Tool/software: Code Composer Studio
Hi ,
I am trying to print the computed power and voltage values from the ADC values using UART. I have followed the sensohub examble in tivaware. But I am getting the following error.
Multiple markers at this line
- #1531-D (ULP 5.2) Detected floating point operation(s). Recommend moving them
to RAM during run time or not using as these are processing/power intensive
- <a href="processors.wiki.ti.com/.../
225">#225-D</a> function "uftostr" declared implicitly
THe code is as follows:
//*****************************************************************************
//
// single_ended.c - Example demonstrating how to configure the ADC for
// single ended operation.
//
// Copyright (c) 2010-2017 Texas Instruments Incorporated. All rights reserved.
// Software License Agreement
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// Neither the name of Texas Instruments Incorporated nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// This is part of revision 2.1.4.178 of the Tiva Firmware Development Package.
//
//*****************************************************************************
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "inc/hw_memmap.h"
#include "driverlib/adc.h"
#include "driverlib/gpio.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"
#include <string.h>
#include "driverlib/uart.h"
#include "driverlib/debug.h"
#include "utils/uartstdio.h"
#include <stdbool.h>
#include <stdint.h>
#include "inc/hw_memmap.h"
#include <driverlib/timer.h>
#include "driverlib/adc.h"
#include "driverlib/gpio.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/uart.h"
#include "utils/uartstdio.h"
#include "driverlib/rom.h"
#include "driverlib/interrupt.h"
#include "inc/hw_ints.h"
//*****************************************************************************
//
//! \addtogroup adc_examples_list
//! <h1>Single Ended ADC (single_ended)</h1>
//!
//! This example shows how to setup ADC0 as a single ended input and take a
//! single sample on AIN0/PE3.
//!
//! This example uses the following peripherals and I/O signals. You must
//! review these and change as needed for your own board:
//! - ADC0 peripheral
//! - GPIO Port E peripheral (for AIN0 pin)
//! - AIN0 - PE3
//!
//! The following UART signals are configured only for displaying console
//! messages for this example. These are not required for operation of the
//! ADC.
//! - UART0 peripheral
//! - GPIO Port A peripheral (for UART0 pins)
//! - UART0RX - PA0
//! - UART0TX - PA1
//!
//! This example uses the following interrupt handlers. To use this example
//! in your own application you must add these interrupt handlers to your
//! vector table.
//! - None.
//
//*****************************************************************************
//volatile uint32_t adcResult[1];
//volatile unit32_t pui32ADC0Value1[1];
uint32_t pui32ADC0Value[1];
static volatile bool g_bIntFlag = false;
#define SAMPLE_PERIOD_US 1000
float current = 0;
float voltage=3.3;
float power = 0;
float maxPwr = 0;
float avgPwr = 0;
int i = 0;
//#define SAMPLE_PERIOD ((g_syshz*SAMPLE_PERIOD_US)/1000000)
//*****************************************************************************
//
// This function sets up UART0 to be used for a console to display information
// as the example is running.
//
//*****************************************************************************
void
InitConsole(void)
{
//
// Enable GPIO port A which is used for UART0 pins.
// TODO: change this to whichever GPIO port you are using.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
//
// Configure the pin muxing for UART0 functions on port A0 and A1.
// This step is not necessary if your part does not support pin muxing.
// TODO: change this to select the port/pin you are using.
//
GPIOPinConfigure(GPIO_PA0_U0RX);
GPIOPinConfigure(GPIO_PA1_U0TX);
//
// Enable UART0 so that we can configure the clock.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
//
// Use the internal 16MHz oscillator as the UART clock source.
//
UARTClockSourceSet(UART0_BASE, UART_CLOCK_PIOSC);
//
// Select the alternate (UART) function for these pins.
// TODO: change this to select the port/pin you are using.
//
GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);
//
// Initialize the UART for console I/O.
//
UARTStdioConfig(0, 115200, 16000000);
}
/*void Timerconf(void)
{
// The Timer0 peripheral must be enabled for use.
SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER1);
// Configure Timer0B as a 32-bit periodic timer.
TimerConfigure(TIMER1_BASE, TIMER_CFG_PERIODIC);
// Set the Timer0A load value to 1ms.
TimerLoadSet(TIMER1_BASE, TIMER_A, SAMPLE_PERIOD);
// Enable triggering
TimerControlTrigger(TIMER1_BASE, TIMER_A, true);
}*/
//*****************************************************************************
//
// Configure ADC0 for a single-ended input and a single sample. Once the
// sample is ready, an interrupt flag will be set. Using a polling method,
// the data will be read then displayed on the console via UART0.
