This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

CCS/TM4C123GH6PM: CAN0 Interrupt enable TI-RTOS

Part Number: TM4C123GH6PM

Tool/software: Code Composer Studio

I want to use this program in TI-RTOS....The problem is how to set the interrupt handle to enter the needed function when the data is available on the bus.I tried to read the kernel documentation but I didn't figure out much about that , also I need this in very short time so I can't any longer...Can anyone help me by a code to add the CANIntHandler() to be used by the hw handler in TI-RTOS?

//*****************************************************************************
//
// simple_rx.c - Example demonstrating simple CAN message reception.
//
// Copyright (c) 2010-2017 Texas Instruments Incorporated.  All rights reserved.
// Software License Agreement
//
//   Redistribution and use in source and binary forms, with or without
//   modification, are permitted provided that the following conditions
//   are met:
//
//   Redistributions of source code must retain the above copyright
//   notice, this list of conditions and the following disclaimer.
//
//   Redistributions in binary form must reproduce the above copyright
//   notice, this list of conditions and the following disclaimer in the
//   documentation and/or other materials provided with the
//   distribution.
//
//   Neither the name of Texas Instruments Incorporated nor the names of
//   its contributors may be used to endorse or promote products derived
//   from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// This is part of revision 2.1.4.178 of the Tiva Firmware Development Package.
//
//*****************************************************************************

#include <stdbool.h>
#include <stdint.h>
#include "inc/hw_can.h"
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/can.h"
#include "driverlib/gpio.h"
#include "driverlib/interrupt.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/uart.h"
#include "utils/uartstdio.h"
#include "utils/uartstdio.c"

//*****************************************************************************
//
//! \addtogroup can_examples_list
//! <h1>Simple CAN RX (simple_rx)</h1>
//!
//! This example shows the basic setup of CAN in order to receive messages
//! from the CAN bus.  The CAN peripheral is configured to receive messages
//! with any CAN ID and then print the message contents to the console.
//!
//! This example uses the following peripherals and I/O signals.  You must
//! review these and change as needed for your own board:
//! - CAN0 peripheral
//! - GPIO port B peripheral (for CAN0 pins)
//! - CAN0RX - PB4
//! - CAN0TX - PB5
//!
//! The following UART signals are configured only for displaying console
//! messages for this example.  These are not required for operation of CAN.
//! - GPIO port A peripheral (for UART0 pins)
//! - UART0RX - PA0
//! - UART0TX - PA1
//!
//! This example uses the following interrupt handlers.  To use this example
//! in your own application you must add these interrupt handlers to your
//! vector table.
//! - INT_CAN0 - CANIntHandler
//
//*****************************************************************************

//*****************************************************************************
//
// A counter that keeps track of the number of times the RX interrupt has
// occurred, which should match the number of messages that were received.
//
//*****************************************************************************
volatile uint32_t g_ui32MsgCount = 0;

//*****************************************************************************
//
// A flag for the interrupt handler to indicate that a message was received.
//
//*****************************************************************************
volatile bool g_bRXFlag = 0;

//*****************************************************************************
//
// A flag to indicate that some reception error occurred.
//
//*****************************************************************************
volatile bool g_bErrFlag = 0;

//*****************************************************************************
//
// This function sets up UART0 to be used for a console to display information
// as the example is running.
//
//*****************************************************************************
void
InitConsole(void)
{
    //
    // Enable GPIO port A which is used for UART0 pins.
    // TODO: change this to whichever GPIO port you are using.
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

    //
    // Configure the pin muxing for UART0 functions on port A0 and A1.
    // This step is not necessary if your part does not support pin muxing.
    // TODO: change this to select the port/pin you are using.
    //
    GPIOPinConfigure(GPIO_PA0_U0RX);
    GPIOPinConfigure(GPIO_PA1_U0TX);

    //
    // Enable UART0 so that we can configure the clock.
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);

    //
    // Use the internal 16MHz oscillator as the UART clock source.
    //
    UARTClockSourceSet(UART0_BASE, UART_CLOCK_PIOSC);

