Other Parts Discussed in Thread: EK-TM4C123GXL
Tool/software: Code Composer Studio
I have an issue with CAN Bus connection
TX
#include <stdbool.h> #include <stdint.h> #include "inc/hw_can.h" #include "inc/hw_ints.h" #include "inc/hw_memmap.h" #include "inc/hw_types.h" #include "driverlib/can.h" #include "driverlib/gpio.h" #include "driverlib/interrupt.h" #include "driverlib/pin_map.h" #include "driverlib/sysctl.h" #include "driverlib/uart.h" #include "utils/uartstdio.h" #include "utils/uartstdio.c" //***************************************************************************** // // simple_tx.c - Example demonstrating simple CAN message transmission. // // Copyright (c) 2010-2017 Texas Instruments Incorporated. All rights reserved. // Software License Agreement // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // Neither the name of Texas Instruments Incorporated nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // This is part of revision 2.1.4.178 of the Tiva Firmware Development Package. // //***************************************************************************** //***************************************************************************** // //! \addtogroup can_examples_list //! <h1>Simple CAN TX (simple_tx)</h1> //! //! This example shows the basic setup of CAN in order to transmit messages //! on the CAN bus. The CAN peripheral is configured to transmit messages //! with a specific CAN ID. A message is then transmitted once per second, //! using a simple delay loop for timing. The message that is sent is a 4 //! byte message that contains an incrementing pattern. A CAN interrupt //! handler is used to confirm message transmission and count the number of //! messages that have been sent. //! //! This example uses the following peripherals and I/O signals. You must //! review these and change as needed for your own board: //! - CAN0 peripheral //! - GPIO Port B peripheral (for CAN0 pins) //! - CAN0RX - PB4 //! - CAN0TX - PB5 //! //! The following UART signals are configured only for displaying console //! messages for this example. These are not required for operation of CAN. //! - GPIO port A peripheral (for UART0 pins) //! - UART0RX - PA0 //! - UART0TX - PA1 //! //! This example uses the following interrupt handlers. To use this example //! in your own application you must add these interrupt handlers to your //! vector table. //! - INT_CAN0 - CANIntHandler // //***************************************************************************** //***************************************************************************** // // A counter that keeps track of the number of times the TX interrupt has // occurred, which should match the number of TX messages that were sent. // //***************************************************************************** volatile uint32_t g_ui32MsgCount = 0; //***************************************************************************** // // A flag to indicate that some transmission error occurred. // //***************************************************************************** volatile bool g_bErrFlag = 0; //***************************************************************************** // // This function sets up UART0 to be used for a console to display information // as the example is running. // //***************************************************************************** void InitConsole(void) { // // Enable GPIO port A which is used for UART0 pins. // TODO: change this to whichever GPIO port you are using. // SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA); // // Configure the pin muxing for UART0 functions on port A0 and A1. // This step is not necessary if your part does not support pin muxing. // TODO: change this to select the port/pin you are using. // GPIOPinConfigure(GPIO_PA0_U0RX); GPIOPinConfigure(GPIO_PA1_U0TX); // // Enable UART0 so that we can configure the clock. // SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0); // // Use the internal 16MHz oscillator as the UART clock source. // UARTClockSourceSet(UART0_BASE, UART_CLOCK_PIOSC); // // Select the alternate (UART) function for these pins. // TODO: change this to select the port/pin you are using. // GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1); // // Initialize the UART for console I/O. // UARTStdioConfig(0, 115200, 16000000); } //***************************************************************************** // // This