I'm currently using the sample code below from TI. I have a master and a slave connected, SDA and SDL are each wired to their respective ports on the other MSP and I have one 12Kohm on each line pulling them up to Vcc. I'm using a breadboard, but I don't think its parasitic capacitance is a problem at 100KHz.
I don't think I'm ever entering the Transmit interrupt vector for two reasons: a known-good oscilloscope is showing a constant high voltage on both signal pins, and when I put a break point in the Transmit interrupt vector, the system never stops there.
It's TI's code, so I would expect it to work straight out of the box. Am I being naive?
/* --COPYRIGHT--,BSD_EX * Copyright (c) 2012, Texas Instruments Incorporated * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of Texas Instruments Incorporated nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************* * * MSP430 CODE EXAMPLE DISCLAIMER * * MSP430 code examples are self-contained low-level programs that typically * demonstrate a single peripheral function or device feature in a highly * concise manner. For this the code may rely on the device's power-on default * register values and settings such as the clock configuration and care must * be taken when combining code from several examples to avoid potential side * effects. Also see www.ti.com/grace for a GUI- and www.ti.com/msp430ware * for an API functional library-approach to peripheral configuration. * * --/COPYRIGHT--*/ //****************************************************************************** // MSP430G2xx3 Demo - USCI_B0 I2C Master RX multiple bytes from MSP430 Slave // // Description: This demo connects two MSP430's via the I2C bus. The slave // transmits to the master. This is the master code. It continuously // receives an array of data and demonstrates how to implement an I2C // master receiver receiving multiple bytes using the USCI_B0 TX interrupt. // ACLK = n/a, MCLK = SMCLK = BRCLK = default DCO = ~1.2MHz // // *** to be used with "msp430g2xx3_uscib0_i2c_11.c" *** // // /|\ /|\ // MSP430G2xx3 10k 10k MSP430G2xx3 // slave | | master // ----------------- | | ----------------- // -|XIN P3.1/UCB0SDA|<-|---+->|P3.1/UCB0SDA XIN|- // | | | | | // -|XOUT | | | XOUT|- // | P3.2/UCB0SCL|<-+----->|P3.2/UCB0SCL | // | | | | // // D. Dang // Texas Instruments Inc. // February 2011 // Built with CCS Version 4.2.0 and IAR Embedded Workbench Version: 5.10 //****************************************************************************** #include <msp430.h> unsigned char *PRxData; // Pointer to RX data unsigned char RXByteCtr; volatile unsigned char RxBuffer[128]; // Allocate 128 byte of RAM int main(void) { WDTCTL = WDTPW + WDTHOLD; // Stop WDT P1SEL |= BIT6 + BIT7; // Assign I2C pins to USCI_B0 P1SEL2|= BIT6 + BIT7; // Assign I2C pins to USCI_B0 UCB0CTL1 |= UCSWRST; // Enable SW reset UCB0CTL0 = UCMST + UCMODE_3 + UCSYNC; // I2C Master, synchronous mode UCB0CTL1 = UCSSEL_2 + UCSWRST; // Use SMCLK, keep SW reset UCB0BR0 = 12; // fSCL = SMCLK/12 = ~100kHz UCB0BR1 = 0; UCB0I2CSA = 0x48; // Slave Address is 048h UCB0CTL1 &= ~UCSWRST; // Clear SW reset, resume operation IE2 |= UCB0RXIE; // Enable RX interrupt while (1) { PRxData = (unsigned char *)RxBuffer; // Start of RX buffer RXByteCtr = 5; // Load RX byte counter while (UCB0CTL1 & UCTXSTP); // Ensure stop condition got sent UCB0CTL1 |= UCTXSTT; // I2C start condition __bis_SR_register(CPUOFF + GIE); // Enter LPM0 w/ interrupts // Remain in LPM0 until all data // is RX'd __no_operation(); // Set breakpoint >>here<< and } // read out the RxBuffer buffer } //------------------------------------------------------------------------------- // The USCI_B0 data ISR is used to move received data from the I2C slave // to the MSP430 memory. It is structured such that it can be used to receive // any 2+ number of bytes by pre-loading RXByteCtr with the byte count. //------------------------------------------------------------------------------- #if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__) #pragma vector = USCIAB0TX_VECTOR __interrupt void USCIAB0TX_ISR(void) #elif defined(__GNUC__) void __attribute__ ((interrupt(USCIAB0TX_VECTOR))) USCIAB0TX_ISR (void) #else #error Compiler not supported! #endif { RXByteCtr--; // Decrement RX byte counter if (RXByteCtr) { *PRxData++ = UCB0RXBUF; // Move RX data to address PRxData if (RXByteCtr == 1) // Only one byte left? UCB0CTL1 |= UCTXSTP; // Generate I2C stop condition } else { *PRxData = UCB0RXBUF; // Move final RX data to PRxData __bic_SR_register_on_exit(CPUOFF); // Exit LPM0 } }