    //
    // Select the alternate (UART) function for these pins.
    // TODO: change this to select the port/pin you are using.
    //
    GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    //
    // Initialize the UART for console I/O.
    //
    UARTStdioConfig(0, 115200, 16000000);
}

//*****************************************************************************
//
// This function is the interrupt handler for the CAN peripheral.  It checks
// for the cause of the interrupt, and maintains a count of all messages that
// have been received.
//
//*****************************************************************************
void hardware_init(void)
{
    //Set CPU Clock to 40MHz. 400MHz PLL/2 = 200 DIV 5 = 40MHz
//    SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

    // ADD Tiva-C GPIO setup - enables port, sets pins 1-3 (RGB) pins for output
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
    GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);

    // Turn on the LED
    GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 4);

}

void
CANIntHandler(void)
{

  hardware_init();
    uint32_t ui32Status;

    //
    // Read the CAN interrupt status to find the cause of the interrupt
    //
    ui32Status = CANIntStatus(CAN0_BASE, CAN_INT_STS_CAUSE);

    //
    // If the cause is a controller status interrupt, then get the status
    //
    if(ui32Status == CAN_INT_INTID_STATUS)
    {
        //
        // Read the controller status.  This will return a field of status
        // error bits that can indicate various errors.  Error processing
        // is not done in this example for simplicity.  Refer to the
        // API documentation for details about the error status bits.
        // The act of reading this status will clear the interrupt.
        //
        //hardware_init();
        ui32Status = CANStatusGet(CAN0_BASE, CAN_STS_CONTROL);

        //
        // Set a flag to indicate some errors may have occurred.
        //
        g_bErrFlag = 1;
    }

    //
    // Check if the cause is message object 1, which what we are using for
    // receiving messages.
    //
    else if(ui32Status == 1)
    {
        //
        // Getting to this point means that the RX interrupt occurred on
        // message object 1, and the message reception is complete.  Clear the
        // message object interrupt.
        //
        CANIntClear(CAN0_BASE, 1);

        //
        // Increment a counter to keep track of how many messages have been
        // received.  In a real application this could be used to set flags to
        // indicate when a message is received.
        //
        g_ui32MsgCount++;

        //
        // Set flag to indicate received message is pending.
        //
        g_bRXFlag = 1;

        //
        // Since a message was received, clear any error flags.
        //
        g_bErrFlag = 0;
    }

    //
    // Otherwise, something unexpected caused the interrupt.  This should
    // never happen.
    //
    else
    {
        //
                 //  hardware_init();        // Spurious interrupt handling can go here.
        //
    }
}

//*****************************************************************************
//
// Configure the CAN and enter a loop to receive CAN messages.
//
//*****************************************************************************
int
main(void)

{
#if defined(TARGET_IS_TM4C129_RA0) ||                                         \
    defined(TARGET_IS_TM4C129_RA1) ||                                         \
    defined(TARGET_IS_TM4C129_RA2)
    uint32_t ui32SysClock;
#endif

    tCANMsgObject sCANMessage;
    uint8_t pui8MsgData[8];

    //
    // Set the clocking to run directly from the external crystal/oscillator.
    // TODO: The SYSCTL_XTAL_ value must be changed to match the value of the
    // crystal used on your board.
    //
#if defined(TARGET_IS_TM4C129_RA0) ||                                         \
    defined(TARGET_IS_TM4C129_RA1) ||                                         \
    defined(TARGET_IS_TM4C129_RA2)
    ui32SysClock = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                       SYSCTL_OSC_MAIN |
                                       SYSCTL_USE_OSC)
                                       25000000);
#else
    ////SysCtlClockSet(SYSCTL_SYSDIV_2_5 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ | SYSCTL_OSC_MAIN);




#endif

    //
    // Set up the serial console to use for displaying messages.  This is
    // just for this example program and is not needed for CAN operation.
    //
    InitConsole();

    //
    // For this example CAN0 is used with RX and TX pins on port B4 and B5.
    // The actual port and pins used may be different on your part, consult
    // the data sheet for more information.
    // GPIO port B needs to be enabled so these pins can be used.
    // TODO: change this to whichever GPIO port you are using
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);
//    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);

