This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

introduce 180 phase delay between HRPWM pulses

I am using tms320f28553 dsp with ccs v5 ,  I was working on interleaved boost converter and I need to introduce 180 phase delay between 2 switches. So I need a phase delay between epwm1 and epwm2 

//###########################################################################
//
// FILE: Example_2833xHRPWM.c
//
// TITLE: DSP2833x Device HRPWM example
//
// ASSUMPTIONS:
//
//
//    This program requires the DSP2833x header files.
//
//    Monitor ePWM1-ePWM4 pins on an oscilloscope as described
//    below.
//
//       EPWM1A is on GPIO0
//       EPWM1B is on GPIO1
//
//       EPWM2A is on GPIO2
//       EPWM2B is on GPIO3
//
//       EPWM3A is on GPIO4
//       EPWM3B is on GPIO5
//
//    As supplied, this project is configured for "boot to SARAM"
//    operation.  The 2833x Boot Mode table is shown below.
//    For information on configuring the boot mode of an eZdsp,
//    please refer to the documentation included with the eZdsp,
//
//       $Boot_Table:
//
//         GPIO87   GPIO86     GPIO85   GPIO84
//          XA15     XA14       XA13     XA12
//           PU       PU         PU       PU
//        ==========================================
//            1        1          1        1    Jump to Flash
//            1        1          1        0    SCI-A boot
//            1        1          0        1    SPI-A boot
//            1        1          0        0    I2C-A boot
//            1        0          1        1    eCAN-A boot
//            1        0          1        0    McBSP-A boot
//            1        0          0        1    Jump to XINTF x16
//            1        0          0        0    Jump to XINTF x32
//            0        1          1        1    Jump to OTP
//            0        1          1        0    Parallel GPIO I/O boot
//            0        1          0        1    Parallel XINTF boot
//            0        1          0        0    Jump to SARAM    <- "boot to SARAM"
//            0        0          1        1    Branch to check boot mode
//            0        0          1        0    Boot to flash, bypass ADC cal
//            0        0          0        1    Boot to SARAM, bypass ADC cal
//            0        0          0        0    Boot to SCI-A, bypass ADC cal
//                                              Boot_Table_End$
//
// DESCRIPTION:
//
//       This example modifies the MEP control registers to show edge displacement
//       due to the HRPWM control extension of the respective ePWM module
//       All ePWM1A,2A,3A,4A channels (GPIO0, GPIO2, GPIO4, GPIO6) will have fine edge movement
//       due to HRPWM logic
//
//            1. 15MHz PWM (for 150 MHz SYSCLKOUT) or 10MHz PWM (for 100MHz SYSCLKOUT),
//                 ePWM1A toggle low/high with MEP control on rising edge
//               15MHz PWM (for 150 MHz SYSCLKOUT) or 10MHz PWM (for 100MHz SYSCLKOUT),
//                 ePWM1B toggle low/high with NO HRPWM control
//
//            2. 7.5MHz PWM (for 150 MHz SYSCLKOUT) or 5MHz PWM (for 100MHz SYSCLKOUT),
//                  ePWM2A toggle low/high with MEP control on rising edge
//               7.5MHz PWM (for 150 MHz SYSCLKOUT) or 5MHz PWM (for 100MHz SYSCLKOUT),
//                  ePWM2B toggle low/high with NO HRPWM control
//
//            3. 15MHz PWM (for 150 MHz SYSCLKOUT) or 10MHz PWM (for 100MHz SYSCLKOUT),
