Hello,
I am Working on Tiva TM4C123 launchpad.I am new to the SPI interface.
I am using 2 tm4c123 launchpads, one as master and one slave. In the debugging window of CCS, the spi interrupt handler is always returning zero.
I've attached the code.
Please suggest me where i am going wrong.
Tivaware version:2.1.3
CCS version 6.2
Thank you & Regards
Vikas
//***************************************************************************** // // spi_master.c - Example demonstrating how to configure SSI0 in SPI master // mode. // // Copyright (c) 2010-2014 Texas Instruments Incorporated. All rights reserved. // Software License Agreement // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // Neither the name of Texas Instruments Incorporated nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // This is part of revision 2.1.0.12573 of the Tiva Firmware Development Package. // //***************************************************************************** #include <stdbool.h> #include <stdint.h> #include "inc/hw_memmap.h" #include "inc/hw_ints.h" #include "driverlib/gpio.h" #include "driverlib/pin_map.h" #include "driverlib/ssi.h" #include "driverlib/sysctl.h" #include "driverlib/interrupt.h" #include "driverlib/uart.h" #include "uartstdio.h" //***************************************************************************** // //! \addtogroup ssi_examples_list //! <h1>SPI Master (spi_master)</h1> //! //! This example shows how to configure the SSI0 as SPI Master. The code will //! send three characters on the master Tx then polls the receive FIFO until //! 3 characters are received on the master Rx. //! //! This example uses the following peripherals and I/O signals. You must //! review these and change as needed for your own board: //! - SSI0 peripheral //! - GPIO Port A peripheral (for SSI0 pins) //! - SSI0Clk - PA2 //! - SSI0Fss - PA3 //! - SSI0Rx - PA4 //! - SSI0Tx - PA5 //! //! The following UART signals are configured only for displaying console //! messages for this example. These are not required for operation of SSI0. //! - UART0 peripheral //! - GPIO Port A peripheral (for UART0 pins) //! - UART0RX - PA0 //! - UART0TX - PA1 //! //! This example uses the following interrupt handlers. To use this example //! in your own application you must add these interrupt handlers to your //! vector table. //! - None. // //***************************************************************************** //***************************************************************************** // // Number of bytes to send and receive. // //***************************************************************************** #define NUM_SSI_DATA 3 void SSI0_Interrupt(void); uint32_t pui32DataTx[NUM_SSI_DATA]; uint32_t pui32DataRx[NUM_SSI_DATA]; uint32_t ui32Index; volatile unsigned long g_ulSSI2RXTO = 0; //***************************************************************************** // // This function sets up UART0 to be used for a console to display information // as the example is running. // //***************************************************************************** void InitConsole(void) { // // Enable GPIO port A which is used for UART0 pins. // TODO: change this to whichever GPIO port you are using. // SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB); // // Configure the pin muxing for UART0 functions on port A0 and A1. // This step is not necessary if your part does not support pin muxing. // TODO: change this to select the port/pin you are using. // GPIOPinConfigure(GPIO_PB0_U1RX); GPIOPinConfigure(GPIO_PB1_U1TX); // // Enable UART0 so that we can configure the clock. // SysCtlPeripheralEnable(SYSCTL_PERIPH_UART1); // // Use the internal 16MHz oscillator as the UART clock source. // // UARTClockSourceSet(UART0_BASE, UART_CLOCK_PIOSC); // // Select the alternate (UART) function for these pins. // TODO: change this to select the port/pin you are using. // GPIOPinTypeUART(GPIO_PORTB_BASE, GPIO_PIN_0 | GPIO_PIN_1); UARTConfigSetExpClk(UART1_BASE, SysCtlClockGet(),115200,(UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |UART_CONFIG_PAR_NONE)); UARTEnable(UART1_BASE); } //***************************************************************************** // // Configure SSI0 in master Freescale (SPI) mode. This example will send out // 3 bytes of data, then wait for 3 bytes of data to come in. This will all be // done using the polling method. // //***************************************************************************** int main(void) { // // Set the clocking to run directly from the external crystal/oscillator. // TODO: The SYSCTL_XTAL_ value must be changed to