    //
    // Configure the GPIO pin muxing to select CAN0 functions for these pins.
    // This step selects which alternate function is available for these pins.
    // This is necessary if your part supports GPIO pin function muxing.
    // Consult the data sheet to see which functions are allocated per pin.
    // TODO: change this to select the port/pin you are using
    //
    GPIOPinConfigure(GPIO_PE4_CAN0RX);
    GPIOPinConfigure(GPIO_PE5_CAN0TX);
    //GPIOPinConfigure(GPIO_PE4_CAN0RX);
    //GPIOPinConfigure(GPIO_PE5_CAN0TX);

    //
    // Enable the alternate function on the GPIO pins.  The above step selects
    // which alternate function is available.  This step actually enables the
    // alternate function instead of GPIO for these pins.
    // TODO: change this to match the port/pin you are using
    //
    GPIOPinTypeCAN(GPIO_PORTE_BASE, GPIO_PIN_4 | GPIO_PIN_5);

    //
    // The GPIO port and pins have been set up for CAN.  The CAN peripheral
    // must be enabled.
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_CAN0);

    //
    // Initialize the CAN controller
    //
    CANInit(CAN0_BASE);

    //
    // Set up the bit rate for the CAN bus.  This function sets up the CAN
    // bus timing for a nominal configuration.  You can achieve more control
    // over the CAN bus timing by using the function CANBitTimingSet() instead
    // of this one, if needed.
    // In this example, the CAN bus is set to 500 kHz.  In the function below,
    // the call to SysCtlClockGet() or ui32SysClock is used to determine the
    // clock rate that is used for clocking the CAN peripheral.  This can be
    // replaced with a  fixed value if you know the value of the system clock,
    // saving the extra function call.  For some parts, the CAN peripheral is
    // clocked by a fixed 8 MHz regardless of the system clock in which case
    // the call to SysCtlClockGet() or ui32SysClock should be replaced with
    // 8000000.  Consult the data sheet for more information about CAN
    // peripheral clocking.
    //
#if defined(TARGET_IS_TM4C129_RA0) ||                                         \
    defined(TARGET_IS_TM4C129_RA1) ||                                         \
    defined(TARGET_IS_TM4C129_RA2)
    CANBitRateSet(CAN0_BASE, ui32SysClock, 500000);
#else
    CANBitRateSet(CAN0_BASE, SysCtlClockGet(), 500000);
#endif

    //
    // Enable interrupts on the CAN peripheral.  This example uses static
    // allocation of interrupt handlers which means the name of the handler
    // is in the vector table of startup code.  If you want to use dynamic
    // allocation of the vector table, then you must also call CANIntRegister()
    // here.
    //
    // CANIntRegister(CAN0_BASE, CANIntHandler); // if using dynamic vectors
    //
    CANIntEnable(CAN0_BASE, CAN_INT_MASTER | CAN_INT_ERROR | CAN_INT_STATUS);

    //
    // Enable the CAN interrupt on the processor (NVIC).
    //
    IntEnable(INT_CAN0);
    //hardware_init();
    //
    // Enable the CAN for operation.
    //
    CANEnable(CAN0_BASE);

    //
    // Initialize a message object to be used for receiving CAN messages with
    // any CAN ID.  In order to receive any CAN ID, the ID and mask must both
    // be set to 0, and the ID filter enabled.
    //
    sCANMessage.ui32MsgID = 0x1;
    sCANMessage.ui32MsgIDMask = 0;
    sCANMessage.ui32Flags = MSG_OBJ_RX_INT_ENABLE | MSG_OBJ_USE_ID_FILTER;
    //sCANMessage.ui32Flags = MSG_OBJ_RX_INT_ENABLE ;
    sCANMessage.ui32MsgLen = 8;

