This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

CAN interfacing in TM4C1294NCPDT

Other Parts Discussed in Thread: TM4C1294NCPDT

Hello people, I am new to the code composer studio. I am learning about this launchpad TM4C1294NCPDT for my college final year project.  I am trying to learn how to interface two launchpads(TM4C1294NCPDT) using CAN bus. I have used MCP2551 IC for interfacing. I have used the example codes for CAN transmit and receive. There is no error in compiling and loading the code on the launchpads. But I could not understand where in the code composer studio to write the message on the transmitter side which is to be transmitted. Please see the two file attached. I am stuck at this point for quite a while now. Your help would be highly appreciated. Waiting for reply. Thank you.

//*****************************************************************************
//
// simple_tx.c - Example demonstrating simple CAN message transmission.
//
// Copyright (c) 2010-2015 Texas Instruments Incorporated.  All rights reserved.
// Software License Agreement
// 
//   Redistribution and use in source and binary forms, with or without
//   modification, are permitted provided that the following conditions
//   are met:
// 
//   Redistributions of source code must retain the above copyright
//   notice, this list of conditions and the following disclaimer.
// 
//   Redistributions in binary form must reproduce the above copyright
//   notice, this list of conditions and the following disclaimer in the
//   documentation and/or other materials provided with the  
//   distribution.
// 
//   Neither the name of Texas Instruments Incorporated nor the names of
//   its contributors may be used to endorse or promote products derived
//   from this software without specific prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// 
// This is part of revision 2.1.2.111 of the Tiva Firmware Development Package.
//
//*****************************************************************************

#include <stdbool.h>
#include <stdint.h>
#include "inc/hw_can.h"
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "driverlib/can.h"
#include "driverlib/gpio.h"
#include "driverlib/interrupt.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/uart.h"
#include "utils/uartstdio.h"

//*****************************************************************************
//
//! \addtogroup can_examples_list
//! <h1>Simple CAN TX (simple_tx)</h1>
//!
//! This example shows the basic setup of CAN in order to transmit messages
//! on the CAN bus.  The CAN peripheral is configured to transmit messages
//! with a specific CAN ID.  A message is then transmitted once per second,
//! using a simple delay loop for timing.  The message that is sent is a 4
//! byte message that contains an incrementing pattern.  A CAN interrupt
//! handler is used to confirm message transmission and count the number of
//! messages that have been sent.
//!
//! This example uses the following peripherals and I/O signals.  You must
//! review these and change as needed for your own board:
//! - CAN0 peripheral
//! - GPIO Port B peripheral (for CAN0 pins)
//! - CAN0RX - PB4
//! - CAN0TX - PB5
//!
//! The following UART signals are configured only for displaying console
//! messages for this example.  These are not required for operation of CAN.
//! - GPIO port A peripheral (for UART0 pins)
//! - UART0RX - PA0
//! - UART0TX - PA1
//!
//! This example uses the following interrupt handlers.  To use this example
//! in your own application you must add these interrupt handlers to your
//! vector table.
//! - INT_CAN0 - CANIntHandler
//
//*****************************************************************************

//*****************************************************************************
//
// A counter that keeps track of the number of times the TX interrupt has
// occurred, which should match the number of TX messages that were sent.
//
//*****************************************************************************
volatile uint32_t g_ui32MsgCount = 0;

//*****************************************************************************
//
// A flag to indicate that some transmission error occurred.
//
//*****************************************************************************
volatile bool g_bErrFlag = 0;

//*****************************************************************************
//
// This function sets up UART0 to be used for a console to display information
// as the example is running.
//
//*****************************************************************************
void
InitConsole(void)
{
    //
    // Enable GPIO port A which is used for UART0 pins.
    // TODO: change this to whichever GPIO port you are using.
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

    //
    // Configure the pin muxing for UART0 functions on port A0 and A1.
    // This step is not necessary if your part does not support pin muxing.
    // TODO: change this to select the port/pin you are using.
    //
    GPIOPinConfigure(GPIO_PA0_U0RX);
    GPIOPinConfigure(GPIO_PA1_U0TX);

