Hi,
I tried to model compilation on PC using EdgeAI TIDL Tools.
I setup environment for the model compilation and tried to model compile using TI's sample models(ONNX, TFLite).
But result is failed.(Also not working edgeAI Apps on EVM) model compilation shows below warning messages:
WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC.
Please look into perfsim log.
This model can only be used on PC emulation, it will get fault on target.
I checked the perfsim log(model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_io_.perf_sim_config.txt) file.
# Size of L2 SRAM Memory in KB which can be used by TIDL, Recommended value is # 448KB considering that 64KB of L2 shall be configured as cache. TIDL test bench # configures L2 cache as 64 KB, so any value higher than 448 KB would require # user to change the L2 cache setting in TIDL test bench L2MEMSIZE_KB = 448 # Size of L3 (MSMC) SRAM Memory in KB which can be used by TIDL MSMCSIZE_KB = 7968 #ID for a Device, TDA4VMID = 0, TIDL_TDA4AEP = 1, TIDL_TDA4AM = 2, TIDL_TDA4AMPlus = 3 DEVICE_NAME = 0 ENABLE_PERSIT_WT_ALLOC = 1 DDRFREQ_MHZ = 4266 FILENAME_NET = /home/edgeai-tidl-tools/model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_net.bin FILEFORMAT_NET = -1 OUTPUT_DIR = /home/edgeai-tidl-tools/model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_net.bin
I can't find compile option about cache size in EdgeAI TIDL Tools.
Available execution providers : ['TIDLExecutionProvider', 'TIDLCompilationProvider', 'CPUExecutionProvider'] Running 1 Models - ['cl-ort-resnet18-v1'] 2022-03-22 11:14:23.113709000 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer4.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. 2022-03-22 11:14:23.113749200 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer4.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2022-03-22 11:14:23.113756200 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer4.0.downsample.1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2022-03-22 11:14:23.113761400 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer4.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. 2022-03-22 11:14:23.113766500 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer3.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2022-03-22 11:14:23.113771900 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer1.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2022-03-22 11:14:23.113776700 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer1.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. 2022-03-22 11:14:23.113781300 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer4.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2022-03-22 11:14:23.113785800 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer3.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. 2022-03-22 11:14:23.113790500 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer3.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2022-03-22 11:14:23.113795400 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2022-03-22 11:14:23.113800400 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer1.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2022-03-22 11:14:23.113804900 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer2.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2022-03-22 11:14:23.113809800 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer1.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. 2022-03-22 11:14:23.113814600 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer2.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. 2022-03-22 11:14:23.113819200 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer2.0.downsample.1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2022-03-22 11:14:23.113824200 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer2.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2022-03-22 11:14:23.113829300 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer2.