0x04, 0x18, 0x04, 0x78} // 6d m ,{0x7c, 0x08, 0x04, 0x04, 0x78} // 6e n ,{0x38, 0x44, 0x44, 0x44, 0x38} // 6f o ,{0x7c, 0x14, 0x14, 0x14, 0x08} // 70 p ,{0x08, 0x14, 0x14, 0x18, 0x7c} // 71 q ,{0x7c, 0x08, 0x04, 0x04, 0x08} // 72 r ,{0x48, 0x54, 0x54, 0x54, 0x20} // 73 s ,{0x04, 0x3f, 0x44, 0x40, 0x20} // 74 t ,{0x3c, 0x40, 0x40, 0x20, 0x7c} // 75 u ,{0x1c, 0x20, 0x40, 0x20, 0x1c} // 76 v ,{0x3c, 0x40, 0x30, 0x40, 0x3c} // 77 w ,{0x44, 0x28, 0x10, 0x28, 0x44} // 78 x ,{0x0c, 0x50, 0x50, 0x50, 0x3c} // 79 y ,{0x44, 0x64, 0x54, 0x4c, 0x44} // 7a z ,{0x00, 0x08, 0x36, 0x41, 0x00} // 7b { ,{0x00, 0x00, 0x7f, 0x00, 0x00} // 7c | ,{0x00, 0x41, 0x36, 0x08, 0x00} // 7d } ,{0x10, 0x08, 0x08, 0x10, 0x08} // 7e ~ // ,{0x78, 0x46, 0x41, 0x46, 0x78} // 7f DEL ,{0x1f, 0x24, 0x7c, 0x24, 0x1f} // 7f UT sign }; uint8_t Screen[SCREENW*SCREENH/8]; // buffer stores the next image to be printed on the screen const unsigned char Masks[8]={0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80}; //usado na função Nokia5110_ClrPxl // *************************** Protótipos Funções *************************** void static lcdwrite(enum typeOfWrite type, uint8_t message); void static lcddatawrite(uint8_t data); void Nokia5110_Init(void); void Nokia5110_OutChar(char data); void Nokia5110_OutString(char *ptr); void Nokia5110_OutUDec(uint16_t n); void Nokia5110_SetCursor(uint8_t newX, uint8_t newY); void Nokia5110_Clear(void); void Nokia5110_DrawFullImage(const uint8_t *ptr); void Nokia5110_PrintBMP(uint8_t xpos, uint8_t ypos, const uint8_t *ptr, uint8_t threshold); void Nokia5110_ClearBuffer(void); void Nokia5110_DisplayBuffer(void); void Nokia5110_ClrPxl(uint32_t i, uint32_t j); void Nokia5110_SetPxl(uint32_t i, uint32_t j); void PLL_Init(void); // *************************** exemplo main.c *************************** int main(void){ uint32_t count = 0; PLL_Init(); // set system clock to 50 MHz Nokia5110_Init(); count = 0; Nokia5110_Clear(); Nokia5110_OutString("************* LCD Test *************Letter: Num:------- ---- "); Nokia5110_OutChar(127); // print UT sign while(1){ Nokia5110_SetCursor(5, 5); // five leading spaces, bottom row Nokia5110_OutChar((count%26)+'A'); Nokia5110_OutChar(' '); Nokia5110_OutUDec(count); SysCtlDelay(103333333); // delay ~0.5 sec at 50 MHz count = count + 1; } } /* *************************** main.c *************************** */ // *************************** Implementação Funções | Implementation of functions *************************** // The Data/Command pin must be valid when the eighth bit is // sent. The SSI module has hardware input and output FIFOs // that are 8 locations deep. Based on the observation that // the LCD interface tends to send a few commands and then a // lot of data, the FIFOs are not used when writing // commands, and they are used when writing data. This // ensures that the Data/Command pin status matches the byte // that is actually being transmitted. // The write command operation waits until all data has been // sent, configures the Data/Command pin for commands, sends // the command, and then waits for the transmission to // finish. // The