Other Parts Discussed in Thread: C2000WARE
Hello,
I am working on I2C Master Receiver and Slave Transmitter.
In Slave Transmitter Interrupt, Transmit Interrupt (I2C_TX_ISRC) enters before Address as Slave Interrupt (I2C_AAS_ISRC).
This causes index confusion.
I have attached the relevant files.
I would appreciate if you share an I2C Slave example for TMS320F28035.
Thanks,
Kadir B.
//###########################################################################
//
//! \addtogroup f2803x_example_list
//! <h1>I2C EEPROM(i2c_eeprom)</h1>
//!
//! This program requires an external I2C EEPROM connected to
//! the I2C bus at address 0x50.
//! This program will write 1-14 words to EEPROM and read them back.
//! The data written and the EEPROM address written to are contained
//! in the message structure, \b I2cMsgOut1. The data read back will be
//! contained in the message structure \b I2cMsgIn1.
//!
//! \note This program will only work on kits that have an on-board I2C EEPROM. T
//! (e.g. F2803x eZdsp)
//!
//! \b Watch \b Variables \n
//! - I2cMsgIn1
//! - I2cMsgOut1
//
//###########################################################################
// $TI Release: F2803x C/C++ Header Files and Peripheral Examples V129 $
// $Release Date: January 15, 2015 $
// $Copyright: Copyright (C) 2009-2015 Texas Instruments Incorporated -
// http://www.ti.com/ ALL RIGHTS RESERVED $
//###########################################################################
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
typedef Uint16 uint16;
Uint16 LoopCount = 0;
Uint16 Error;
Uint16 RxBufferIndex = 0;
Uint16 RxBuffer[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
void I2CA_MASTER_RECEIVER_Init(void);
Uint16 I2CA_MASTER_RECEIVE(void);
__interrupt void i2c_int1a_isr(void);
/* I2C */
#define _D_I2C_RX_BUFFER_SIZE 50
uint16 I2C_RxBuffer[_D_I2C_RX_BUFFER_SIZE];
uint16 *I2C_BufferStart;
uint16 *I2C_BufferEnd;
uint16 *I2C_PushIndex;
uint16 *I2C_PullIndex;
uint16 I2C_NewDataCount;
void main(void)
{
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2803x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2803x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio();
// Setup only the GP I/O only for I2C functionality
InitI2CGpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2803x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2803x_DefaultIsr.c.
// This function is found in DSP2803x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // This is needed to write to EALLOW protected registers
PieVectTable.I2CINT1A = &i2c_int1a_isr;
EDIS; // This is needed to disable write to EALLOW protected registers
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2803x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
// Step 5. User specific code
/* I2C-A Basic Configuration */
I2CA_MASTER_RECEIVER_Init();
// Enable interrupts required for this example
// Enable I2C interrupt 1 in the PIE: Group 8 interrupt 1
PieCtrlRegs.PIEIER8.bit.INTx1 = 1;
// Enable CPU INT8 which is connected to PIE group 8
IER |= M_INT8;