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. 2022-03-22 11:14:23.113834200 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer3.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. 2022-03-22 11:14:23.113846100 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer3.0.downsample.1.num_batches_tracked'. It is not used by any node and should be removed from the model. tidl_tools_path = /home/edgeai-tidl-tools/tidl_tools artifacts_folder = ../../../model-artifacts//cl-ort-resnet18-v1/ tidl_tensor_bits = 8 debug_level = 3 num_tidl_subgraphs = 16 tidl_denylist = tidl_calibration_accuracy_level = 7 tidl_calibration_options:num_frames_calibration = 2 tidl_calibration_options:bias_calibration_iterations = 5 power_of_2_quantization = 2 enable_high_resolution_optimization = 0 pre_batchnorm_fold = 1 add_data_convert_ops = 3 output_feature_16bit_names_list = m_params_16bit_names_list = reserved_compile_constraints_flag = 1601 ti_internal_reserved_1 = ****** WARNING : Network not identified as Object Detection network - Ignore if network is not OD ***** Supported TIDL layer type --- Cast -- Supported TIDL layer type --- Add -- Supported TIDL layer type --- Mul -- Supported TIDL layer type --- Conv -- Supported TIDL layer type --- Relu -- Supported TIDL layer type --- MaxPool -- Supported TIDL layer type --- Conv -- Supported TIDL layer type --- Relu -- Supported TIDL layer type --- Conv -- Supported TIDL layer type --- Add -- Supported TIDL layer type --- Relu -- Supported TIDL layer type --- Conv -- Supported TIDL layer type --- Relu -- Supported TIDL layer type --- Conv -- Supported TIDL layer type --- Add -- Supported TIDL layer type --- Relu -- Supported TIDL layer type --- Conv -- Supported TIDL layer type --- Conv -- Supported TIDL layer type --- Relu -- Supported TIDL layer type --- Conv -- Supported TIDL layer type --- Add -- Supported TIDL layer type --- Relu -- Supported TIDL layer type --- Conv -- Supported TIDL layer type --- Relu -- Supported TIDL layer type --- Conv -- Supported TIDL layer type --- Add -- Supported TIDL layer type --- Relu -- Supported TIDL layer type --- Conv -- Supported TIDL layer type --- Conv -- Supported TIDL layer type --- Relu -- Supported TIDL layer type --- Conv -- Supported TIDL layer type --- Add -- Supported TIDL layer type --- Relu -- Supported TIDL layer type --- Conv -- Supported TIDL layer type --- Relu -- Supported TIDL layer type --- Conv -- Supported TIDL layer type --- Add -- Supported TIDL layer type --- Relu -- Supported TIDL layer type --- Conv -- Supported TIDL layer type --- Conv -- Supported TIDL layer type --- Relu -- Supported TIDL layer type --- Conv -- Supported TIDL layer type --- Add -- Supported TIDL layer type --- Relu -- Supported TIDL layer type --- Conv -- Supported TIDL layer type --- Relu -- Supported TIDL layer type --- Conv -- Supported TIDL layer type --- Add -- Supported TIDL layer type --- Relu -- Supported TIDL layer type --- GlobalAveragePool -- Supported TIDL layer type --- Flatten -- Supported TIDL layer type --- Gemm -- Preliminary subgraphs created = 1 Final number of subgraphs created are : 1, - Offloaded Nodes - 52, Total Nodes - 52 Running runtimes graphviz - /home/edgeai-tidl-tools/tidl_tools/tidl_graphVisualiser_runtimes.out ../../../model-artifacts//cl-ort-resnet18-v1//allowedNode.txt ../../../model-artifacts//cl-ort-resnet18-v1//tempDir/graphvizInfo.txt ../../../model-artifacts//cl-ort-resnet18-v1//tempDir/runtimes_visualization.svg *** In TIDL_createStateImportFunc *** Compute on node : TIDLExecutionProvider_TIDL_0_0 0, Cast, 1, 1, input.1Net_IN, TIDL_cast_in 1, Add, 2, 1, TIDL_cast_in, TIDL_Scale_In 2, Mul, 2, 1, TIDL_Scale_In, input.1 3, Conv, 3, 1, input.1, 124 4, Relu, 1, 1, 124, 125 5, MaxPool, 1, 1, 125, 126 6, Conv, 3, 1, 126, 128 7, Relu, 1, 1, 128, 129 8, Conv, 3, 1, 129, 131 9, Add, 2, 1, 131, 132 10, Relu, 1, 1, 132, 133 11, Conv, 3, 1, 133, 135 12, Relu, 1, 1, 135, 136 13, Conv, 3, 1, 136, 