match the value of the // crystal on your board. // SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ); // // Set up the serial console to use for displaying messages. This is // just for this example program and is not needed for SSI operation. // InitConsole(); // // Display the setup on the console. // UARTprintf("SSI ->\n"); UARTprintf(" Mode: SPI\n"); UARTprintf(" Data: 8-bit\n\n"); // // The SSI0 peripheral must be enabled for use. // SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI0); // // For this example SSI0 is used with PortA[5:2]. The actual port and pins // used may be different on your part, consult the data sheet for more // information. GPIO port A needs to be enabled so these pins can be used. // TODO: change this to whichever GPIO port you are using. // SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA); // // Configure the pin muxing for SSI0 functions on port A2, A3, A4, and A5. // This step is not necessary if your part does not support pin muxing. // TODO: change this to select the port/pin you are using. // GPIOPinConfigure(GPIO_PA2_SSI0CLK); GPIOPinConfigure(GPIO_PA3_SSI0FSS); GPIOPinConfigure(GPIO_PA4_SSI0RX); GPIOPinConfigure(GPIO_PA5_SSI0TX); // // Configure the GPIO settings for the SSI pins. This function also gives // control of these pins to the SSI hardware. Consult the data sheet to // see which functions are allocated per pin. // The pins are assigned as follows: // PA5 - SSI0Tx // PA4 - SSI0Rx // PA3 - SSI0Fss // PA2 - SSI0CLK // TODO: change this to select the port/pin you are using. // GPIOPinTypeSSI(GPIO_PORTA_BASE, GPIO_PIN_5 | GPIO_PIN_4 | GPIO_PIN_3 | GPIO_PIN_2); // // Configure and enable the SSI port for SPI master mode. Use SSI0, // system clock supply, idle clock level low and active low clock in // freescale SPI mode, master mode, 1MHz SSI frequency, and 8-bit data. // For SPI mode, you can set the polarity of the SSI clock when the SSI // unit is idle. You can also configure what clock edge you want to // capture data on. Please reference the datasheet for more information on // the different SPI modes. // SSIConfigSetExpClk(SSI0_BASE, SysCtlClockGet(), SSI_FRF_MOTO_MODE_3, SSI_MODE_MASTER,2000000, 8); // Enable the SSI0 module. // SSIEnable(SSI0_BASE); SSIIntEnable(SSI0_BASE,SSI_RXFF|SSI_RXTO); // // Read any residual data from the SSI port. This makes sure the receive // FIFOs are empty, so we don't read any unwanted junk. This is done here // because the SPI SSI mode is full-duplex, which allows you to send and // receive at the same time. The SSIDataGetNonBlocking function returns // "true" when data was returned, and "false" when no data was returned. // The "non-blocking" function checks if there is any data in the receive // FIFO and does not "hang" if there isn't. // while(SSIDataGetNonBlocking(SSI0_BASE, &pui32DataRx[0])) { } SSIIntClear(SSI0_BASE,SSI_RXFF|SSI_RXTO); // // Initialize the data to send. // pui32DataTx[0] = 's'; pui32DataTx[1] = 'p'; pui32DataTx[2] = 'i'; // // Display indication that the SSI is transmitting data. // UARTprintf("Sent:\n "); // // Send 3 bytes of data. // for(ui32Index = 0; ui32Index < NUM_SSI_DATA; ui32Index++) { // // Display the data that SSI is transferring. // UARTprintf("'%c' ", pui32DataTx[ui32Index]); // // Send the data using the "blocking" put function. This function // will wait until there is room in the send FIFO before returning. // This allows you to assure that all the data you send makes it into // the send FIFO. // SSIDataPut(SSI0_BASE, pui32DataTx[ui32Index]); } // // Wait until SSI0 is done transferring all the data in the transmit FIFO. // while(SSIBusy(SSI0_BASE)) { } IntEnable(INT_SSI0); while(g_ulSSI2RXTO == 0) { } // // Display indication that the SSI is receiving data. // UARTprintf("\nReceived:\n "); // // Receive 3 bytes of data. // // for(ui32Index = 0; ui32Index < NUM_SSI_DATA; ui32Index++) // { // // // // Receive the data using the "blocking" Get function. This function // // will wait until there is data in the receive FIFO before returning. // // // SSIDataGet(SSI0_BASE, &pui32DataRx[ui32Index]); // // // // // Since we are using 8-bit data, mask off the MSB. // // // pui32DataRx[ui32Index] &= 0x00FF; // // // // // Display the data that SSI0 received. // // // UARTprintf("'%c' ", pui32DataRx[ui32Index]); // } while(1) { } } void SSI0_Interrupt(void) { uint32_t ui32Status; ui32Status=SSIIntStatus(SSI0_BASE,1); if(ui32Status & SSI_RXFF|SSI_RXTO) { g_ulSSI2RXTO++; for(ui32Index=0;ui32Index < NUM_SSI_DATA; ui32Index++) { SSIDataGet(SSI0_BASE, &pui32DataRx[ui32Index]); } } SSIIntClear(SSI0_BASE, ui32Status); }