write data operation waits until there is room in the // transmit FIFO, configures the Data/Command pin for data, // and then adds the data to the transmit FIFO. // This is a helper function that sends an 8-bit message to the LCD. // inputs: type COMMAND or DATA // message 8-bit code to transmit // outputs: none // assumes: SSI0 and port A have already been initialized and enabled void static lcdwrite(enum typeOfWrite type, uint8_t message){ if(type == COMMAND){ // wait until SSI0 not busy/transmit FIFO empty while((SSI0_SR_R&SSI_SR_BSY)==SSI_SR_BSY){}; DC = DC_COMMAND; SSI0_DR_R = message; // command out // wait until SSI0 not busy/transmit FIFO empty while((SSI0_SR_R&SSI_SR_BSY)==SSI_SR_BSY){}; } else{ while((SSI0_SR_R&SSI_SR_TNF)==0){}; // wait until transmit FIFO not full DC = DC_DATA; SSI0_DR_R = message; // data out } } void static lcddatawrite(uint8_t data){ while((SSI0_SR_R&0x00000002)==0){}; // wait until transmit FIFO not full DC = DC_DATA; SSI0_DR_R = data; // data out } //********Nokia5110_Init***************** // Initialize Nokia 5110 48x84 LCD by sending the proper // commands to the PCD8544 driver. One new feature of the // LM4F120 is that its SSIs can get their baud clock from // either the system clock or from the 16 MHz precision // internal oscillator. // inputs: none // outputs: none // assumes: system clock rate of 80 MHz void Nokia5110_Init(void){ volatile uint32_t delay; SYSCTL_RCGC1_R |= SYSCTL_RCGC1_SSI0; // activate SSI0 SYSCTL_RCGC2_R |= SYSCTL_RCGC2_GPIOA; // activate port A delay = SYSCTL_RCGC2_R; // allow time to finish activating GPIO_PORTA_DIR_R |= 0xC0; // make PA6,7 out GPIO_PORTA_AFSEL_R |= 0x2C; // enable alt funct on PA2,3,5 GPIO_PORTA_AFSEL_R &= ~0xC0; // disable alt funct on PA6,7 GPIO_PORTA_DEN_R |= 0xEC; // enable digital I/O on PA2,3,5,6,7 // configure PA2,3,5 as SSI GPIO_PORTA_PCTL_R = (GPIO_PORTA_PCTL_R&0xFF0F00FF)+0x00202200; // configure PA6,7 as GPIO GPIO_PORTA_PCTL_R = (GPIO_PORTA_PCTL_R&0x00FFFFFF)+0x00000000; GPIO_PORTA_AMSEL_R &= ~0xEC; // disable analog functionality on PA2,3,5,6,7 SSI0_CR1_R &= ~SSI_CR1_SSE; // disable SSI SSI0_CR1_R &= ~SSI_CR1_MS; // master mode // configure for system clock/PLL baud clock source SSI0_CC_R = (SSI0_CC_R&~SSI_CC_CS_M)+SSI_CC_CS_SYSPLL; // clock divider for 3.33 MHz SSIClk (80 MHz PLL/24) // SysClk/(CPSDVSR*(1+SCR)) // 80/(24*(1+0)) = 3.33 MHz (slower than 4 MHz) SSI0_CPSR_R = (SSI0_CPSR_R&~SSI_CPSR_CPSDVSR_M)+24; // must be even number SSI0_CR0_R &= ~(SSI_CR0_SCR_M | // SCR = 0 (3.33 Mbps data rate) SSI_CR0_SPH | // SPH = 0 SSI_CR0_SPO); // SPO = 0 // FRF = Freescale format SSI0_CR0_R = (SSI0_CR0_R&~SSI_CR0_FRF_M)+SSI_CR0_FRF_MOTO; // DSS = 8-bit data SSI0_CR0_R = (SSI0_CR0_R&~SSI_CR0_DSS_M)+SSI_CR0_DSS_8; SSI0_CR1_R |= SSI_CR1_SSE; // enable SSI RESET = RESET_LOW; // reset the LCD to a known state for(delay=0; delay<10; delay=delay+1);// delay minimum 100 ns RESET = RESET_HIGH; // negative logic lcdwrite(COMMAND, 0x21); // chip active; horizontal addressing mode (V = 0); use extended instruction set (H = 1) // set LCD Vop (contrast), which may require some tweaking: lcdwrite(COMMAND, CONTRAST); // try 0xB1 (for 3.3V red SparkFun), 0xB8 (for 3.3V blue SparkFun), 0xBF if your display is too dark, or 0x80 to 0xFF if experimenting lcdwrite(COMMAND, 0x04); // set temp coefficient lcdwrite(COMMAND, 0x14); // LCD bias mode 1:48: try 0x13 or 0x14 lcdwrite(COMMAND, 0x20); // we must send 0x20 before modifying the display control mode lcdwrite(COMMAND, 0x0C); // set display control to normal mode: 0x0D for inverse } //********Nokia5110_OutChar***************** // Print a character to the Nokia 5110 48x84 LCD. The // character will be printed at the current cursor position, // the cursor will automatically be updated, and it will // wrap to the next row or back to the top if necessary. // One blank column of pixels will be printed on either side // of the character for readability. Since characters are 8 // pixels tall and 5 pixels wide, 12 characters fit per row, // and there are six rows. // inputs: data character to print // outputs: none // assumes: LCD is in default horizontal addressing mode (V = 0) void Nokia5110_OutChar(char data){int i; lcddatawrite(0x00); // blank vertical line padding for(i=0; i<5; i=i+1){ lcddatawrite(ASCII[data - 0x20][i]); } lcddatawrite(0x00); // blank vertical line padding } //********Nokia5110_OutString***************** // Print a string of characters to the Nokia 5110 48x84 LCD. // The string will automatically wrap, so padding spaces may // be needed to make the output look optimal. // inputs: ptr pointer to NULL-terminated ASCII string // outputs: none // assumes: LCD is in default horizontal addressing mode (V = 0) void Nokia5110_OutString(char *ptr){ while(*ptr){ Nokia5110_OutChar((unsigned char)*ptr); ptr = ptr + 1; } } //********Nokia5110_OutUDec***************** // Output a 16-bit number in unsigned decimal format with a // fixed size of five right-justified digits of output. // Inputs: n 16-bit unsigned number // Outputs: none // assumes: LCD is in default horizontal addressing mode (V = 0) void Nokia5110_OutUDec(uint16_t n){ if(n < 10){ Nokia5110_OutString(" "); Nokia5110_OutChar(n+'0'); /* n is between 0 and 9 */ } else if(n<100){ Nokia5110_OutString(" "); Nokia5110_OutChar(n/10+'0'); /* tens digit */ Nokia5110_OutChar(n%10+'0'); /* ones digit */ } else if(n<1000){ Nokia5110_OutString(" "); Nokia5110_OutChar(n/100+'0'); /* hundreds digit */ n = n%100; Nokia5110_OutChar(n/10+'0'); /* tens digit */ Nokia5110_OutChar(n%10+'0'); /* ones digit */ } else if(n<10000){ Nokia5110_OutChar(' '); Nokia5110_OutChar(n/1000+'0'); /* thousands digit */ n = n%1000; Nokia5110_OutChar(n/100+'0'); /* hundreds digit */ n = n%100; Nokia5110_OutChar(n/10+'0'); /* tens digit */ Nokia5110_OutChar(n%10+'0'); /* ones digit */ } else { Nokia5110_OutChar(n/10000+'0'); /* ten-thousands digit */ n = n%10000; Nokia5110_OutChar(n/1000+'0'); /* thousands digit */ n = n%1000; Nokia5110_OutChar(n/100+'0'); /* hundreds digit */ n = n%100; Nokia5110_OutChar(n/10+'0'); /* tens digit */ Nokia5110_OutChar(n%10+'0'); /* ones digit */ } } //********Nokia5110_SetCursor***************** // Move the cursor to the desired X- and Y-position. The // next character will be printed here. X=0 is the leftmost // column. Y=0 is the top row. // inputs: newX new X-position of the cursor (0<=newX<=11) // newY new Y-position of the cursor (0<=newY<=5) // outputs: none void Nokia5110_SetCursor(uint8_t newX, uint8_t newY){ if((newX > 11) || (newY > 5)){ // bad input return; // do nothing } // multiply newX by 7 because each character is 7 columns wide lcdwrite(COMMAND, 0x80|(newX*7)); // setting bit 7 updates X-position lcdwrite(COMMAND, 0x40|newY); // setting bit 6 updates Y-position } //********Nokia5110_Clear***************** // Clear the LCD by writing zeros to the entire screen and // reset the cursor to (0,0) (top left corner of screen). // inputs: none // outputs: none void Nokia5110_Clear(void){ int i; for(i=0; i<(MAX_X*MAX_Y/8); i=i+1){ lcddatawrite(0x00); } Nokia5110_SetCursor(0, 0); } //********Nokia5110_DrawFullImage***************** // Fill the whole screen by drawing a 48x84 bitmap image. // inputs: ptr pointer to 504 byte bitmap // outputs: none // assumes: LCD is in default horizontal addressing mode (V = 0) void Nokia5110_DrawFullImage(const uint8_t *ptr){ int i; Nokia5110_SetCursor(0, 0); for(i=0; i<(MAX_X*MAX_Y/8); i=i+1){ lcddatawrite(ptr[i]); } } uint8_t Screen[SCREENW*SCREENH/8]; // buffer stores the next image to be printed on the screen //********Nokia5110_PrintBMP***************** // Bitmaps defined above were created for the LM3S1968 or // LM3S8962's 4-bit grayscale OLED display. They also // still contain their header data and may contain padding // to preserve 4-byte alignment. This function takes a // bitmap in the previously described format and puts its // image data in the proper location in the buffer so the // image will appear on the screen after the next call to // Nokia5110_DisplayBuffer(); // The interface and operation of this process is modeled // after RIT128x96x4_BMP(x, y, image); // inputs: xpos horizontal position of bottom left corner of image, columns from the left edge // must be less than 84 // 0 is on the left; 82 is near the right // ypos vertical position of bottom left corner of image, rows from the top edge // must be less than 48 // 2 is near the top; 47 is at the bottom // ptr pointer to a 16 color BMP image // threshold grayscale colors above this number make corresponding pixel 'on' // 0 to 14 // 0 is fine for ships, explosions, projectiles, and bunkers // outputs: none void Nokia5110_PrintBMP(uint8_t xpos, uint8_t ypos, const uint8_t *ptr, uint8_t threshold){ int32_t width = ptr[18], height = ptr[22], i, j; uint16_t screenx, screeny; uint8_t mask; // check for clipping if((height <= 0) || // bitmap is unexpectedly encoded in top-to-bottom pixel order ((width%2) != 0) || // must be even number of columns ((xpos + width) > SCREENW) || // right side cut off (ypos < (height - 1)) || // top cut off (ypos > SCREENH)) { // bottom cut off return; } if(threshold > 14){ threshold = 14; // only full 'on' turns pixel on } // bitmaps are encoded backwards, so start at the bottom left corner of the image screeny = ypos/8; screenx = xpos + SCREENW*screeny; mask = ypos%8; // row 0 