//                 ePWM3A toggle as high/low with MEP control on falling edge
//               15MHz PWM (for 150 MHz SYSCLKOUT) or 10MHz PWM (for 100MHz SYSCLKOUT),
//                 ePWM3B toggle low/high with NO HRPWM control
//
//            4. 7.5MHz PWM (for 150 MHz SYSCLKOUT) or 5MHz PWM (for 100MHz SYSCLKOUT),
//                  ePWM4A toggle as high/low with MEP control on falling edge
//               7.5MHz PWM (for 150 MHz SYSCLKOUT) or 5MHz PWM (for 100MHz SYSCLKOUT),
//                  ePWM4B toggle low/high with NO HRPWM control
//
//
//###########################################################################
// $TI Release: 2833x/2823x Header Files and Peripheral Examples V133 $
// $Release Date: June 8, 2012 $
//###########################################################################
#include "DSP28x_Project.h"     // Device Headerfile and Examples Include File
#include "DSP2833x_EPwm_defines.h" // useful defines for initialization
// Maximum Dead Band values
#define EPWM1_MAX_DB   0x03FF
#define EPWM2_MAX_DB   0x03FF
#define EPWM3_MAX_DB   0x03FF
#define EPWM4_MAX_DB   0x03FF
#define EPWM5_MAX_DB   0x03FF
#define EPWM6_MAX_DB   0x03FF
#define EPWM1_MIN_DB   0
#define EPWM2_MIN_DB   0
#define EPWM3_MIN_DB   0
#define EPWM4_MIN_DB   0
#define EPWM5_MIN_DB   0
#define EPWM6_MIN_DB   0
// To keep track of which way the Dead Band is moving
#define DB_UP   1
#define DB_DOWN 0
// Declare your function prototypes here
//---------------------------------------------------------------
void HRPWM1_Config(int);
void HRPWM2_Config(int);
void HRPWM3_Config(int);
void HRPWM4_Config(int);
// General System nets - Useful for debug
Uint16 i,j, DutyFine, n,update;
Uint32 temp;
void main(void)
{
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
   InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio();  // Skipped for this example
// For this case, just init GPIO for ePWM1-ePWM4
// For this case just init GPIO pins for ePWM1, ePWM2, ePWM3, ePWM4
// These functions are in the DSP2833x_EPwm.c file
   InitEPwm1Gpio();
   InitEPwm2Gpio();
   InitEPwm3Gpio();
   InitEPwm4Gpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
   DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
   InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
   IER = 0x0000;
   IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example.  This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
   InitPieVectTable();
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals();  // Not required for this example
// For this example, only initialize the ePWM
// Step 5. User specific code, enable interrupts:
   update =1;
   DutyFine =0;
   EALLOW;
   SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;
   EDIS;
//  Some useful Period vs Frequency values
//  SYSCLKOUT =     150MHz         100 MHz
//  -----------------------------------------
// Period        Frequency      Frequency
// 1000 150 kHz   100 KHz
// 800 187 kHz   125 KHz
// 600 250 kHz   167 KHz
// 500 300 kHz   200 KHz
// 250 600 kHz   400 KHz
// 200 750 kHz   500 KHz
// 100 1.5 MHz   1.0 MHz
// 50 3.0 MHz   2.0 MHz
// 25 6.0 MHz   4.0 MHz
// 20 7.5 MHz   5.0 MHz
// 12 12.5 MHz   8.33 MHz
// 10 15.0 MHz   10.0 MHz
// 9 16.7 MHz   11.1 MHz
// 8 18.8 MHz   12.5 MHz
// 7 21.4 MHz   14.3 MHz
// 6 25.0 MHz   16.7 MHz
// 5 30.0 MHz   20.0 MHz
//====================================================================
// ePWM and HRPWM register initializaition