function provides a 1 second delay using a simple polling method. // //***************************************************************************** void SimpleDelay(void) { // // Delay cycles for 1 second // SysCtlDelay(16000000 / 3); } //***************************************************************************** // // This function is the interrupt handler for the CAN peripheral. It checks // for the cause of the interrupt, and maintains a count of all messages that // have been transmitted. // //***************************************************************************** void CANIntHandler(void) { uint32_t ui32Status; // // Read the CAN interrupt status to find the cause of the interrupt // ui32Status = CANIntStatus(CAN0_BASE, CAN_INT_STS_CAUSE); // // If the cause is a controller status interrupt, then get the status // if(ui32Status == CAN_INT_INTID_STATUS) { // // Read the controller status. This will return a field of status // error bits that can indicate various errors. Error processing // is not done in this example for simplicity. Refer to the // API documentation for details about the error status bits. // The act of reading this status will clear the interrupt. If the // CAN peripheral is not connected to a CAN bus with other CAN devices // present, then errors will occur and will be indicated in the // controller status. // ui32Status = CANStatusGet(CAN0_BASE, CAN_STS_CONTROL); // // Set a flag to indicate some errors may have occurred. // g_bErrFlag = 1; } // // Check if the cause is message object 1, which what we are using for // sending messages. // else if(ui32Status == 1) { // // Getting to this point means that the TX interrupt occurred on // message object 1, and the message TX is complete. Clear the // message object interrupt. // CANIntClear(CAN0_BASE, 1); // // Increment a counter to keep track of how many messages have been // sent. In a real application this could be used to set flags to // indicate when a message is sent. // g_ui32MsgCount++; // // Since the message was sent, clear any error flags. // g_bErrFlag = 0; } // // Otherwise, something unexpected caused the interrupt. This should // never happen. // else { // // Spurious interrupt handling can go here. // } } //***************************************************************************** // // Configure the CAN and enter a loop to transmit periodic CAN messages. // //***************************************************************************** int main(void) { #if defined(TARGET_IS_TM4C129_RA0) || \ defined(TARGET_IS_TM4C129_RA1) || \ defined(TARGET_IS_TM4C129_RA2) uint32_t ui32SysClock; #endif tCANMsgObject sCANMessage; uint32_t ui32MsgData; uint8_t *pui8MsgData; pui8MsgData = (uint8_t *)&ui32MsgData; // // Set the clocking to run directly from the external crystal/oscillator. // TODO: The SYSCTL_XTAL_ value must be changed to match the value of the // crystal on your board. // #if defined(TARGET_IS_TM4C129_RA0) || \ defined(TARGET_IS_TM4C129_RA1) || \ defined(TARGET_IS_TM4C129_RA2) ui32SysClock = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | SYSCTL_OSC_MAIN | SYSCTL_USE_OSC) 25000000); #else SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ | SYSCTL_OSC_MAIN); #endif // // Set up the serial console to use for displaying messages. This is // just for this example program and is not needed for CAN operation. // InitConsole(); // // For this example CAN0 is used with RX and TX pins on port B4 and B5. // The actual port and pins used may be different on your part, consult // the data sheet for more information. // GPIO port B needs to be enabled so these pins can be used. // TODO: change this to whichever GPIO port you are using // SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB); // // Configure the GPIO pin muxing to select CAN0 functions for these pins. // This step selects which alternate function is available for these pins. // This is necessary if your part supports GPIO pin function muxing. // Consult the data sheet to see which functions are allocated per pin. // TODO: change this to select the port/pin you are using // GPIOPinConfigure(GPIO_PB4_CAN0RX); GPIOPinConfigure(GPIO_PB5_CAN0TX); // // Enable the alternate function on the GPIO pins. The above step selects // which alternate function is available. This step actually enables the // alternate function instead of GPIO for these pins. // TODO: change this to match the port/pin you are using // GPIOPinTypeCAN(GPIO_PORTB_BASE, GPIO_PIN_4 | GPIO_PIN_5); // // The GPIO port and pins have been set up for CAN. The CAN peripheral // must be enabled. // SysCtlPeripheralEnable(SYSCTL_PERIPH_CAN0); // // Initialize the CAN controller // CANInit(CAN0_BASE); // // Set up the bit rate for the CAN bus. This function sets up the CAN // bus timing for a nominal configuration. You can achieve more control // over the CAN bus timing by using the function CANBitTimingSet() instead // of this one, if needed. // In this example, the CAN bus is set to 500 kHz. In the function below, // the call to SysCtlClockGet() or ui32SysClock is used to determine the // clock rate that is used for clocking the CAN peripheral. This can be // replaced with a fixed value if you know the value of the system clock, // saving the extra function call. For some parts, the CAN peripheral is // clocked by a fixed 8 MHz regardless of the system clock in which case // the call to SysCtlClockGet() or ui32SysClock should be replaced with // 8000000. Consult the data sheet for more information about CAN // peripheral clocking. // #if defined(TARGET_IS_TM4C129_RA0) || \ defined(TARGET_IS_TM4C129_RA1) || \ defined(TARGET_IS_TM4C129_RA2) CANBitRateSet(CAN0_BASE, ui32SysClock, 500000); #else CANBitRateSet(CAN0_BASE, SysCtlClockGet(), 500000); #endif // // Enable interrupts on the CAN peripheral. This example uses static // allocation of interrupt handlers which means the name of the handler // is in the vector table of startup code. If you want to use dynamic // allocation of the vector table, then you must also call CANIntRegister() // here. // // CANIntRegister(CAN0_BASE, CANIntHandler); // if using dynamic vectors // CANIntEnable(CAN0_BASE, CAN_INT_MASTER | CAN_INT_ERROR | CAN_INT_STATUS); // // Enable the CAN interrupt on the processor (NVIC). // IntEnable(INT_CAN0); // // Enable the CAN for operation. // CANEnable(CAN0_BASE); // // Initialize the message object that will be used for sending CAN // messages. The message will be 4 bytes that will contain an incrementing // value. Initially it will be set to 0. // ui32MsgData = 0; sCANMessage.ui32MsgID = 1; sCANMessage.ui32MsgIDMask = 0; sCANMessage.ui32Flags = MSG_OBJ_TX_INT_ENABLE; sCANMessage.ui32MsgLen = sizeof(pui8MsgData); sCANMessage.pui8MsgData = pui8MsgData; // // Enter loop to send messages. A new message will be sent once per // second. The 4 bytes of message content will be treated as an uint32_t // and incremented by one each time. // while(1) { // // Print a message to the console showing the message count and the // contents of the message being sent. // UARTprintf("Sending msg: 0x%02X %02X %02X %02X", pui8MsgData[0], pui8MsgData[1], pui8MsgData[2], pui8MsgData[3]); // // Send the CAN message using object number 1 (not the same thing as // CAN ID, which is also 1 in this example). This function will cause // the message to be transmitted right away. // CANMessageSet(CAN0_BASE, 1, &sCANMessage, MSG_OBJ_TYPE_TX); // // Now wait 1 second before continuing // SimpleDelay(); // // Check the error flag to see if errors occurred // if(g_bErrFlag) { UARTprintf(" error - cable connected?\n"); } else { // // If no errors then print the count of message sent // UARTprintf(" total count = %u\n", g_ui32MsgCount); } // // Increment the value in the message data. // ui32MsgData++; } // // Return no errors // return(0); }
//*****************************************************************************
//
// simple_rx.c - Example demonstrating simple CAN message reception.
//
// Copyright (c) 2010-2017 Texas Instruments Incorporated. All rights reserved.
// Software License Agreement
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// Neither the name of Texas Instruments Incorporated nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// This is part of revision 2.1.4.178 of the Tiva Firmware Development Package.
//
//*****************************************************************************
#include <stdbool.h>
#include <stdint.h>
#include "inc/hw_can.h"
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/can.h"
#include "driverlib/gpio.h"
#include "driverlib/interrupt.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/uart.h"
#include "utils/uartstdio.h"
#include "utils/uartstdio.c"
//*****************************************************************************
//
//! \addtogroup can_examples_list
//! <h1>Simple CAN RX (simple_rx)</h1>
//!