    //
    // Enable UART0 so that we can configure the clock.
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);

    //
    // Use the internal 16MHz oscillator as the UART clock source.
    //
    UARTClockSourceSet(UART0_BASE, UART_CLOCK_PIOSC);

    //
    // Select the alternate (UART) function for these pins.
    // TODO: change this to select the port/pin you are using.
    //
    GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    //
    // Initialize the UART for console I/O.
    //
    UARTStdioConfig(0, 115200, 16000000);
}

//*****************************************************************************
//
// This function provides a 1 second delay using a simple polling method.
//
//*****************************************************************************
void
SimpleDelay(void)
{
    //
    // Delay cycles for 1 second
    //
    SysCtlDelay(16000000 / 3);
}

//*****************************************************************************
//
// This function is the interrupt handler for the CAN peripheral.  It checks
// for the cause of the interrupt, and maintains a count of all messages that
// have been transmitted.
//
//*****************************************************************************
void
CANIntHandler(void)
{
    uint32_t ui32Status;

    //
    // Read the CAN interrupt status to find the cause of the interrupt
    //
    ui32Status = CANIntStatus(CAN0_BASE, CAN_INT_STS_CAUSE);

    //
    // If the cause is a controller status interrupt, then get the status
    //
    if(ui32Status == CAN_INT_INTID_STATUS)
    {
        //
        // Read the controller status.  This will return a field of status
        // error bits that can indicate various errors.  Error processing
        // is not done in this example for simplicity.  Refer to the
        // API documentation for details about the error status bits.
        // The act of reading this status will clear the interrupt.  If the
        // CAN peripheral is not connected to a CAN bus with other CAN devices
        // present, then errors will occur and will be indicated in the
        // controller status.
        //
        ui32Status = CANStatusGet(CAN0_BASE, CAN_STS_CONTROL);

        //
        // Set a flag to indicate some errors may have occurred.
        //
        g_bErrFlag = 1;
    }

    //
    // Check if the cause is message object 1, which what we are using for
    // sending messages.
    //
    else if(ui32Status == 1)
    {
        //
        // Getting to this point means that the TX interrupt occurred on
        // message object 1, and the message TX is complete.  Clear the
        // message object interrupt.
        //
        CANIntClear(CAN0_BASE, 1);

        //
        // Increment a counter to keep track of how many messages have been
        // sent.  In a real application this could be used to set flags to
        // indicate when a message is sent.
        //
        g_ui32MsgCount++;

        //
        // Since the message was sent, clear any error flags.
        //
        g_bErrFlag = 0;
    }

    //
    // Otherwise, something unexpected caused the interrupt.  This should
    // never happen.
    //
    else
    {
        //
        // Spurious interrupt handling can go here.
        //
    }
}

//*****************************************************************************
//
// Configure the CAN and enter a loop to transmit periodic CAN messages.
//
//*****************************************************************************
int
main(void)
{
#if defined(TARGET_IS_TM4C129_RA0) ||                                         \
    defined(TARGET_IS_TM4C129_RA1) ||                                         \
    defined(TARGET_IS_TM4C129_RA2)
    uint32_t ui32SysClock;
#endif

    tCANMsgObject sCANMessage;
    uint32_t ui32MsgData;
    uint8_t *pui8MsgData;

    pui8MsgData = (uint8_t *)&ui32MsgData;

    //
    // Set the clocking to run directly from the external crystal/oscillator.
    // TODO: The SYSCTL_XTAL_ value must be changed to match the value of the
    // crystal on your board.
    //
#if defined(TARGET_IS_TM4C129_RA0) ||                                         \
    defined(TARGET_IS_TM4C129_RA1) ||                                         \
    defined(TARGET_IS_TM4C129_RA2)
    ui32SysClock = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                       SYSCTL_OSC_MAIN |
                                       SYSCTL_USE_OSC)
                                       25000000);
#else
    SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN |
                   SYSCTL_XTAL_16MHZ);
#endif

    //
    // Set up the serial console to use for displaying messages.  This is
    // just for this example program and is not needed for CAN operation.
    //
    InitConsole();