//====================================================================
   HRPWM1_Config(3000);
  // ePWM1 target, 15 MHz PWM (SYSCLK=150MHz) or 10 MHz PWM (SYSCLK=100MHz)
   HRPWM2_Config(3000);    // ePWM2 target, 5 MHz PWM (SYSCLK=150MHz) or 3.33 MHz PWM (SYSCLK=100MHz)
   HRPWM3_Config(3000);    // ePWM3 target, 5 MHz PWM (SYSCLK=150MHz) or 3.33 MHz PWM (SYSCLK=100MHz)
   HRPWM4_Config(3000);    // ePWM4 target, 5 MHz PWM (SYSCLK=150MHz) or 3.33 MHz PWM (SYSCLK=100MHz)
   EALLOW;
   SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;
   EDIS;
   while (update ==1)
{
        for(DutyFine =1; DutyFine <256 ;DutyFine ++)
        {
        // Example, write to the HRPWM extension of CMPA
        EPwm1Regs.CMPA.half.CMPAHR = DutyFine << 8;
        // Left shift by 8 to write into MSB bits
        EPwm2Regs.CMPA.half.CMPAHR = DutyFine << 8;     // Left shift by 8 to write into MSB bits
        // Example, 32-bit write to CMPA:CMPAHR
        EPwm3Regs.CMPA.all = ((Uint32)EPwm3Regs.CMPA.half.CMPA << 16) + (DutyFine << 8);
        EPwm4Regs.CMPA.all = ((Uint32)EPwm4Regs.CMPA.half.CMPA << 16) + (DutyFine << 8);
for (i=0;i<10000;i++){}                         // Dummy delay between MEP changes
}
}
}
void HRPWM1_Config(period)
{
// ePWM1 register configuration with HRPWM
// ePWM1A toggle low/high with MEP control on Rising edge
EPwm1Regs.TBCTL.bit.PRDLD = TB_IMMEDIATE;        // set Immediate load
EPwm1Regs.TBPRD = period-1;                    // PWM frequency = 1 / period
EPwm1Regs.CMPA.half.CMPA = period / 1.35;            // set duty 50% initially
    EPwm1Regs.CMPA.half.CMPAHR = (1 << 8);              // initialize HRPWM extension
EPwm1Regs.CMPB = period / 1.35;                    // set duty 50% initially
EPwm1Regs.TBPHS.all = 0;
EPwm1Regs.TBCTR = 0;
EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP;
EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE;       // EPWM1 is the Master
EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE;
EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;
EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV1;
EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm1Regs.AQCTLA.bit.ZRO = AQ_CLEAR;               // PWM toggle low/high
EPwm1Regs.AQCTLA.bit.CAU = AQ_SET;
EPwm1Regs.AQCTLB.bit.ZRO = AQ_CLEAR;
EPwm1Regs.AQCTLB.bit.CBU = AQ_SET;
EALLOW;
EPwm1Regs.HRCNFG.all = 0x0;
EPwm1Regs.HRCNFG.bit.EDGMODE = HR_REP; //MEP control on Rising edge
EPwm1Regs.HRCNFG.bit.CTLMODE = HR_CMP;
EPwm1Regs.HRCNFG.bit.HRLOAD  = HR_CTR_ZERO;
EDIS;
}
void HRPWM2_Config(period)
{
// ePWM2 register configuration with HRPWM
// ePWM2A toggle low/high with MEP control on Rising edge
EPwm2Regs.TBCTL.bit.PRDLD = TB_IMMEDIATE;        // set Immediate load
EPwm2Regs.TBPRD = period-1;                    // PWM frequency = 1 / period
EPwm2Regs.CMPA.half.CMPA = period / 1.35;            // set duty 50% initially
    EPwm2Regs.CMPA.half.CMPAHR = (1 << 8);              // initialize HRPWM extension
EPwm2Regs.CMPB = period / 1.35;                    // set duty 50% initially
EPwm2Regs.TBPHS.all = 0;
EPwm2Regs.TBCTR = 0;
EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP;
EPwm2Regs.TBCTL.bit.PHSEN = TB_DISABLE;         // ePWM2 is the Master
EPwm2Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE;
EPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;
EPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV1;
EPwm2Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