    //
    // Now load the message object into the CAN peripheral.  Once loaded the
    // CAN will receive any message on the bus, and an interrupt will occur.
    // Use message object 1 for receiving messages (this is not the same as
    // the CAN ID which can be any value in this example).
    //
    CANMessageSet(CAN0_BASE, 1, &sCANMessage, MSG_OBJ_TYPE_RX);
    //hardware_init();
    //
    // Enter loop to process received messages.  This loop just checks a flag
    // that is set by the interrupt handler, and if set it reads out the
    // message and displays the contents.  This is not a robust method for
    // processing incoming CAN data and can only handle one messages at a time.
    // If many messages are being received close together, then some messages
    // may be dropped.  In a real application, some other method should be used
    // for queuing received messages in a way to ensure they are not lost.  You
    // can also make use of CAN FIFO mode which will allow messages to be
    // buffered before they are processed.
    //
    for(;;)
    {

        unsigned int uIdx;

        //
        // If the flag is set, that means that the RX interrupt occurred and
        // there is a message ready to be read from the CAN
        //
        //hardware_init();
        if(g_bRXFlag)
        {
            //UARTprintf("total count=%u\n");


            //
            // Reuse the same message object that was used earlier to configure
            // the CAN for receiving messages.  A buffer for storing the
            // received data must also be provided, so set the buffer pointer
            // within the message object.
            //
            sCANMessage.pui8MsgData = pui8MsgData;

            //
            // Read the message from the CAN.  Message object number 1 is used
            // (which is not the same thing as CAN ID).  The interrupt clearing
            // flag is not set because this interrupt was already cleared in
            // the interrupt handler.
            //
            CANMessageGet(CAN0_BASE, 1, &sCANMessage, 0);

            //
            // Clear the pending message flag so that the interrupt handler can
            // set it again when the next message arrives.
            //
            g_bRXFlag = 0;

            //
            // Check to see if there is an indication that some messages were
            // lost.
            //
            if(sCANMessage.ui32Flags & MSG_OBJ_DATA_LOST)
            {
                UARTprintf("CAN message loss detected\n");
            }

            //
            // Print out the contents of the message that was received.
            //
            UARTprintf("Msg ID=0x%08X len=%u data=0x",
                       sCANMessage.ui32MsgID, sCANMessage.ui32MsgLen);
            for(uIdx = 0; uIdx < sCANMessage.ui32MsgLen; uIdx++)
            {
                UARTprintf("%02X ", pui8MsgData[uIdx]);
            }
            UARTprintf("total count=%u\n", g_ui32MsgCount);
        }
   //     CANMessageSet(CAN0_BASE, 1, &sCANMessage, MSG_OBJ_TYPE_RX);
    }

    //
    // Return no errors
    //
    return(0);
}

//*****************************************************************************
//
// simple_rx.c - Example demonstrating simple CAN message reception.
//
// Copyright (c) 2010-2017 Texas Instruments Incorporated.  All rights reserved.
// Software License Agreement
//
//   Redistribution and use in source and binary forms, with or without
//   modification, are permitted provided that the following conditions
//   are met:
//
//   Redistributions of source code must retain the above copyright
//   notice, this list of conditions and the following disclaimer.
//
//   Redistributions in binary form must reproduce the above copyright
//   notice, this list of conditions and the following disclaimer in the
//   documentation and/or other materials provided with the
//   distribution.
//
//   Neither the name of Texas Instruments Incorporated nor the names of
//   its contributors may be used to endorse or promote products derived
//   from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// This is part of revision 2.1.4.178 of the Tiva Firmware Development Package.
//
//*****************************************************************************

#include <stdbool.h>
#include <stdint.h>
#include "inc/hw_can.h"
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/can.h"
#include "driverlib/gpio.h"
#include "driverlib/interrupt.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/uart.h"
#include "utils/uartstdio.h"
#include "utils/uartstdio.c"

//*****************************************************************************
//
//! \addtogroup can_examples_list
//! <h1>Simple CAN RX (simple_rx)</h1>
//!
//! This example shows the basic setup of CAN in order to receive messages
//! from the CAN bus.  The CAN peripheral is configured to receive messages
//! with any CAN ID and then print the message contents to the console.
//!
//! This example uses the following peripherals and I/O signals.  You must
//! review these and change as needed for your own board:
//! - CAN0 peripheral
//! - GPIO port B peripheral (for CAN0 pins)
//! - CAN0RX - PB4
//! - CAN0TX - PB5
//!
//! The following UART signals are configured only for displaying console
//! messages for this example.  These are not required for operation of CAN.
//! - GPIO port A peripheral (for UART0 pins)
//! - UART0RX - PA0
//! - UART0TX - PA1
//!
//! This example uses the following interrupt handlers.  To use this example
//! in your own application you must add these interrupt handlers to your
//! vector table.
//! - INT_CAN0 - CANIntHandler
//
//*****************************************************************************