    //
    // For this example CAN0 is used with RX and TX pins on port B4 and B5.
    // The actual port and pins used may be different on your part, consult
    // the data sheet for more information.
    // GPIO port B needs to be enabled so these pins can be used.
    // TODO: change this to whichever GPIO port you are using
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);

    //
    // Configure the GPIO pin muxing to select CAN0 functions for these pins.
    // This step selects which alternate function is available for these pins.
    // This is necessary if your part supports GPIO pin function muxing.
    // Consult the data sheet to see which functions are allocated per pin.
    // TODO: change this to select the port/pin you are using
    //
    GPIOPinConfigure(GPIO_PB4_CAN0RX);
    GPIOPinConfigure(GPIO_PB5_CAN0TX);

    //
    // Enable the alternate function on the GPIO pins.  The above step selects
    // which alternate function is available.  This step actually enables the
    // alternate function instead of GPIO for these pins.
    // TODO: change this to match the port/pin you are using
    //
    GPIOPinTypeCAN(GPIO_PORTB_BASE, GPIO_PIN_4 | GPIO_PIN_5);

    //
    // The GPIO port and pins have been set up for CAN.  The CAN peripheral
    // must be enabled.
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_CAN0);

    //
    // Initialize the CAN controller
    //
    CANInit(CAN0_BASE);

    //
    // Set up the bit rate for the CAN bus.  This function sets up the CAN
    // bus timing for a nominal configuration.  You can achieve more control
    // over the CAN bus timing by using the function CANBitTimingSet() instead
    // of this one, if needed.
    // In this example, the CAN bus is set to 500 kHz.  In the function below,
    // the call to SysCtlClockGet() or ui32SysClock is used to determine the 
    // clock rate that is used for clocking the CAN peripheral.  This can be 
    // replaced with a  fixed value if you know the value of the system clock, 
    // saving the extra function call.  For some parts, the CAN peripheral is 
    // clocked by a fixed 8 MHz regardless of the system clock in which case 
    // the call to SysCtlClockGet() or ui32SysClock should be replaced with 
    // 8000000.  Consult the data sheet for more information about CAN 
    // peripheral clocking.
    //
#if defined(TARGET_IS_TM4C129_RA0) ||                                         \
    defined(TARGET_IS_TM4C129_RA1) ||                                         \
    defined(TARGET_IS_TM4C129_RA2)
    CANBitRateSet(CAN0_BASE, ui32SysClock, 500000);
#else
    CANBitRateSet(CAN0_BASE, SysCtlClockGet(), 500000);
#endif

    //
    // Enable interrupts on the CAN peripheral.  This example uses static
    // allocation of interrupt handlers which means the name of the handler
    // is in the vector table of startup code.  If you want to use dynamic
    // allocation of the vector table, then you must also call CANIntRegister()
    // here.
    //
    // CANIntRegister(CAN0_BASE, CANIntHandler); // if using dynamic vectors
    //
    CANIntEnable(CAN0_BASE, CAN_INT_MASTER | CAN_INT_ERROR | CAN_INT_STATUS);

    //
    // Enable the CAN interrupt on the processor (NVIC).
    //
    IntEnable(INT_CAN0);

    //
    // Enable the CAN for operation.
    //
    CANEnable(CAN0_BASE);

    //
    // Initialize the message object that will be used for sending CAN
    // messages.  The message will be 4 bytes that will contain an incrementing
    // value.  Initially it will be set to 0.
    //
    ui32MsgData = 0;
    sCANMessage.ui32MsgID = 1;
    sCANMessage.ui32MsgIDMask = 0;
    sCANMessage.ui32Flags = MSG_OBJ_TX_INT_ENABLE;
    sCANMessage.ui32MsgLen = sizeof(pui8MsgData);
    sCANMessage.pui8MsgData = pui8MsgData;

