Other Parts Discussed in Thread: MSP-EXP430FR5994
Hi, I posted a similar question yesterday, but the situation has updated slightly. I'm working with the MSP430Ware sample code for a basic ADC on the MSP-EXP430FR5994 development board. On the official code, it uses MEM0 and the supporting infrastructure such as flag 0 to convert. The one underneath is my modification; I've used MEM2 and flag 2 to convert.
/* --COPYRIGHT--,BSD_EX
* Copyright (c) 2015, Texas Instruments Incorporated
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************
*
* MSP430 CODE EXAMPLE DISCLAIMER
*
* MSP430 code examples are self-contained low-level programs that typically
* demonstrate a single peripheral function or device feature in a highly
* concise manner. For this the code may rely on the device's power-on default
* register values and settings such as the clock configuration and care must
* be taken when combining code from several examples to avoid potential side
* effects. Also see www.ti.com/grace for a GUI- and www.ti.com/msp430ware
* for an API functional library-approach to peripheral configuration.
*
* --/COPYRIGHT--*/
//******************************************************************************
// MSP430FR5x9x Demo - ADC12, Sample A1, AVcc Ref, Set P1.0 if A1 > 0.5*AVcc
//
// Description: A single sample is made on A1 with reference to AVcc.
// Software sets ADC12SC to start sample and conversion - ADC12SC
// automatically cleared at End of Conversion. ADC12 internal oscillator times sample (16x)
// and conversion. In Mainloop MSP430 waits in LPM0 to save power until ADC12
// conversion complete, ADC12_ISR will force exit from LPM0 in Mainloop on
// reti. If A1 > 0.5*AVcc, P1.0 set, else reset. The full, correct handling of
// and ADC12 interrupt is shown as well.
//
//
// MSP430FR5994
// -----------------
// /|\| XIN|-
// | | |
// --|RST XOUT|-
// | |
// >---|P1.1/A1 P1.0|-->LED
//
// William Goh
// Texas Instruments Inc.
// October 2015
// Built with IAR Embedded Workbench V6.30 & Code Composer Studio V6.1
//******************************************************************************
#include <msp430.h>
#include <stdio.h>
int main(void)
{
WDTCTL = WDTPW | WDTHOLD; // Stop WDT
// GPIO Setup
P1OUT &= ~BIT0; // Clear LED to start
P1DIR |= BIT0; // Set P1.0/LED to output
P1SEL1 |= BIT2; // Configure P1.2 for ADC input (See p369, p88 of specific for pin config details.)
P1SEL0 |= BIT2; // There are two Pin Select bits (p88 of specifics, we are given that P1.2 corresponds to A2.)
// Disable the GPIO power-on default high-impedance mode to activate
// previously configured port settings (p92)
PM5CTL0 &= ~LOCKLPM5;
/*
// Configure Clocks
CSCTL0_H = CSKEY_H; // Unlock CS registers (p96, p104)
CSCTL1 = DCOFSEL_0; // Set DCO to 1MHz (p105)
CSCTL2 = SELA__LFXTCLK | SELS__DCOCLK | SELM__DCOCLK; // Set ACLK = LFXTCLK (p106, LFXTCLK = Low-f oscillator, 32.8k (p94))
CSCTL3 = DIVA__1 | DIVS__1 | DIVM__1; // Set all dividers (p107)
*/
// Configure ADC12
ADC12CTL0 = ADC12SHT0_2 | ADC12ON; // Sampling time, S&H=16, ADC12 on [p893, CTL0 = control 0, SHT0_2 = sample & hold time, knowledge of register value from p88_s]
ADC12CTL1 = ADC12SHP; // Use sampling timer [p895, Sampler uses sampling timer (not sure what that is yet)]
ADC12CTL2 |= ADC12RES_2; // 12-bit conversion results [p897, RES means resolution, _2 means 12 bits]
ADC12CTL3 |= ADC12CSTARTADD_2; // Use MEM2/MCTL2
//ADC12MCTL0 |= ADC12INCH_2;
ADC12MCTL2 |= ADC12INCH_2; // A2 ADC input select; Vref=AVCC [MCTL2 = Memory Control 2 (p900), INCH = input channel, 2 means channel A2]
ADC12IER0 |= ADC12IE2; // Enable ADC conv complete interrupt [p903, means "interrupt enable register 0". Enables or disables the interrupt request for ADC12IFG2 bit]
printf("Got here.\n");
while (1)
{
printf("Got there.\n");
__delay_cycles(5000);
ADC12CTL0 |= ADC12ENC | ADC12SC; // Start sampling/conversion [p893, ENC = enable conversion, SC = start conversion. difference between the two = idfk, but remember to have both set]
__bis_SR_register(LPM0_bits | GIE); // LPM0, ADC12_ISR will force exit
// printf("Got nowhere.\n");
__no_operation(); // For debugger
}
}
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector = ADC12_B_VECTOR
__interrupt void ADC12_ISR(void)
#elif defined(__GNUC__)
void __attribute__ ((interrupt(ADC12_B_VECTOR))) ADC12_ISR (void)
#else
#error Compiler not supported!