//*****************************************************************************
//
// A counter that keeps track of the number of times the RX interrupt has
// occurred, which should match the number of messages that were received.
//
//*****************************************************************************
volatile uint32_t g_ui32MsgCount = 0;

//*****************************************************************************
//
// A flag for the interrupt handler to indicate that a message was received.
//
//*****************************************************************************
volatile bool g_bRXFlag = 0;

//*****************************************************************************
//
// A flag to indicate that some reception error occurred.
//
//*****************************************************************************
volatile bool g_bErrFlag = 0;

//*****************************************************************************
//
// This function sets up UART0 to be used for a console to display information
// as the example is running.
//
//*****************************************************************************
void
InitConsole(void)
{
    //
    // Enable GPIO port A which is used for UART0 pins.
    // TODO: change this to whichever GPIO port you are using.
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

    //
    // Configure the pin muxing for UART0 functions on port A0 and A1.
    // This step is not necessary if your part does not support pin muxing.
    // TODO: change this to select the port/pin you are using.
    //
    GPIOPinConfigure(GPIO_PA0_U0RX);
    GPIOPinConfigure(GPIO_PA1_U0TX);

    //
    // Enable UART0 so that we can configure the clock.
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);

    //
    // Use the internal 16MHz oscillator as the UART clock source.
    //
    UARTClockSourceSet(UART0_BASE, UART_CLOCK_PIOSC);

    //
    // Select the alternate (UART) function for these pins.
    // TODO: change this to select the port/pin you are using.
    //
    GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    //
    // Initialize the UART for console I/O.
    //
    UARTStdioConfig(0, 115200, 16000000);
}

//*****************************************************************************
//
// This function is the interrupt handler for the CAN peripheral.  It checks
// for the cause of the interrupt, and maintains a count of all messages that
// have been received.
//
//*****************************************************************************
void hardware_init(void)
{
    //Set CPU Clock to 40MHz. 400MHz PLL/2 = 200 DIV 5 = 40MHz
//    SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

    // ADD Tiva-C GPIO setup - enables port, sets pins 1-3 (RGB) pins for output
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
    GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);

    // Turn on the LED
    GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 4);

}

void
CANIntHandler(void)
{

  hardware_init();
    uint32_t ui32Status;

    //
    // Read the CAN interrupt status to find the cause of the interrupt
    //
    ui32Status = CANIntStatus(CAN0_BASE, CAN_INT_STS_CAUSE);

    //
    // If the cause is a controller status interrupt, then get the status
    //
    if(ui32Status == CAN_INT_INTID_STATUS)
    {
        //
        // Read the controller status.  This will return a field of status
        // error bits that can indicate various errors.  Error processing
        // is not done in this example for simplicity.  Refer to the
        // API documentation for details about the error status bits.
        // The act of reading this status will clear the interrupt.
        //
        //hardware_init();
        ui32Status = CANStatusGet(CAN0_BASE, CAN_STS_CONTROL);

        //
        // Set a flag to indicate some errors may have occurred.
        //
        g_bErrFlag = 1;
    }

    //
    // Check if the cause is message object 1, which what we are using for
    // receiving messages.
    //
    else if(ui32Status == 1)
    {
        //
        // Getting to this point means that the RX interrupt occurred on
        // message object 1, and the message reception is complete.  Clear the
        // message object interrupt.
        //
        CANIntClear(CAN0_BASE, 1);

        //
        // Increment a counter to keep track of how many messages have been
        // received.  In a real application this could be used to set flags to
        // indicate when a message is received.
        //
        g_ui32MsgCount++;

        //
        // Set flag to indicate received message is pending.
        //
        g_bRXFlag = 1;

        //
        // Since a message was received, clear any error flags.
        //
        g_bErrFlag = 0;
    }