    //
    // Enter loop to send messages.  A new message will be sent once per
    // second.  The 4 bytes of message content will be treated as an uint32_t
    // and incremented by one each time.
    //
    while(1)
    {
        //
        // Print a message to the console showing the message count and the
        // contents of the message being sent.
        //
        UARTprintf("Sending msg: 0x%02X %02X %02X %02X",
                   pui8MsgData[0], pui8MsgData[1], pui8MsgData[2],
                   pui8MsgData[3]);

        //
        // Send the CAN message using object number 1 (not the same thing as
        // CAN ID, which is also 1 in this example).  This function will cause
        // the message to be transmitted right away.
        //
        CANMessageSet(CAN0_BASE, 1, &sCANMessage, MSG_OBJ_TYPE_TX);

        //
        // Now wait 1 second before continuing
        //
        SimpleDelay();

        //
        // Check the error flag to see if errors occurred
        //
        if(g_bErrFlag)
        {
            UARTprintf(" error - cable connected?\n");
        }
        else
        {
            //
            // If no errors then print the count of message sent
            //
            UARTprintf(" total count = %u\n", g_ui32MsgCount);
        }

        //
        // Increment the value in the message data.
        //
        ui32MsgData++;
    }

    //
    // Return no errors
    //
    return(0);
}
//*****************************************************************************
//
// simple_tx.c - Example demonstrating simple CAN message transmission.
//
// Copyright (c) 2010-2015 Texas Instruments Incorporated.  All rights reserved.
// Software License Agreement
// 
//   Redistribution and use in source and binary forms, with or without
//   modification, are permitted provided that the following conditions
//   are met:
// 
//   Redistributions of source code must retain the above copyright
//   notice, this list of conditions and the following disclaimer.
// 
//   Redistributions in binary form must reproduce the above copyright
//   notice, this list of conditions and the following disclaimer in the
//   documentation and/or other materials provided with the  
//   distribution.
// 
//   Neither the name of Texas Instruments Incorporated nor the names of
//   its contributors may be used to endorse or promote products derived
//   from this software without specific prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// 
// This is part of revision 2.1.2.111 of the Tiva Firmware Development Package.
//
//*****************************************************************************

#include <stdbool.h>
#include <stdint.h>
#include "inc/hw_can.h"
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "driverlib/can.h"
#include "driverlib/gpio.h"
#include "driverlib/interrupt.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/uart.h"
#include "utils/uartstdio.h"

//*****************************************************************************
//
//! \addtogroup can_examples_list
//! <h1>Simple CAN TX (simple_tx)</h1>
//!
//! This example shows the basic setup of CAN in order to transmit messages
//! on the CAN bus.  The CAN peripheral is configured to transmit messages
//! with a specific CAN ID.  A message is then transmitted once per second,
//! using a simple delay loop for timing.  The message that is sent is a 4
//! byte message that contains an incrementing pattern.  A CAN interrupt
//! handler is used to confirm message transmission and count the number of
//! messages that have been sent.
//!
//! This example uses the following peripherals and I/O signals.  You must
//! review these and change as needed for your own board:
//! - CAN0 peripheral
//! - GPIO Port B peripheral (for CAN0 pins)
//! - CAN0RX - PB4
//! - CAN0TX - PB5
//!
//! The following UART signals are configured only for displaying console
//! messages for this example.  These are not required for operation of CAN.
//! - GPIO port A peripheral (for UART0 pins)
//! - UART0RX - PA0
//! - UART0TX - PA1
//!
//! This example uses the following interrupt handlers.  To use this example
//! in your own application you must add these interrupt handlers to your
//! vector table.
//! - INT_CAN0 - CANIntHandler
//
//*****************************************************************************

//*****************************************************************************
//
// A counter that keeps track of the number of times the TX interrupt has
// occurred, which should match the number of TX messages that were sent.
//
//*****************************************************************************
volatile uint32_t g_ui32MsgCount = 0;

//*****************************************************************************
//
// A flag to indicate that some transmission error occurred.
//
//*****************************************************************************
volatile bool g_bErrFlag = 0;

//*****************************************************************************
//
// This function sets up UART0 to be used for a console to display information
// as the example is running.
//
//*****************************************************************************
void
InitConsole(void)
{
    //
    // Enable GPIO port A which is used for UART0 pins.
    // TODO: change this to whichever GPIO port you are using.
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