#endif
{
switch(__even_in_range(ADC12IV, ADC12IV__ADC12RDYIFG))
{
case ADC12IV__NONE: break; // Vector 0: No interrupt
case ADC12IV__ADC12OVIFG: break; // Vector 2: ADC12MEMx Overflow
case ADC12IV__ADC12TOVIFG: break; // Vector 4: Conversion time overflow
case ADC12IV__ADC12HIIFG: break; // Vector 6: ADC12BHI
case ADC12IV__ADC12LOIFG: break; // Vector 8: ADC12BLO
case ADC12IV__ADC12INIFG: break; // Vector 10: ADC12BIN
/*case ADC12IV__ADC12IFG0: // Vector 12: ADC12MEM0 Interrupt
if (ADC12MEM0 >= 0x7ff){ // ADC12MEM0 = A1 > 0.5AVcc?
P1OUT |= BIT0; // P1.0 = 1
}
else{
P1OUT &= ~BIT0; // P1.0 = 0
}
printf("In MEM0.");
///int memval = ADC12MEM0; // Memory stored in MEM0, because it was set from above.
///printf("%d\n", memval);
// Exit from LPM0 and continue executing main
__bic_SR_register_on_exit(LPM0_bits);
break;*/
case ADC12IV__ADC12IFG1: break; // Vector 14: ADC12MEM1
case ADC12IV__ADC12IFG2: break; // Vector 16: ADC12MEM2
if (ADC12MEM2 >= 0x7ff) { // ADC12MEM2 = A1 > 0.5AVcc?
P1OUT |= BIT0; } // P1.0 = 1
else{
P1OUT &= ~BIT0; } // P1.0 = 0
printf("In MEM2.");
int memval = ADC12MEM2; // Memory stored in MEM0, because it was set from above.
printf("%d\n", memval);
// Exit from LPM0 and continue executing main
__bic_SR_register_on_exit(LPM0_bits);
break;
case ADC12IV__ADC12IFG3: break; // Vector 18: ADC12MEM3
case ADC12IV__ADC12IFG4: break; // Vector 20: ADC12MEM4
case ADC12IV__ADC12IFG5: break; // Vector 22: ADC12MEM5
case ADC12IV__ADC12IFG6: break; // Vector 24: ADC12MEM6
case ADC12IV__ADC12IFG7: break; // Vector 26: ADC12MEM7
case ADC12IV__ADC12IFG8: break; // Vector 28: ADC12MEM8
case ADC12IV__ADC12IFG9: break; // Vector 30: ADC12MEM9
case ADC12IV__ADC12IFG10: break; // Vector 32: ADC12MEM10
case ADC12IV__ADC12IFG11: break; // Vector 34: ADC12MEM11
case ADC12IV__ADC12IFG12: break; // Vector 36: ADC12MEM12
case ADC12IV__ADC12IFG13: break; // Vector 38: ADC12MEM13
case ADC12IV__ADC12IFG14: break; // Vector 40: ADC12MEM14
case ADC12IV__ADC12IFG15: break; // Vector 42: ADC12MEM15
case ADC12IV__ADC12IFG16: break; // Vector 44: ADC12MEM16
case ADC12IV__ADC12IFG17: break; // Vector 46: ADC12MEM17
case ADC12IV__ADC12IFG18: break; // Vector 48: ADC12MEM18
case ADC12IV__ADC12IFG19: break; // Vector 50: ADC12MEM19
case ADC12IV__ADC12IFG20: break; // Vector 52: ADC12MEM20
case ADC12IV__ADC12IFG21: break; // Vector 54: ADC12MEM21
case ADC12IV__ADC12IFG22: break; // Vector 56: ADC12MEM22
case ADC12IV__ADC12IFG23: break; // Vector 58: ADC12MEM23
case ADC12IV__ADC12IFG24: break; // Vector 60: ADC12MEM24
case ADC12IV__ADC12IFG25: break; // Vector 62: ADC12MEM25
case ADC12IV__ADC12IFG26: break; // Vector 64: ADC12MEM26
case ADC12IV__ADC12IFG27: break; // Vector 66: ADC12MEM27
case ADC12IV__ADC12IFG28: break; // Vector 68: ADC12MEM28
case ADC12IV__ADC12IFG29: break; // Vector 70: ADC12MEM29
case ADC12IV__ADC12IFG30: break; // Vector 72: ADC12MEM30
case ADC12IV__ADC12IFG31: break; // Vector 74: ADC12MEM31
case ADC12IV__ADC12RDYIFG: break; // Vector 76: ADC12RDY
default: break;
}
}
The code doesn't get past line 109. And on line 150 (the line with the interrupt instructions for MEM2), I am given a warning that the statement is unreachable. I am unsure what to make of this, and if more information is needed to solve this issue please let me know.