EPwm2Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm2Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm2Regs.AQCTLA.bit.ZRO = AQ_CLEAR;                  // PWM toggle low/high
EPwm2Regs.AQCTLA.bit.CAU = AQ_SET;
EPwm2Regs.AQCTLB.bit.ZRO = AQ_CLEAR;
EPwm2Regs.AQCTLB.bit.CBU = AQ_SET;
EALLOW;
EPwm2Regs.HRCNFG.all = 0x0;
EPwm2Regs.HRCNFG.bit.EDGMODE = HR_REP;                //MEP control on Rising edge
EPwm2Regs.HRCNFG.bit.CTLMODE = HR_CMP;
EPwm2Regs.HRCNFG.bit.HRLOAD  = HR_CTR_ZERO;
EDIS;
}
void HRPWM3_Config(period)
{
// ePWM3 register configuration with HRPWM
// ePWM3A toggle high/low with MEP control on falling edge
EPwm3Regs.TBCTL.bit.PRDLD = TB_IMMEDIATE;        // set Immediate load
EPwm3Regs.TBPRD = period-1;                    // PWM frequency = 1 / period
EPwm3Regs.CMPA.half.CMPA = period / 1.35;            // set duty 50% initially
EPwm3Regs.CMPA.half.CMPAHR = (1 << 8);              // initialize HRPWM extension
EPwm3Regs.CMPB = period / 1.35;                    // set duty 50% initially
EPwm3Regs.TBPHS.all = 0;
EPwm3Regs.TBCTR = 0;
EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP;
EPwm3Regs.TBCTL.bit.PHSEN = TB_DISABLE;        // ePWM3 is the Master
EPwm3Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE;
EPwm3Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;
EPwm3Regs.TBCTL.bit.CLKDIV = TB_DIV1;
EPwm3Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
EPwm3Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
EPwm3Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm3Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm3Regs.AQCTLA.bit.ZRO = AQ_SET;                  // PWM toggle high/low
EPwm3Regs.AQCTLA.bit.CAU = AQ_CLEAR;
EPwm3Regs.AQCTLB.bit.ZRO = AQ_SET;
EPwm3Regs.AQCTLB.bit.CBU = AQ_CLEAR;
EALLOW;
EPwm3Regs.HRCNFG.all = 0x0;
EPwm3Regs.HRCNFG.bit.EDGMODE = HR_FEP;               //MEP control on falling edge
EPwm3Regs.HRCNFG.bit.CTLMODE = HR_CMP;
EPwm3Regs.HRCNFG.bit.HRLOAD  = HR_CTR_ZERO;
EDIS;
}
void HRPWM4_Config(period)
{
// ePWM4 register configuration with HRPWM
// ePWM4A toggle high/low with MEP control on falling edge
EPwm4Regs.TBCTL.bit.PRDLD = TB_IMMEDIATE;        // set Immediate load
EPwm4Regs.TBPRD = period-1;                    // PWM frequency = 1 / period
EPwm4Regs.CMPA.half.CMPA = period / 1.35;              // set duty 50% initially
EPwm4Regs.CMPA.half.CMPAHR = (1 << 8);              // initialize HRPWM extension
EPwm4Regs.CMPB = period / 1.35;                    // set duty 50% initially
EPwm4Regs.TBPHS.all = 0;
EPwm4Regs.TBCTR = 0;
EPwm4Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP;
EPwm4Regs.TBCTL.bit.PHSEN = TB_DISABLE;        // ePWM4 is the Master
EPwm4Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE;
EPwm4Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;
EPwm4Regs.TBCTL.bit.CLKDIV = TB_DIV1;
EPwm4Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
EPwm4Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
EPwm4Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm4Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm4Regs.AQCTLA.bit.ZRO = AQ_SET;                  // PWM toggle high/low
EPwm4Regs.AQCTLA.bit.CAU = AQ_CLEAR;
EPwm4Regs.AQCTLB.bit.ZRO = AQ_SET;
EPwm4Regs.AQCTLB.bit.CBU = AQ_CLEAR;
EALLOW;
EPwm4Regs.HRCNFG.all = 0x0;
EPwm4Regs.HRCNFG.bit.EDGMODE = HR_FEP;              // MEP control on falling edge
EPwm4Regs.HRCNFG.bit.CTLMODE = HR_CMP;
EPwm4Regs.HRCNFG.bit.HRLOAD  = HR_CTR_ZERO;
EDIS;
}