Other Parts Discussed in Thread: BQ35100
I am using code based on the msp430fr599x_eusci_i2c_standard_master.c demo program in CCS to read data from a bq35100 register (command 0x08). MasterMode successfully switches from IDLE_MODE to TX_REG_ADDRESS_MODE to write the register address to UCB2TXBUF, and then to SWITCH_TO_RX_MODE to start reading from the register, at which point it enters LMP0 indefinitely and does not get interrupted. Is there an issue with the code or is this likely an issue with the hardware? Thank you!
#include <msp430.h>
#include <stdint.h>
#include <stdbool.h>
//******************************************************************************
// Pin Config ******************************************************************
//******************************************************************************
#define LED_OUT P1OUT
#define LED_DIR P1DIR
#define LED0_PIN BIT0
#define LED1_PIN BIT1
//******************************************************************************
// Example Commands ************************************************************
//******************************************************************************
#define FUEL_GAUGE_ADDR 0x55
#define MAX_BUFFER_SIZE 20
uint8_t TempArr [2] = {0};
//******************************************************************************
// General I2C State Machine ***************************************************
//******************************************************************************
typedef enum I2C_ModeEnum{
IDLE_MODE,
NACK_MODE,
TX_REG_ADDRESS_MODE,
RX_REG_ADDRESS_MODE,
TX_DATA_MODE,
RX_DATA_MODE,
SWITCH_TO_RX_MODE,
SWITCH_TO_TX_MODE,
TIMEOUT_MODE
} I2C_Mode;
/* Used to track the state of the software state machine*/
I2C_Mode MasterMode = IDLE_MODE;
/* The Register Address/Command to use*/
uint8_t TransmitRegAddr = 0;
/* ReceiveBuffer: Buffer used to receive data in the ISR
* RXByteCtr: Number of bytes left to receive
* ReceiveIndex: The index of the next byte to be received in ReceiveBuffer
* TransmitBuffer: Buffer used to transmit data in the ISR
* TXByteCtr: Number of bytes left to transfer
* TransmitIndex: The index of the next byte to be transmitted in TransmitBuffer
* */
uint8_t ReceiveBuffer[MAX_BUFFER_SIZE] = {0};
uint8_t RXByteCtr = 0;
uint8_t ReceiveIndex = 0;
uint8_t TransmitBuffer[MAX_BUFFER_SIZE] = {0};
uint8_t TXByteCtr = 0;
uint8_t TransmitIndex = 0;
/* For slave device with dev_addr, read the data specified in slaves reg_addr.
* The received data is available in ReceiveBuffer
*
* dev_addr: The slave device address.
* Example: SLAVE_ADDR
* reg_addr: The register or command to send to the slave.
* Example: CMD_TYPE_0_SLAVE
* count: The length of data to read
* Example: TYPE_0_LENGTH
* */
I2C_Mode I2C_Master_ReadReg(uint8_t dev_addr, uint8_t reg_addr, uint8_t count)
{
/* Initialize state machine */
MasterMode = TX_REG_ADDRESS_MODE;
TransmitRegAddr = reg_addr;
RXByteCtr = count;
TXByteCtr = 0;
ReceiveIndex = 0;
TransmitIndex = 0;
/* Initialize slave address and interrupts */
UCB2I2CSA = dev_addr;
UCB2IFG &= ~(UCTXIFG + UCRXIFG); // Clear any pending interrupts
UCB2IE &= ~UCRXIE; // Disable RX interrupt
UCB2IE |= UCTXIE; // Enable TX interrupt
UCB2CTLW0 |= UCTR + UCTXSTT; // I2C TX, start condition
__bis_SR_register(LPM0_bits + GIE); // Enter LPM0 w/ interrupts
return MasterMode;
}
void CopyArray(uint8_t *source, uint8_t *dest, uint8_t count)
{
uint8_t copyIndex = 0;
for (copyIndex = 0; copyIndex < count; copyIndex++)
{
dest[copyIndex] = source[copyIndex];
}
}
//******************************************************************************
// Device Initialization *******************************************************
//******************************************************************************
void initGPIO()
{
// Configure GPIO
LED_OUT &= ~(LED0_PIN | LED1_PIN); // P1 setup for LED & reset output
LED_DIR |= (LED0_PIN | LED1_PIN);
// I2C pins
P7SEL0 |= BIT0 | BIT1;
P7SEL1 &= ~(BIT0 | BIT1);
// Disable the GPIO power-on default high-impedance mode to activate
// previously configured port settings
PM5CTL0 &= ~LOCKLPM5;
}
void initClockTo16MHz()
{
// Configure one FRAM waitstate as required by the device datasheet for MCLK
// operation beyond 8MHz _before_ configuring the clock system.