//! This example shows the basic setup of CAN in order to receive messages
//! from the CAN bus. The CAN peripheral is configured to receive messages
//! with any CAN ID and then print the message contents to the console.
//!
//! This example uses the following peripherals and I/O signals. You must
//! review these and change as needed for your own board:
//! - CAN0 peripheral
//! - GPIO port B peripheral (for CAN0 pins)
//! - CAN0RX - PB4
//! - CAN0TX - PB5
//!
//! The following UART signals are configured only for displaying console
//! messages for this example. These are not required for operation of CAN.
//! - GPIO port A peripheral (for UART0 pins)
//! - UART0RX - PA0
//! - UART0TX - PA1
//!
//! This example uses the following interrupt handlers. To use this example
//! in your own application you must add these interrupt handlers to your
//! vector table.
//! - INT_CAN0 - CANIntHandler
//
//*****************************************************************************
//*****************************************************************************
//
// A counter that keeps track of the number of times the RX interrupt has
// occurred, which should match the number of messages that were received.
//
//*****************************************************************************
volatile uint32_t g_ui32MsgCount = 0;
//*****************************************************************************
//
// A flag for the interrupt handler to indicate that a message was received.
//
//*****************************************************************************
volatile bool g_bRXFlag = 0;
//*****************************************************************************
//
// A flag to indicate that some reception error occurred.
//
//*****************************************************************************
volatile bool g_bErrFlag = 0;
//*****************************************************************************
//
// This function sets up UART0 to be used for a console to display information
// as the example is running.
//
//*****************************************************************************
void
InitConsole(void)
{
//
// Enable GPIO port A which is used for UART0 pins.
// TODO: change this to whichever GPIO port you are using.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
//
// Configure the pin muxing for UART0 functions on port A0 and A1.
// This step is not necessary if your part does not support pin muxing.
// TODO: change this to select the port/pin you are using.
//
GPIOPinConfigure(GPIO_PA0_U0RX);
GPIOPinConfigure(GPIO_PA1_U0TX);
//
// Enable UART0 so that we can configure the clock.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
//
// Use the internal 16MHz oscillator as the UART clock source.
//
UARTClockSourceSet(UART0_BASE, UART_CLOCK_PIOSC);
//
// Select the alternate (UART) function for these pins.
// TODO: change this to select the port/pin you are using.
//
GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);
//
// Initialize the UART for console I/O.
//
UARTStdioConfig(0, 115200, 16000000);
}
//*****************************************************************************
//
// This function is the interrupt handler for the CAN peripheral. It checks
// for the cause of the interrupt, and maintains a count of all messages that
// have been received.
//
//*****************************************************************************
void hardware_init(void)
{
//Set CPU Clock to 40MHz. 400MHz PLL/2 = 200 DIV 5 = 40MHz
SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);
// ADD Tiva-C GPIO setup - enables port, sets pins 1-3 (RGB) pins for output
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);
// Turn on the LED
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 4);
}
void
CANIntHandler(void)
{
hardware_init();
uint32_t ui32Status;
//
// Read the CAN interrupt status to find the cause of the interrupt
//
ui32Status = CANIntStatus(CAN0_BASE, CAN_INT_STS_CAUSE);
//
// If the cause is a controller status interrupt, then get the status
//
if(ui32Status == CAN_INT_INTID_STATUS)
{
//
// Read the controller status. This will return a field of status
// error bits that can indicate various errors. Error processing
// is not done in this example for simplicity. Refer to the
// API documentation for details about the error status bits.
// The act of reading this status will clear the interrupt.
//
//hardware_init();
ui32Status = CANStatusGet(CAN0_BASE, CAN_STS_CONTROL);
//
// Set a flag to indicate some errors may have occurred.
//
g_bErrFlag = 1;
}
//
// Check if the cause is message object 1, which what we are using for
// receiving messages.
//
else if(ui32Status == 1)
{
//
// Getting to this point means that the RX interrupt occurred on
// message object 1, and the message reception is complete. Clear the
// message object interrupt.