    //
    // Otherwise, something unexpected caused the interrupt.  This should
    // never happen.
    //
    else
    {
        //
                 //  hardware_init();        // Spurious interrupt handling can go here.
        //
    }
}

//*****************************************************************************
//
// Configure the CAN and enter a loop to receive CAN messages.
//
//*****************************************************************************
int
main(void)

{
#if defined(TARGET_IS_TM4C129_RA0) ||                                         \
    defined(TARGET_IS_TM4C129_RA1) ||                                         \
    defined(TARGET_IS_TM4C129_RA2)
    uint32_t ui32SysClock;
#endif

    tCANMsgObject sCANMessage;
    uint8_t pui8MsgData[8];

    //
    // Set the clocking to run directly from the external crystal/oscillator.
    // TODO: The SYSCTL_XTAL_ value must be changed to match the value of the
    // crystal used on your board.
    //
#if defined(TARGET_IS_TM4C129_RA0) ||                                         \
    defined(TARGET_IS_TM4C129_RA1) ||                                         \
    defined(TARGET_IS_TM4C129_RA2)
    ui32SysClock = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                       SYSCTL_OSC_MAIN |
                                       SYSCTL_USE_OSC)
                                       25000000);
#else
    ////SysCtlClockSet(SYSCTL_SYSDIV_2_5 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ | SYSCTL_OSC_MAIN);




#endif

    //
    // Set up the serial console to use for displaying messages.  This is
    // just for this example program and is not needed for CAN operation.
    //
    InitConsole();

    //
    // For this example CAN0 is used with RX and TX pins on port B4 and B5.
    // The actual port and pins used may be different on your part, consult
    // the data sheet for more information.
    // GPIO port B needs to be enabled so these pins can be used.
    // TODO: change this to whichever GPIO port you are using
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);
//    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);

    //
    // Configure the GPIO pin muxing to select CAN0 functions for these pins.
    // This step selects which alternate function is available for these pins.
    // This is necessary if your part supports GPIO pin function muxing.
    // Consult the data sheet to see which functions are allocated per pin.
    // TODO: change this to select the port/pin you are using
    //
    GPIOPinConfigure(GPIO_PE4_CAN0RX);
    GPIOPinConfigure(GPIO_PE5_CAN0TX);
    //GPIOPinConfigure(GPIO_PE4_CAN0RX);
    //GPIOPinConfigure(GPIO_PE5_CAN0TX);

    //
    // Enable the alternate function on the GPIO pins.  The above step selects
    // which alternate function is available.  This step actually enables the
    // alternate function instead of GPIO for these pins.
    // TODO: change this to match the port/pin you are using
    //
    GPIOPinTypeCAN(GPIO_PORTE_BASE, GPIO_PIN_4 | GPIO_PIN_5);

    //
    // The GPIO port and pins have been set up for CAN.  The CAN peripheral
    // must be enabled.
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_CAN0);

    //
    // Initialize the CAN controller
    //
    CANInit(CAN0_BASE);

    //
    // Set up the bit rate for the CAN bus.  This function sets up the CAN
    // bus timing for a nominal configuration.  You can achieve more control
    // over the CAN bus timing by using the function CANBitTimingSet() instead
    // of this one, if needed.
    // In this example, the CAN bus is set to 500 kHz.  In the function below,
    // the call to SysCtlClockGet() or ui32SysClock is used to determine the
    // clock rate that is used for clocking the CAN peripheral.  This can be
    // replaced with a  fixed value if you know the value of the system clock,
    // saving the extra function call.  For some parts, the CAN peripheral is
    // clocked by a fixed 8 MHz regardless of the system clock in which case
    // the call to SysCtlClockGet() or ui32SysClock should be replaced with
    // 8000000.  Consult the data sheet for more information about CAN
    // peripheral clocking.
    //
#if defined(TARGET_IS_TM4C129_RA0) ||                                         \
    defined(TARGET_IS_TM4C129_RA1) ||                                         \
    defined(TARGET_IS_TM4C129_RA2)
    CANBitRateSet(CAN0_BASE, ui32SysClock, 500000);
#else
    CANBitRateSet(CAN0_BASE, SysCtlClockGet(), 500000);
#endif