//
//*****************************************************************************
int
main(void)
{
#if defined(TARGET_IS_TM4C129_RA0) || \
defined(TARGET_IS_TM4C129_RA1) || \
defined(TARGET_IS_TM4C129_RA2)
uint32_t ui32SysClock;
#endif
//
// This array is used for storing the data read from the ADC FIFO. It
// must be as large as the FIFO for the sequencer in use. This example
// uses sequence 3 which has a FIFO depth of 1. If another sequence
// was used with a deeper FIFO, then the array size must be changed.
//
//uint32_t pui32ADC0Value[1];
uint32_t value=0;
float current = 0;
float voltage=3.3;
float power = 0;
float maxPwr = 0;
float avgPwr = 0;
int i = 0;
//
// Set the clocking to run at 20 MHz (200 MHz / 10) using the PLL. When
// using the ADC, you must either use the PLL or supply a 16 MHz clock
// source.
// TODO: The SYSCTL_XTAL_ value must be changed to match the value of the
// crystal on your board.
//
#if defined(TARGET_IS_TM4C129_RA0) || \
defined(TARGET_IS_TM4C129_RA1) || \
defined(TARGET_IS_TM4C129_RA2)
ui32SysClock = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
SYSCTL_OSC_MAIN |
SYSCTL_USE_PLL |
SYSCTL_CFG_VCO_480), 20000000);
#else
SysCtlClockSet(SYSCTL_SYSDIV_10 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
SYSCTL_XTAL_16MHZ);
#endif
uint32_t g_syshz;
g_syshz = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
SYSCTL_OSC_MAIN |
SYSCTL_USE_PLL |
SYSCTL_CFG_VCO_480),
120000000L);
// Set up the serial console to use for displaying messages. This is
// just for this example program and is not needed for ADC operation.
//
InitConsole();
//Timerconf();
//
// Display the setup on the console.
//
UARTprintf("ADC ->\n");
UARTprintf(" Type: Single Ended\n");
UARTprintf(" Samples: One\n");
UARTprintf(" Update Rate: 250ms\n");
UARTprintf(" Input Pin: AIN0/PE3\n\n");
/*
*
* sETUP FOR THE SWITCH TRIGGER
*
*/
// Enable Port J
//SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOJ);
// Delay to let the clock stabilise
// SysCtlDelay(3);
/*
Configure the switch on the left of the launchpad, GPIO_PIN_0 to a input with
internal pull-up.
*/
//GPIOPinTypeGPIOInput(GPIO_PORTJ_BASE, GPIO_PIN_0);
//GPIOPadConfigSet(GPIO_PORTJ_BASE, GPIO_PIN_0, GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU);
//GPIOIntTypeSet(GPIO_PORTJ_BASE,GPIO_PIN_0,GPIO_FALLING_EDGE);
//GPIOADCTriggerEnable(GPIO_PORTJ_BASE, GPIO_PIN_0);
// Make PF4 a trigger for ADC
// GPIOADCTriggerEnable(GPIO_PORTJ_BASE, GPIO_PIN_0);
//
// The ADC0 peripheral must be enabled for use.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);
//
// For this example ADC0 is used with AIN0 on port E7.
// The actual port and pins used may be different on your part, consult
// the data sheet for more information. GPIO port E needs to be enabled
// so these pins can be used.
// TODO: change this to whichever GPIO port you are using.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);
//
// Select the analog ADC function for these pins.
// Consult the data sheet to see which functions are allocated per pin.
// TODO: change this to select the port/pin you are using.
//
GPIOPinTypeADC(GPIO_PORTE_BASE, GPIO_PIN_3);
//
// Enable sample sequence 3 with a processor signal trigger. Sequence 3
// will do a single sample when the processor sends a signal to start the
// conversion. Each ADC module has 4 programmable sequences, sequence 0
// to sequence 3. This example is arbitrarily using sequence 3.
//
ADCSequenceConfigure(ADC0_BASE, 3, ADC_TRIGGER_TIMER , 0);
//
// Configure step 0 on sequence 3. Sample channel 0 (ADC_CTL_CH0) in
// single-ended mode (default) and configure the interrupt flag
// (ADC_CTL_IE) to be set when the sample is done. Tell the ADC logic
// that this is the last conversion on sequence 3 (ADC_CTL_END). Sequence
// 3 has only one programmable step. Sequence 1 and 2 have 4 steps, and
// sequence 0 has 8 programmable steps. Since we are only doing a single
// conversion using sequence 3 we will only configure step 0. For more
// information on the ADC sequences and steps, reference the datasheet.