EINT;
/* I2C */
/* Init I2C Interface */
memset(&I2C_RxBuffer, 0, sizeof(I2C_RxBuffer));
I2C_PushIndex = &I2C_RxBuffer[0];
I2C_PullIndex = &I2C_RxBuffer[0];
I2C_BufferStart = &I2C_RxBuffer[0];
I2C_BufferEnd = &I2C_RxBuffer[_D_I2C_RX_BUFFER_SIZE - 3];
I2C_NewDataCount = 0;
Error = I2CA_MASTER_RECEIVE();
// Application loop
for(;;)
{
LoopCount++;
// if (LoopCount > 1000) {
// LoopCount = 0;
// }
} // end of for(;;)
} // end of main
/* I2C-A BASIC CONFIGURATION */
void I2CA_MASTER_RECEIVER_Init(void)
{
/* Disable I2C-A */
I2caRegs.I2CMDR.bit.IRS = 0;
/* Configure I2C Module clock using I2CPSC register I2C Module clock should be 7-12 MHz */
I2caRegs.I2CPSC.all = 6;
/* Configure I2C baud rate using I2CCLKL and I2CCLKH */
I2caRegs.I2CCLKL = 10;
I2caRegs.I2CCLKH = 5;
/* Configure I2C Own address using I2COAR */
I2caRegs.I2COAR = 0x0001;
/* Configure I2C Slave address to talk to using I2CSAR */
I2caRegs.I2CSAR = 0x0002;
/* Non-FIFO mode */
/* Enable below I2C Interrupts using I2CIER
* 0h Arbitration Lost (ARBL)
* 1h No-acknowledge interrupt (NACK)
* 3h Receive Ready (RRDY)
* 4h Transmit Ready (XRDY)
* */
I2caRegs.I2CIER.all = 0x001B;
I2caRegs.I2CMDR.bit.IRS = 1;
}
Uint16 I2CA_MASTER_RECEIVE(void)
{
if (I2caRegs.I2CSTR.bit.BB == 1) {
return I2C_BUS_BUSY_ERROR;
}
/* Num. of bytes to be transmitted */
I2caRegs.I2CCNT = 1;
/*
* I2C-A Mode Register (I2CMDR)
* 5h IRS
* 9h TRX
* 10h MST
* 13h STT
* 14h FREE
* */
I2caRegs.I2CMDR.all = 0x6620;
while (I2caRegs.I2CSTR.bit.ARDY == 0);
RxBufferIndex = 0;
I2caRegs.I2CCNT = 8;
/*
* I2C-A Mode Register (I2CMDR)
* 5h IRS
* 10h MST
* 13h STT
* 14h FREE
* */
I2caRegs.I2CMDR.all = 0x6420;
return I2C_SUCCESS;
}
Uint16 IntSource;
__interrupt void i2c_int1a_isr(void) // I2C-A
{
// Read interrupt source
IntSource = I2caRegs.I2CISRC.all;
switch(IntSource) {
case I2C_NACK_ISRC:
/* Generate STOP condition */
I2caRegs.I2CMDR.bit.STP = 1;
I2caRegs.I2CSTR.all = I2C_CLR_NACK_BIT;
break;
case I2C_RX_ISRC:
RxBuffer[RxBufferIndex++] = I2caRegs.I2CDRR;
if (RxBufferIndex >= 8) {
/* Generate STOP condition */
I2caRegs.I2CMDR.bit.STP = 1;
}
break;
case I2C_TX_ISRC:
I2caRegs.I2CDXR = 0x00FF;
break;
}
// Enable future I2C (PIE Group 8) interrupts
PieCtrlRegs.PIEACK.all = PIEACK_GROUP8;
}
//===========================================================================
// No more.
//===========================================================================
//###########################################################################
//
//! \addtogroup f2803x_example_list
//! <h1>I2C EEPROM(i2c_eeprom)</h1>
//!
//! This program requires an external I2C EEPROM connected to
//! the I2C bus at address 0x50.
//! This program will write 1-14 words to EEPROM and read them back.
//! The data written and the EEPROM address written to are contained
//! in the message structure, \b I2cMsgOut1. The data read back will be
//! contained in the message structure \b I2cMsgIn1.
//!
//! \note This program will only work on kits that have an on-board I2C EEPROM. T
//! (e.g. F2803x eZdsp)
//!