    //
    // Configure the pin muxing for UART0 functions on port A0 and A1.
    // This step is not necessary if your part does not support pin muxing.
    // TODO: change this to select the port/pin you are using.
    //
    GPIOPinConfigure(GPIO_PA0_U0RX);
    GPIOPinConfigure(GPIO_PA1_U0TX);

    //
    // Enable UART0 so that we can configure the clock.
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);

    //
    // Use the internal 16MHz oscillator as the UART clock source.
    //
    UARTClockSourceSet(UART0_BASE, UART_CLOCK_PIOSC);

    //
    // Select the alternate (UART) function for these pins.
    // TODO: change this to select the port/pin you are using.
    //
    GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    //
    // Initialize the UART for console I/O.
    //
    UARTStdioConfig(0, 115200, 16000000);
}

//*****************************************************************************
//
// This function provides a 1 second delay using a simple polling method.
//
//*****************************************************************************
void
SimpleDelay(void)
{
    //
    // Delay cycles for 1 second
    //
    SysCtlDelay(16000000 / 3);
}

//*****************************************************************************
//
// This function is the interrupt handler for the CAN peripheral.  It checks
// for the cause of the interrupt, and maintains a count of all messages that
// have been transmitted.
//
//*****************************************************************************
void
CANIntHandler(void)
{
    uint32_t ui32Status;

    //
    // Read the CAN interrupt status to find the cause of the interrupt
    //
    ui32Status = CANIntStatus(CAN0_BASE, CAN_INT_STS_CAUSE);

    //
    // If the cause is a controller status interrupt, then get the status
    //
    if(ui32Status == CAN_INT_INTID_STATUS)
    {
        //
        // Read the controller status.  This will return a field of status
        // error bits that can indicate various errors.  Error processing
        // is not done in this example for simplicity.  Refer to the
        // API documentation for details about the error status bits.
        // The act of reading this status will clear the interrupt.  If the
        // CAN peripheral is not connected to a CAN bus with other CAN devices
        // present, then errors will occur and will be indicated in the
        // controller status.
        //
        ui32Status = CANStatusGet(CAN0_BASE, CAN_STS_CONTROL);

        //
        // Set a flag to indicate some errors may have occurred.
        //
        g_bErrFlag = 1;
    }

    //
    // Check if the cause is message object 1, which what we are using for
    // sending messages.
    //
    else if(ui32Status == 1)
    {
        //
        // Getting to this point means that the TX interrupt occurred on
        // message object 1, and the message TX is complete.  Clear the
        // message object interrupt.
        //
        CANIntClear(CAN0_BASE, 1);

        //
        // Increment a counter to keep track of how many messages have been
        // sent.  In a real application this could be used to set flags to
        // indicate when a message is sent.
        //
        g_ui32MsgCount++;

        //
        // Since the message was sent, clear any error flags.
        //
        g_bErrFlag = 0;
    }

    //
    // Otherwise, something unexpected caused the interrupt.  This should
    // never happen.
    //
    else
    {
        //
        // Spurious interrupt handling can go here.
        //
    }
}

//*****************************************************************************
//
// Configure the CAN and enter a loop to transmit periodic CAN messages.
//
//*****************************************************************************
int
main(void)
{
#if defined(TARGET_IS_TM4C129_RA0) ||                                         \
    defined(TARGET_IS_TM4C129_RA1) ||                                         \
    defined(TARGET_IS_TM4C129_RA2)
    uint32_t ui32SysClock;
#endif

    tCANMsgObject sCANMessage;
    uint32_t ui32MsgData;
    uint8_t *pui8MsgData;

    pui8MsgData = (uint8_t *)&ui32MsgData;