FRCTL0 = FRCTLPW | NWAITS_1;
// Clock System Setup
CSCTL0_H = CSKEY_H; // Unlock CS registers
CSCTL1 = DCOFSEL_0; // Set DCO to 1MHz
// Set SMCLK = MCLK = DCO, ACLK = LFXTCLK (VLOCLK if unavailable)
CSCTL2 = SELA__LFXTCLK | SELS__DCOCLK | SELM__DCOCLK;
// Per Device Errata set divider to 4 before changing frequency to
// prevent out of spec operation from overshoot transient
CSCTL3 = DIVA__4 | DIVS__4 | DIVM__4; // Set all corresponding clk sources to divide by 4 for errata
CSCTL1 = DCOFSEL_4 | DCORSEL; // Set DCO to 16MHz
// Delay by ~10us to let DCO settle. 60 cycles = 20 cycles buffer + (10us / (1/4MHz))
__delay_cycles(60);
CSCTL3 = DIVA__1 | DIVS__1 | DIVM__1; // Set all dividers to 1 for 16MHz operation
CSCTL0_H = 0; // Lock CS registers
}
void initI2C()
{
UCB2CTLW0 = UCSWRST; // Enable SW reset
UCB2CTLW0 |= UCMODE_3 | UCMST | UCSSEL__SMCLK | UCSYNC; // I2C master mode, SMCLK
UCB2BRW = 160; // fSCL = SMCLK/160 = ~100kHz
UCB2I2CSA = FUEL_GAUGE_ADDR; // Slave Address
UCB2CTLW0 &= ~UCSWRST; // Clear SW reset, resume operation
UCB2IE |= UCNACKIE;
}
//******************************************************************************
// Main ************************************************************************
//******************************************************************************
int main(void) {
WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer
initClockTo16MHz();
initGPIO();
initI2C();
I2C_Master_ReadReg(FUEL_GAUGE_ADDR, 0x08, 2);
CopyArray(ReceiveBuffer, TempArr, 2);
__bis_SR_register(LPM0_bits + GIE);
return 0;
}
//******************************************************************************
// I2C Interrupt ***************************************************************
//******************************************************************************
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector = USCI_B2_VECTOR
__interrupt void USCI_B2_ISR(void)
#elif defined(__GNUC__)
void __attribute__ ((interrupt(USCI_B2_VECTOR))) USCI_B2_ISR (void)
#else
#error Compiler not supported!
#endif
{
//Must read from UCB2RXBUF
uint8_t rx_val = 0;
switch(__even_in_range(UCB2IV, USCI_I2C_UCBIT9IFG))
{
case USCI_NONE: break; // Vector 0: No interrupts
case USCI_I2C_UCALIFG: break; // Vector 2: ALIFG
case USCI_I2C_UCNACKIFG: // Vector 4: NACKIFG
break;
case USCI_I2C_UCSTTIFG: break; // Vector 6: STTIFG
case USCI_I2C_UCSTPIFG: break; // Vector 8: STPIFG
case USCI_I2C_UCRXIFG3: break; // Vector 10: RXIFG3
case USCI_I2C_UCTXIFG3: break; // Vector 12: TXIFG3
case USCI_I2C_UCRXIFG2: break; // Vector 14: RXIFG2
case USCI_I2C_UCTXIFG2: break; // Vector 16: TXIFG2
case USCI_I2C_UCRXIFG1: break; // Vector 18: RXIFG1
case USCI_I2C_UCTXIFG1: break; // Vector 20: TXIFG1
case USCI_I2C_UCRXIFG0: // Vector 22: RXIFG0
rx_val = UCB2RXBUF;
if (RXByteCtr)
{
ReceiveBuffer[ReceiveIndex++] = rx_val;
RXByteCtr--;
}
if (RXByteCtr == 1)
{
UCB2CTLW0 |= UCTXSTP;
}
else if (RXByteCtr == 0)
{
UCB2IE &= ~UCRXIE;
MasterMode = IDLE_MODE;
__bic_SR_register_on_exit(CPUOFF); // Exit LPM0
}
break;
case USCI_I2C_UCTXIFG0: // Vector 24: TXIFG0
switch (MasterMode)
{
case TX_REG_ADDRESS_MODE:
UCB2TXBUF = TransmitRegAddr;
if (RXByteCtr)
MasterMode = SWITCH_TO_RX_MODE; // Need to start receiving now
else
MasterMode = TX_DATA_MODE; // Continue to transmission with the data in Transmit Buffer
break;
case SWITCH_TO_RX_MODE:
UCB2IE |= UCRXIE; // Enable RX interrupt
UCB2IE &= ~UCTXIE; // Disable TX interrupt
UCB2CTLW0 &= ~UCTR; // Switch to receiver
MasterMode = RX_DATA_MODE; // State state is to receive data
UCB2CTLW0 |= UCTXSTT; // Send repeated start
if (RXByteCtr == 1)
{
//Must send stop since this is the N-1 byte
while((UCB2CTLW0 & UCTXSTT));
UCB2CTLW0 |= UCTXSTP; // Send stop condition
}
break;
case TX_DATA_MODE:
if (TXByteCtr)
{
UCB2TXBUF = TransmitBuffer[TransmitIndex++];
TXByteCtr--;
}
else
{
//Done with transmission
UCB2CTLW0 |= UCTXSTP; // Send stop condition
MasterMode = IDLE_MODE;
UCB2IE &= ~UCTXIE; // disable TX interrupt
__bic_SR_register_on_exit(CPUOFF); // Exit LPM0
}
break;
default:
__no_operation();
break;
}
break;
default: break;
}
}