//
CANIntClear(CAN0_BASE, 1);
//
// Increment a counter to keep track of how many messages have been
// received. In a real application this could be used to set flags to
// indicate when a message is received.
//
g_ui32MsgCount++;
//
// Set flag to indicate received message is pending.
//
g_bRXFlag = 1;
//
// Since a message was received, clear any error flags.
//
g_bErrFlag = 0;
}
//
// Otherwise, something unexpected caused the interrupt. This should
// never happen.
//
else
{
//
// hardware_init(); // Spurious interrupt handling can go here.
//
}
}
//*****************************************************************************
//
// Configure the CAN and enter a loop to receive CAN messages.
//
//*****************************************************************************
int
main(void)
{
#if defined(TARGET_IS_TM4C129_RA0) || \
defined(TARGET_IS_TM4C129_RA1) || \
defined(TARGET_IS_TM4C129_RA2)
uint32_t ui32SysClock;
#endif
tCANMsgObject sCANMessage;
uint8_t pui8MsgData[8];
//
// Set the clocking to run directly from the external crystal/oscillator.
// TODO: The SYSCTL_XTAL_ value must be changed to match the value of the
// crystal used on your board.
//
#if defined(TARGET_IS_TM4C129_RA0) || \
defined(TARGET_IS_TM4C129_RA1) || \
defined(TARGET_IS_TM4C129_RA2)
ui32SysClock = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
SYSCTL_OSC_MAIN |
SYSCTL_USE_OSC)
25000000);
#else
SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ | SYSCTL_OSC_MAIN);
#endif
//
// Set up the serial console to use for displaying messages. This is
// just for this example program and is not needed for CAN operation.
//
InitConsole();
//
// For this example CAN0 is used with RX and TX pins on port B4 and B5.
// The actual port and pins used may be different on your part, consult
// the data sheet for more information.
// GPIO port B needs to be enabled so these pins can be used.
// TODO: change this to whichever GPIO port you are using
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
// SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);
//
// Configure the GPIO pin muxing to select CAN0 functions for these pins.
// This step selects which alternate function is available for these pins.
// This is necessary if your part supports GPIO pin function muxing.
// Consult the data sheet to see which functions are allocated per pin.
// TODO: change this to select the port/pin you are using
//
GPIOPinConfigure(GPIO_PB4_CAN0RX);
GPIOPinConfigure(GPIO_PB5_CAN0TX);
//GPIOPinConfigure(GPIO_PE4_CAN0RX);
//GPIOPinConfigure(GPIO_PE5_CAN0TX);
//
// Enable the alternate function on the GPIO pins. The above step selects
// which alternate function is available. This step actually enables the
// alternate function instead of GPIO for these pins.
// TODO: change this to match the port/pin you are using
//
GPIOPinTypeCAN(GPIO_PORTB_BASE, GPIO_PIN_4 | GPIO_PIN_5);
//
// The GPIO port and pins have been set up for CAN. The CAN peripheral
// must be enabled.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_CAN0);
//
// Initialize the CAN controller
//
CANInit(CAN0_BASE);
//
// Set up the bit rate for the CAN bus. This function sets up the CAN
// bus timing for a nominal configuration. You can achieve more control
// over the CAN bus timing by using the function CANBitTimingSet() instead
// of this one, if needed.
// In this example, the CAN bus is set to 500 kHz. In the function below,
// the call to SysCtlClockGet() or ui32SysClock is used to determine the
// clock rate that is used for clocking the CAN peripheral. This can be
// replaced with a fixed value if you know the value of the system clock,
// saving the extra function call. For some parts, the CAN peripheral is
// clocked by a fixed 8 MHz regardless of the system clock in which case
// the call to SysCtlClockGet() or ui32SysClock should be replaced with
// 8000000. Consult the data sheet for more information about CAN
// peripheral clocking.