    //
    // Enable interrupts on the CAN peripheral.  This example uses static
    // allocation of interrupt handlers which means the name of the handler
    // is in the vector table of startup code.  If you want to use dynamic
    // allocation of the vector table, then you must also call CANIntRegister()
    // here.
    //
    // CANIntRegister(CAN0_BASE, CANIntHandler); // if using dynamic vectors
    //
    CANIntEnable(CAN0_BASE, CAN_INT_MASTER | CAN_INT_ERROR | CAN_INT_STATUS);

    //
    // Enable the CAN interrupt on the processor (NVIC).
    //
    IntEnable(INT_CAN0);
    //hardware_init();
    //
    // Enable the CAN for operation.
    //
    CANEnable(CAN0_BASE);

    //
    // Initialize a message object to be used for receiving CAN messages with
    // any CAN ID.  In order to receive any CAN ID, the ID and mask must both
    // be set to 0, and the ID filter enabled.
    //
    sCANMessage.ui32MsgID = 0x1;
    sCANMessage.ui32MsgIDMask = 0;
    sCANMessage.ui32Flags = MSG_OBJ_RX_INT_ENABLE | MSG_OBJ_USE_ID_FILTER;
    //sCANMessage.ui32Flags = MSG_OBJ_RX_INT_ENABLE ;
    sCANMessage.ui32MsgLen = 8;

    //
    // Now load the message object into the CAN peripheral.  Once loaded the
    // CAN will receive any message on the bus, and an interrupt will occur.
    // Use message object 1 for receiving messages (this is not the same as
    // the CAN ID which can be any value in this example).
    //
    CANMessageSet(CAN0_BASE, 1, &sCANMessage, MSG_OBJ_TYPE_RX);
    //hardware_init();
    //
    // Enter loop to process received messages.  This loop just checks a flag
    // that is set by the interrupt handler, and if set it reads out the
    // message and displays the contents.  This is not a robust method for
    // processing incoming CAN data and can only handle one messages at a time.
    // If many messages are being received close together, then some messages
    // may be dropped.  In a real application, some other method should be used
    // for queuing received messages in a way to ensure they are not lost.  You
    // can also make use of CAN FIFO mode which will allow messages to be
    // buffered before they are processed.
    //
    for(;;)
    {

        unsigned int uIdx;

        //
        // If the flag is set, that means that the RX interrupt occurred and
        // there is a message ready to be read from the CAN
        //
        //hardware_init();
        if(g_bRXFlag)
        {
            //UARTprintf("total count=%u\n");


            //
            // Reuse the same message object that was used earlier to configure
            // the CAN for receiving messages.  A buffer for storing the
            // received data must also be provided, so set the buffer pointer
            // within the message object.
            //
            sCANMessage.pui8MsgData = pui8MsgData;

            //
            // Read the message from the CAN.  Message object number 1 is used
            // (which is not the same thing as CAN ID).  The interrupt clearing
            // flag is not set because this interrupt was already cleared in
            // the interrupt handler.
            //
            CANMessageGet(CAN0_BASE, 1, &sCANMessage, 0);

            //
            // Clear the pending message flag so that the interrupt handler can
            // set it again when the next message arrives.
            //
            g_bRXFlag = 0;

            //
            // Check to see if there is an indication that some messages were
            // lost.
            //
            if(sCANMessage.ui32Flags & MSG_OBJ_DATA_LOST)
            {
                UARTprintf("CAN message loss detected\n");
            }

            //
            // Print out the contents of the message that was received.
            //
            UARTprintf("Msg ID=0x%08X len=%u data=0x",
                       sCANMessage.ui32MsgID, sCANMessage.ui32MsgLen);
            for(uIdx = 0; uIdx < sCANMessage.ui32MsgLen; uIdx++)
            {
                UARTprintf("%02X ", pui8MsgData[uIdx]);
            }
            UARTprintf("total count=%u\n", g_ui32MsgCount);
        }
   //     CANMessageSet(CAN0_BASE, 1, &sCANMessage, MSG_OBJ_TYPE_RX);
    }

    //
    // Return no errors
    //
    return(0);
}