//! \b Watch \b Variables \n
//! - I2cMsgIn1
//! - I2cMsgOut1
//
//###########################################################################
// $TI Release: F2803x C/C++ Header Files and Peripheral Examples V129 $
// $Release Date: January 15, 2015 $
// $Copyright: Copyright (C) 2009-2015 Texas Instruments Incorporated -
// http://www.ti.com/ ALL RIGHTS RESERVED $
//###########################################################################
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
Uint16 LoopCount = 0;
//Uint16 LedFlag = 0;
Uint16 I2C_AASISRCCount = 0;
Uint16 I2C_TXISRCCount = 0;
Uint16 I2C_I2CDRR = 0;
Uint16 I2C_TXISRCIndex = 0;
Uint16 I2C_TXIndex = 0;
Uint16 I2C_TXBuffer[8] = { 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 0x80 };
Uint16 I2C_RXIndex = 0;
Uint16 I2C_RXBuffer[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
void InitLedGpio(void);
void I2CA_SLAVE_Init(void);
__interrupt void i2c_int1a_isr(void);
void main(void)
{
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2803x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2803x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio();
InitLedGpio();
// Setup only the GP I/O only for I2C functionality
InitI2CGpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2803x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2803x_DefaultIsr.c.
// This function is found in DSP2803x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // This is needed to write to EALLOW protected registers
PieVectTable.I2CINT1A = &i2c_int1a_isr;
EDIS; // This is needed to disable write to EALLOW protected registers
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2803x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
I2CA_SLAVE_Init();
// Step 5. User specific code
// Enable interrupts required for this example
// Enable I2C interrupt 1 in the PIE: Group 8 interrupt 1
PieCtrlRegs.PIEIER8.bit.INTx1 = 1;
// Enable CPU INT8 which is connected to PIE group 8
IER |= M_INT8;
EINT;
// Application loop
for(;;)
{
LoopCount++;
// if (LoopCount > 100) {
// LoopCount = 0;
//
// if (LedFlag == 0) { LedFlag = 1; GpioDataRegs.GPADAT.bit.GPIO31 = 1; }
// else { LedFlag = 0; GpioDataRegs.GPADAT.bit.GPIO31 = 0; }
// }
} // end of for(;;)
} // end of main
void InitLedGpio(void)
{
EALLOW;
/* General purpose I/O */
GpioCtrlRegs.GPAMUX2.bit.GPIO31 = 0;
GpioCtrlRegs.GPADIR.bit.GPIO31 = 1;
EDIS;
}
void I2CA_SLAVE_Init(void)
{
/* Disable I2C */
I2caRegs.I2CMDR.bit.IRS = 0;
/* Configure I2C Module clock using I2CPSC register I2C Module clock should be 7-12 MHz */
I2caRegs.I2CPSC.all = 6;
/* Configure I2C baud rate using I2CCLKL and I2CCLKH */
I2caRegs.I2CCLKL = 10;
I2caRegs.I2CCLKH = 5;
/* Configure I2C Own address using I2COAR */
I2caRegs.I2COAR = 0x0002;
// /* Configure I2C Slave address to talk to using I2CSAR */
// I2caRegs.I2CSAR = 0x0002;
I2caRegs.I2CMDR.bit.TRX = 1; /* Transmitter mode */
/*
* I2C Interrupt Enable Register (I2CIER)
* 3h RRDY
* 4h XRDY
* 6h AAS
* */
I2caRegs.I2CIER.all = 0x0058;
/* Enable I2C. */
I2caRegs.I2CMDR.bit.IRS = 1;
}
__interrupt void i2c_int1a_isr(void) // I2C-A
{
Uint16 IntSource;
// Read interrupt source
IntSource = I2caRegs.I2CISRC.all;
switch (IntSource) {
case I2C_RX_ISRC:
I2C_RXBuffer[I2C_RXIndex++] = I2caRegs.I2CDRR;
I2caRegs.I2CSTR.bit.RRDY = 1;
break;
case I2C_TX_ISRC:
I2C_TXISRCCount++;
I2caRegs.I2CDXR = I2C_TXBuffer[I2C_TXIndex++];
break;
case I2C_AAS_ISRC:
I2C_AASISRCCount++;
I2C_TXIndex = 0;
I2C_RXIndex = 0;
break;
}
// Enable future I2C (PIE Group 8) interrupts
PieCtrlRegs.PIEACK.all = PIEACK_GROUP8;
}
//===========================================================================
// No more.
//===========================================================================