    //
    // Set the clocking to run directly from the external crystal/oscillator.
    // TODO: The SYSCTL_XTAL_ value must be changed to match the value of the
    // crystal on your board.
    //
#if defined(TARGET_IS_TM4C129_RA0) ||                                         \
    defined(TARGET_IS_TM4C129_RA1) ||                                         \
    defined(TARGET_IS_TM4C129_RA2)
    ui32SysClock = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                       SYSCTL_OSC_MAIN |
                                       SYSCTL_USE_OSC)
                                       25000000);
#else
    SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN |
                   SYSCTL_XTAL_16MHZ);
#endif

    //
    // Set up the serial console to use for displaying messages.  This is
    // just for this example program and is not needed for CAN operation.
    //
    InitConsole();

    //
    // For this example CAN0 is used with RX and TX pins on port B4 and B5.
    // The actual port and pins used may be different on your part, consult
    // the data sheet for more information.
    // GPIO port B needs to be enabled so these pins can be used.
    // TODO: change this to whichever GPIO port you are using
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);

    //
    // Configure the GPIO pin muxing to select CAN0 functions for these pins.
    // This step selects which alternate function is available for these pins.
    // This is necessary if your part supports GPIO pin function muxing.
    // Consult the data sheet to see which functions are allocated per pin.
    // TODO: change this to select the port/pin you are using
    //
    GPIOPinConfigure(GPIO_PB4_CAN0RX);
    GPIOPinConfigure(GPIO_PB5_CAN0TX);

    //
    // Enable the alternate function on the GPIO pins.  The above step selects
    // which alternate function is available.  This step actually enables the
    // alternate function instead of GPIO for these pins.
    // TODO: change this to match the port/pin you are using
    //
    GPIOPinTypeCAN(GPIO_PORTB_BASE, GPIO_PIN_4 | GPIO_PIN_5);

    //
    // The GPIO port and pins have been set up for CAN.  The CAN peripheral
    // must be enabled.
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_CAN0);

    //
    // Initialize the CAN controller
    //
    CANInit(CAN0_BASE);

    //
    // Set up the bit rate for the CAN bus.  This function sets up the CAN
    // bus timing for a nominal configuration.  You can achieve more control
    // over the CAN bus timing by using the function CANBitTimingSet() instead
    // of this one, if needed.
    // In this example, the CAN bus is set to 500 kHz.  In the function below,
    // the call to SysCtlClockGet() or ui32SysClock is used to determine the 
    // clock rate that is used for clocking the CAN peripheral.  This can be 
    // replaced with a  fixed value if you know the value of the system clock, 
    // saving the extra function call.  For some parts, the CAN peripheral is 
    // clocked by a fixed 8 MHz regardless of the system clock in which case 
    // the call to SysCtlClockGet() or ui32SysClock should be replaced with 
    // 8000000.  Consult the data sheet for more information about CAN 
    // peripheral clocking.
    //
#if defined(TARGET_IS_TM4C129_RA0) ||                                         \
    defined(TARGET_IS_TM4C129_RA1) ||                                         \
    defined(TARGET_IS_TM4C129_RA2)
    CANBitRateSet(CAN0_BASE, ui32SysClock, 500000);
#else
    CANBitRateSet(CAN0_BASE, SysCtlClockGet(), 500000);
#endif

    //
    // Enable interrupts on the CAN peripheral.  This example uses static
    // allocation of interrupt handlers which means the name of the handler
    // is in the vector table of startup code.  If you want to use dynamic
    // allocation of the vector table, then you must also call CANIntRegister()
    // here.
    //
    // CANIntRegister(CAN0_BASE, CANIntHandler); // if using dynamic vectors
    //
    CANIntEnable(CAN0_BASE, CAN_INT_MASTER | CAN_INT_ERROR | CAN_INT_STATUS);

    //
    // Enable the CAN interrupt on the processor (NVIC).
    //
    IntEnable(INT_CAN0);

    //
    // Enable the CAN for operation.
    //
    CANEnable(CAN0_BASE);

    //
    // Initialize the message object that will be used for sending CAN
    // messages.  The message will be 4 bytes that will contain an incrementing
    // value.  Initially it will be set to 0.
    //
    ui32MsgData = 0;
    sCANMessage.ui32MsgID = 1;
    sCANMessage.ui32MsgIDMask = 0;
    sCANMessage.ui32Flags = MSG_OBJ_TX_INT_ENABLE;
    sCANMessage.ui32MsgLen = sizeof(pui8MsgData);
    sCANMessage.pui8MsgData = pui8MsgData;

