This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

I2C trouble on MSP430 - I don't think I'm ever entering the interrupt vector

    I'm currently using the sample code below from TI.  I have a master and a slave connected, SDA and SDL are each wired to their respective ports on the other MSP and I have one 12Kohm on each line pulling them up to Vcc.  I'm using a breadboard, but I don't think its parasitic capacitance is a problem at 100KHz.

I don't think I'm ever entering the Transmit interrupt vector for two reasons: a known-good oscilloscope is showing a constant high voltage on both signal pins, and when I put a break point in the Transmit interrupt vector, the system never stops there.


It's TI's code, so I would expect it to work straight out of the box.  Am I being naive?

/* --COPYRIGHT--,BSD_EX
 * Copyright (c) 2012, Texas Instruments Incorporated
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * *  Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * *  Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * *  Neither the name of Texas Instruments Incorporated nor the names of
 *    its contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 *******************************************************************************
 * 
 *                       MSP430 CODE EXAMPLE DISCLAIMER
 *
 * MSP430 code examples are self-contained low-level programs that typically
 * demonstrate a single peripheral function or device feature in a highly
 * concise manner. For this the code may rely on the device's power-on default
 * register values and settings such as the clock configuration and care must
 * be taken when combining code from several examples to avoid potential side
 * effects. Also see www.ti.com/grace for a GUI- and www.ti.com/msp430ware
 * for an API functional library-approach to peripheral configuration.
 *
 * --/COPYRIGHT--*/
//******************************************************************************
//  MSP430G2xx3 Demo - USCI_B0 I2C Master RX multiple bytes from MSP430 Slave
//
//  Description: This demo connects two MSP430's via the I2C bus. The slave
//  transmits to the master. This is the master code. It continuously
//  receives an array of data and demonstrates how to implement an I2C
//  master receiver receiving multiple bytes using the USCI_B0 TX interrupt.
//  ACLK = n/a, MCLK = SMCLK = BRCLK = default DCO = ~1.2MHz
//
//  *** to be used with "msp430g2xx3_uscib0_i2c_11.c" ***
//
//                                /|\  /|\
//               MSP430G2xx3      10k  10k     MSP430G2xx3
//                   slave         |    |        master
//             -----------------   |    |  -----------------
//           -|XIN  P3.1/UCB0SDA|<-|---+->|P3.1/UCB0SDA  XIN|-
//            |                 |  |      |                 |
//           -|XOUT             |  |      |             XOUT|-
//            |     P3.2/UCB0SCL|<-+----->|P3.2/UCB0SCL     |
//            |                 |         |                 |
//
//  D. Dang
//  Texas Instruments Inc.
//  February 2011
//  Built with CCS Version 4.2.0 and IAR Embedded Workbench Version: 5.10
//******************************************************************************
#include <msp430.h>

unsigned char *PRxData;                     // Pointer to RX data
unsigned char RXByteCtr;
volatile unsigned char RxBuffer[128];       // Allocate 128 byte of RAM

int main(void)
{
  WDTCTL = WDTPW + WDTHOLD;                 // Stop WDT
  P1SEL |= BIT6 + BIT7;                     // Assign I2C pins to USCI_B0
  P1SEL2|= BIT6 + BIT7;                     // Assign I2C pins to USCI_B0
  UCB0CTL1 |= UCSWRST;                      // Enable SW reset
  UCB0CTL0 = UCMST + UCMODE_3 + UCSYNC;     // I2C Master, synchronous mode
  UCB0CTL1 = UCSSEL_2 + UCSWRST;            // Use SMCLK, keep SW reset
  UCB0BR0 = 12;                             // fSCL = SMCLK/12 = ~100kHz
  UCB0BR1 = 0;
  UCB0I2CSA = 0x48;                         // Slave Address is 048h
  UCB0CTL1 &= ~UCSWRST;                     // Clear SW reset, resume operation
  IE2 |= UCB0RXIE;                          // Enable RX interrupt

  while (1)
  {
    PRxData = (unsigned char *)RxBuffer;    // Start of RX buffer
    RXByteCtr = 5;                          // Load RX byte counter
    while (UCB0CTL1 & UCTXSTP);             // Ensure stop condition got sent
    UCB0CTL1 |= UCTXSTT;                    // I2C start condition
    __bis_SR_register(CPUOFF + GIE);        // Enter LPM0 w/ interrupts
                                            // Remain in LPM0 until all data
                                            // is RX'd
    __no_operation();                       // Set breakpoint >>here<< and
  }                                         // read out the RxBuffer buffer
}

//-------------------------------------------------------------------------------
// The USCI_B0 data ISR is used to move received data from the I2C slave
// to the MSP430 memory. It is structured such that it can be used to receive
// any 2+ number of bytes by pre-loading RXByteCtr with the byte count.
//-------------------------------------------------------------------------------
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector = USCIAB0TX_VECTOR
__interrupt void USCIAB0TX_ISR(void)
#elif defined(__GNUC__)
void __attribute__ ((interrupt(USCIAB0TX_VECTOR))) USCIAB0TX_ISR (void)
#else
#error Compiler not supported!
#endif
{
  RXByteCtr--;                              // Decrement RX byte counter
  if (RXByteCtr)
  {
    *PRxData++ = UCB0RXBUF;                 // Move RX data to address PRxData
    if (RXByteCtr == 1)                     // Only one byte left?
      UCB0CTL1 |= UCTXSTP;                  // Generate I2C stop condition
  }
  else
  {
    *PRxData = UCB0RXBUF;                   // Move final RX data to PRxData
    __bic_SR_register_on_exit(CPUOFF);      // Exit LPM0
  }
}

**Attention** This is a public forum