to 7 mask = 0x01<<mask; // now stores a mask 0x01 to 0x80 j = ptr[10]; // byte 10 contains the offset where image data can be found for(i=1; i<=(width*height/2); i=i+1){ // the left pixel is in the upper 4 bits if(((ptr[j]>>4)&0xF) > threshold){ Screen[screenx] |= mask; } else{ Screen[screenx] &= ~mask; } screenx = screenx + 1; // the right pixel is in the lower 4 bits if((ptr[j]&0xF) > threshold){ Screen[screenx] |= mask; } else{ Screen[screenx] &= ~mask; } screenx = screenx + 1; j = j + 1; if((i%(width/2)) == 0){ // at the end of a row if(mask > 0x01){ mask = mask>>1; } else{ mask = 0x80; screeny = screeny - 1; } screenx = xpos + SCREENW*screeny; // bitmaps are 32-bit word aligned switch((width/2)%4){ // skip any padding case 0: j = j + 0; break; case 1: j = j + 3; break; case 2: j = j + 2; break; case 3: j = j + 1; break; } } } } // There is a buffer in RAM that holds one screen // This routine clears this buffer void Nokia5110_ClearBuffer(void){int i; for(i=0; i<SCREENW*SCREENH/8; i=i+1){ Screen[i] = 0; // clear buffer } } //********Nokia5110_DisplayBuffer***************** // Fill the whole screen by drawing a 48x84 screen image. // inputs: none // outputs: none // assumes: LCD is in default horizontal addressing mode (V = 0) void Nokia5110_DisplayBuffer(void){ Nokia5110_DrawFullImage(Screen); } //------------Nokia5110_ClrPxl------------ // Clear the Image pixel at (i, j), turning it dark. // Input: i the row index (0 to 47 in this case), y-coordinate // j the column index (0 to 83 in this case), x-coordinate // Output: none void Nokia5110_ClrPxl(uint32_t i, uint32_t j){ Screen[84*(i>>3) + j] &= ~Masks[i&0x07]; } //------------Nokia5110_SetPxl------------ // Set the Image pixel at (i, j), turning it on. // Input: i the row index (0 to 47 in this case), y-coordinate // j the column index (0 to 83 in this case), x-coordinate // Output: none void Nokia5110_SetPxl(uint32_t i, uint32_t j){ Screen[84*(i>>3) + j] |= Masks[i&0x07]; } // configure the system to get its clock from the PLL void PLL_Init(void){ // 0) configure the system to use RCC2 for advanced features // such as 400 MHz PLL and non-integer System Clock Divisor SYSCTL_RCC2_R |= SYSCTL_RCC2_USERCC2; // 1) bypass PLL while initializing SYSCTL_RCC2_R |= SYSCTL_RCC2_BYPASS2; // 2) select the crystal value and oscillator source SYSCTL_RCC_R &= ~SYSCTL_RCC_XTAL_M; // clear XTAL field SYSCTL_RCC_R += SYSCTL_RCC_XTAL_16MHZ;// configure for 16 MHz crystal SYSCTL_RCC2_R &= ~SYSCTL_RCC2_OSCSRC2_M;// clear oscillator source field SYSCTL_RCC2_R += SYSCTL_RCC2_OSCSRC2_MO;// configure for main oscillator source // 3) activate PLL by clearing PWRDN SYSCTL_RCC2_R &= ~SYSCTL_RCC2_PWRDN2; // 4) set the desired system divider and the system divider least significant bit SYSCTL_RCC2_R |= SYSCTL_RCC2_DIV400; // use 400 MHz PLL SYSCTL_RCC2_R = (SYSCTL_RCC2_R&~0x1FC00000) // clear system clock divider field + (SYSDIV2<<22); // configure for 80 MHz clock // 5) wait for the PLL to lock by polling PLLLRIS while((SYSCTL_RIS_R&SYSCTL_RIS_PLLLRIS)==0){}; // 6) enable use of PLL by clearing BYPASS SYSCTL_RCC2_R &= ~SYSCTL_RCC2_BYPASS2; }