    //
    // Enter loop to send messages.  A new message will be sent once per
    // second.  The 4 bytes of message content will be treated as an uint32_t
    // and incremented by one each time.
    //
    while(1)
    {
        //
        // Print a message to the console showing the message count and the
        // contents of the message being sent.
        //
        UARTprintf("Sending msg: 0x%02X %02X %02X %02X",
                   pui8MsgData[0], pui8MsgData[1], pui8MsgData[2],
                   pui8MsgData[3]);

        //
        // Send the CAN message using object number 1 (not the same thing as
        // CAN ID, which is also 1 in this example).  This function will cause
        // the message to be transmitted right away.
        //
        CANMessageSet(CAN0_BASE, 1, &sCANMessage, MSG_OBJ_TYPE_TX);

        //
        // Now wait 1 second before continuing
        //
        SimpleDelay();

        //
        // Check the error flag to see if errors occurred
        //
        if(g_bErrFlag)
        {
            UARTprintf(" error - cable connected?\n");
        }
        else
        {
            //
            // If no errors then print the count of message sent
            //
            UARTprintf(" total count = %u\n", g_ui32MsgCount);
        }

        //
        // Increment the value in the message data.
        //
        ui32MsgData++;
    }

    //
    // Return no errors
    //
    return(0);
}

  • Hello Dhruvil,

    One of the earlier lines of the code is initialization of the pointer to the address

    pui8MsgData = (uint8_t *)&ui32MsgData;

    The while loop increments the variable ui32MsgData
  • Helllo Amit sir,
    Thanks for replying sir.
    Yes i understood that the pointer is initialized to take message data.
    But my question is that , like in C language we use 'scanf()' or 'gets()' to accept input from user.And at the time of execution of code computer will ask user to enter data through external hardware. Now in our case how can i enter my input message which i want to transmit through board? Where should i enter my data which i want to transmit and when it should be entered ,whether at the time of debugging or before it?
  • Hello Dhanvil,

    I hope you understand where CAN is used. CAN is an automotive and industrial protocol meant for diagnostic and communication of machines & not data exchanges as you may be suggesting using printf and scanf statements.

    So I would ask a question: what is the intent of using CAN in your project?
  • Hello Amit sir,

    We are trying to setup a communication between two TM4C1294NCPDT launchpad using CAN bus protocol.
    In our project it is required to make communication between different PCB cards. So our project guide suggested us to use CAN protocol.
  • You have to have UART interface with PC and one of your boards. You may communicate with your board via one of terminal program like Hercules, Putty etc. You can send message for transmitting via can-bus or receive message transmitted.
  • yes , we are using UART interface and TeraTerm terminal to communicate PC with board.
    We have successfully compiled UART example code of printing 'hello !" on teraTerm . And in CAN program also we are using UART interface between two boards. But in TeraTerm we cannot send message using CAN example program.
  • You may point uart received message as can transmit message.. Set a UART_RX flag when you received succesfully. When UART_Rx set trig Can Message Set and send message via Can
  • Hello, I am working with Dhruvil and we have done exactly the same of what you just said. But we are not sure what should we do after loading the Rx & Tx codes on the launchpads. We are using example codes of simple Rx and Tx that also includes UART along with CAN protocol. We type a message in the console on the Tx side, but nothing appears in the console on the Rx side. What should we do?
  • Hello Kunal

    If the issue is the same as the other post you have started, then the basic issue of Tx and Rx not working needs to be resolved. I have already asked for data from you and provided some updates on a bug in the can.c that you would need to correct if using TivaWare 2.1.3.156 release.
  • When I was trying CANBUS peripheral first I miss the physical condition of circuit. Did you measure CANBUS line empedance ? It has to be 60 Ohms. It will not work while your code is working. If your empedance is 60 Ohms than answer Amit's question.
    Good Luck