//
#if defined(TARGET_IS_TM4C129_RA0) || \
defined(TARGET_IS_TM4C129_RA1) || \
defined(TARGET_IS_TM4C129_RA2)
CANBitRateSet(CAN0_BASE, ui32SysClock, 500000);
#else
CANBitRateSet(CAN0_BASE, SysCtlClockGet(), 500000);
#endif
//
// Enable interrupts on the CAN peripheral. This example uses static
// allocation of interrupt handlers which means the name of the handler
// is in the vector table of startup code. If you want to use dynamic
// allocation of the vector table, then you must also call CANIntRegister()
// here.
//
// CANIntRegister(CAN0_BASE, CANIntHandler); // if using dynamic vectors
//
CANIntEnable(CAN0_BASE, CAN_INT_MASTER | CAN_INT_ERROR | CAN_INT_STATUS);
//
// Enable the CAN interrupt on the processor (NVIC).
//
IntEnable(INT_CAN0);
//hardware_init();
//
// Enable the CAN for operation.
//
CANEnable(CAN0_BASE);
//
// Initialize a message object to be used for receiving CAN messages with
// any CAN ID. In order to receive any CAN ID, the ID and mask must both
// be set to 0, and the ID filter enabled.
//
sCANMessage.ui32MsgID = 0;
sCANMessage.ui32MsgIDMask = 0;
sCANMessage.ui32Flags = MSG_OBJ_RX_INT_ENABLE | MSG_OBJ_USE_ID_FILTER;
//sCANMessage.ui32Flags = MSG_OBJ_RX_INT_ENABLE ;
sCANMessage.ui32MsgLen = 8;
//
// Now load the message object into the CAN peripheral. Once loaded the
// CAN will receive any message on the bus, and an interrupt will occur.
// Use message object 1 for receiving messages (this is not the same as
// the CAN ID which can be any value in this example).
//
CANMessageSet(CAN0_BASE, 1, &sCANMessage, MSG_OBJ_TYPE_RX);
//hardware_init();
//
// Enter loop to process received messages. This loop just checks a flag
// that is set by the interrupt handler, and if set it reads out the
// message and displays the contents. This is not a robust method for
// processing incoming CAN data and can only handle one messages at a time.
// If many messages are being received close together, then some messages
// may be dropped. In a real application, some other method should be used
// for queuing received messages in a way to ensure they are not lost. You
// can also make use of CAN FIFO mode which will allow messages to be
// buffered before they are processed.
//
for(;;)
{
unsigned int uIdx;
//
// If the flag is set, that means that the RX interrupt occurred and
// there is a message ready to be read from the CAN
//
//hardware_init();
if(g_bRXFlag)
{
//
// Reuse the same message object that was used earlier to configure
// the CAN for receiving messages. A buffer for storing the
// received data must also be provided, so set the buffer pointer
// within the message object.
//
sCANMessage.pui8MsgData = pui8MsgData;
//
// Read the message from the CAN. Message object number 1 is used
// (which is not the same thing as CAN ID). The interrupt clearing
// flag is not set because this interrupt was already cleared in
// the interrupt handler.
//
CANMessageGet(CAN0_BASE, 1, &sCANMessage, 0);
//
// Clear the pending message flag so that the interrupt handler can
// set it again when the next message arrives.
//
g_bRXFlag = 0;
//
// Check to see if there is an indication that some messages were
// lost.
//
if(sCANMessage.ui32Flags & MSG_OBJ_DATA_LOST)
{
UARTprintf("CAN message loss detected\n");
}
//
// Print out the contents of the message that was received.
//
UARTprintf("Msg ID=0x%08X len=%u data=0x",
sCANMessage.ui32MsgID, sCANMessage.ui32MsgLen);
for(uIdx = 0; uIdx < sCANMessage.ui32MsgLen; uIdx++)
{
UARTprintf("%02X ", pui8MsgData[uIdx]);
}
UARTprintf("total count=%u\n", g_ui32MsgCount);
}
}
//
// Return no errors
//
return(0);
}
Putty output :![]()