//
ADCSequenceStepConfigure(ADC0_BASE, 3, 0, ADC_CTL_CH0 | ADC_CTL_IE |
ADC_CTL_END);
//
// Since sample sequence 3 is now configured, it must be enabled.
//
ADCSequenceEnable(ADC0_BASE, 3);
//
// Clear the interrupt status flag. This is done to make sure the
// interrupt flag is cleared before we sample.
//
ADCIntClear(ADC0_BASE, 3);
/*
* Timer
*/
// The Timer1 peripheral must be enabled for use.
SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER1);
// Configure Timer1A as a 32-bit periodic timer.
TimerConfigure(TIMER1_BASE, TIMER_CFG_PERIODIC);
// Set the Timer1A load value to 1ms.
//TimerLoadSet(TIMER1_BASE, TIMER_A, SAMPLE_PERIOD);
#define F_SAMPLE 1000
TimerLoadSet(TIMER1_BASE, TIMER_A, SysCtlClockGet()/F_SAMPLE );
// Enable triggering
// TimerControlTrigger(TIMER1_BASE, TIMER_A, true);
TimerControlTrigger(TIMER1_BASE, TIMER_A, true );
IntMasterEnable();
//Enable ADC interrupt
ADCIntEnable(ADC0_BASE, 3);
//enable the ADC0 Sequencer 3 Interrupt in the NVIC
IntEnable(INT_ADC0SS3);
// Sample AIN0 forever. Display the value on the console.
// Enable Timer1A.
TimerEnable(TIMER1_BASE, TIMER_A);
while(1)
{
//
// Trigger the ADC conversion.
//
//ADCProcessorTrigger(ADC0_BASE, 3);
// value = GPIOPinRead(GPIO_PORTJ_BASE, GPIO_PIN_0);
// If PF4 is pressed, trigger ADC conversion
// if(( value & GPIO_PIN_0 )==0) {
//
// Wait for conversion to be completed.
//
// while(!ADCIntStatus(ADC0_BASE, 3, false))
while(!g_bIntFlag)
{
}
//
// Clear the ADC interrupt flag.
//
ADCIntClear(ADC0_BASE, 3);
//
// Read ADC Value.
//
/* ADCSequenceDataGet(ADC0_BASE, 3, pui32ADC0Value);
current = (0.3/4096)*pui32ADC0Value[0];
power = current * voltage;
i++;
// avgPwr = avgPwr * (i-1)/i + (power/i);
avgPwr = avgPwr * (i-1)/i + (power/i);
// i++;
if(power > maxPwr) maxPwr = power;
*/
//
// Display the AIN0 (PE3) digital value on the console.
//
UARTprintf("ADC sensed data = %4d\r", pui32ADC0Value[0]);
char pcCurrentBuf[12];
//
// Convert floating point members of the struct into strings.
//
uftostr(pcCurrentBuf, 12, 3, current);
//
// Print current with three digits of decimal precision.
//
UARTprintf("Current measured:\t\t%s\t", pcCurrentBuf);
//
// Print Humidity with three digits of decimal precision.
//
// UARTprintf("Humidity:\t%s\n", pcHumidityBuf);
// This function provides a means of generating a constant length
// delay. The function delay (in cycles) = 3 * parameter. Delay
// 250ms arbitrarily.
//Q
#if defined(TARGET_IS_TM4C129_RA0) || \
defined(TARGET_IS_TM4C129_RA1) || \
defined(TARGET_IS_TM4C129_RA2)
SysCtlDelay(ui32SysClock / 12);
#else
SysCtlDelay(SysCtlClockGet() / 12);
#endif
//}
}
}
void ADC0SS3_HANDLER(void)
{
//unit32_t adcResult = 0;
//adcResult= ADCSequenceDataGet(ADC0_BASE, 3, pui32ADC0Value1);
ADCIntClear(ADC0_BASE, 3);
// Read ADC Value.
ADCSequenceDataGet(ADC0_BASE, 3, pui32ADC0Value);
ADCSequenceDataGet(ADC0_BASE, 3, pui32ADC0Value);
current = (3.3/4096)*pui32ADC0Value[0];
power = current * voltage;
i++;
// avgPwr = avgPwr * (i-1)/i + (power/i);
avgPwr = avgPwr * (i-1)/i + (power/i);
// i++;
if(power > maxPwr) maxPwr = power;
// current = (3.3/4096)*pui32ADC0Value[0];
g_bIntFlag = true;
}