138 14, Add, 2, 1, 138, 139 15, Relu, 1, 1, 139, 140 16, Conv, 3, 1, 140, 142 17, Relu, 1, 1, 142, 143 18, Conv, 3, 1, 143, 145 19, Conv, 3, 1, 140, 147 20, Add, 2, 1, 145, 148 21, Relu, 1, 1, 148, 149 22, Conv, 3, 1, 149, 151 23, Relu, 1, 1, 151, 152 24, Conv, 3, 1, 152, 154 25, Add, 2, 1, 154, 155 26, Relu, 1, 1, 155, 156 27, Conv, 3, 1, 156, 158 28, Relu, 1, 1, 158, 159 29, Conv, 3, 1, 159, 161 30, Conv, 3, 1, 156, 163 31, Add, 2, 1, 161, 164 32, Relu, 1, 1, 164, 165 33, Conv, 3, 1, 165, 167 34, Relu, 1, 1, 167, 168 35, Conv, 3, 1, 168, 170 36, Add, 2, 1, 170, 171 37, Relu, 1, 1, 171, 172 38, Conv, 3, 1, 172, 174 39, Relu, 1, 1, 174, 175 40, Conv, 3, 1, 175, 177 41, Conv, 3, 1, 172, 179 42, Add, 2, 1, 177, 180 43, Relu, 1, 1, 180, 181 44, Conv, 3, 1, 181, 183 45, Relu, 1, 1, 183, 184 46, Conv, 3, 1, 184, 186 47, Add, 2, 1, 186, 187 48, Relu, 1, 1, 187, 188 49, GlobalAveragePool, 1, 1, 188, 189 50, Flatten, 1, 1, 189, 190 51, Gemm, 3, 1, 190, 191 Input tensor name - input.1Net_IN Output tensor name - 191 In TIDL_onnxRtImportInit subgraph_name=191 Layer 0, subgraph id 191, name=191 Layer 1, subgraph id 191, name=input.1Net_IN In TIDL_runtimesOptimizeNet: LayerIndex = 54, dataIndex = 53 ************** Frame index 1 : Running float import ************* In TIDL_runtimesPostProcessNet WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target. **************************************************** ** 1 WARNINGS 0 ERRORS ** **************************************************** ************ in TIDL_subgraphRtCreate ************ 0.0s: VX_ZONE_INIT:Enabled 0.6s: VX_ZONE_ERROR:Enabled 0.7s: VX_ZONE_WARNING:Enabled 0.962s: VX_ZONE_INIT:[tivxInit:178] Initialization Done !!! TIDL_initDebugTraceParams Done Alg Alloc for Layer # - 0 Alg Alloc for Layer # - 1 Alg Alloc for Layer # - 2 Alg Alloc for Layer # - 3 Alg Alloc for Layer # - 4 Alg Alloc for Layer # - 5 Alg Alloc for Layer # - 6 Alg Alloc for Layer # - 7 Alg Alloc for Layer # - 8 Alg Alloc for Layer # - 9 Alg Alloc for Layer # - 10 Alg Alloc for Layer # - 11 Alg Alloc for Layer # - 12 Alg Alloc for Layer # - 13 Alg Alloc for Layer # - 14 Alg Alloc for Layer # - 15 Alg Alloc for Layer # - 16 Alg Alloc for Layer # - 17 Alg Alloc for Layer # - 18 Alg Alloc for Layer # - 19 Alg Alloc for Layer # - 20 Alg Alloc for Layer # - 21 Alg Alloc for Layer # - 22 Alg Alloc for Layer # - 23 Alg Alloc for Layer # - 24 Alg Alloc for Layer # - 25 Alg Alloc for Layer # - 26 Alg Alloc for Layer # - 27 Alg Alloc for Layer # - 28 Alg Alloc for Layer # - 29 Alg Alloc for Layer # - 30 Alg Alloc for Layer # - 31 Alg Alloc for Layer # - 32 Alg Alloc for Layer # - 33 Alg Alloc for Layer # - 34 TIDL Memory requiement MemRecNum , Space , Attribute , SizeinBytes 0 , DDR , Persistent, 15208 1 , DDR , Persistent, 136 2 , DDR , Scratch , 16384 3 , DDR , Scratch , 4096 4 , DDR , Scratch , 57344 5 , DDR , Persistent, 103328 6 , DDR , Scratch , 15355804 7 , DDR , Scratch , 256 8 , DDR , Scratch , 4990208 9 , DDR , Scratch , 26616832 10 , DDR , Persistent, 5431680 11 , DDR , Persistent, 441536 12 , DDR , Scratch , 256 13 , DDR , Persistent, 128 NOTE: Memory requirement in host emulation can be different from the same on EVM To get the actual TIDL memory requirement make sure to run on EVM with writeTraceLevel = 0 Alg Init for Layer # - 0 out of 34 Alg Init for Layer # - 1 out of 34 Alg Init for Layer # - 2 out of 34 Alg Init for Layer # - 3 out of 34 Alg Init for Layer # - 4 out of 34 Alg Init for Layer # - 5 out of 34 Alg Init for Layer # - 6 out of 34 Alg Init for Layer # - 7 out of 34 Alg Init for Layer # - 8 out of 34 Alg Init for Layer # - 9 out of 34 Alg Init for Layer # - 10 out of 34 Alg Init for Layer # - 11 out of 34 Alg Init for Layer # - 12 out of 34 Alg Init for Layer # - 13 out of 34 Alg Init for Layer # - 14 out of 34 Alg Init for Layer # - 15 out of 34 Alg Init for Layer # - 16 out of 34 Alg Init for Layer # - 17 out of 34 Alg Init for Layer # - 18 out of 34 Alg Init for Layer # - 19 out of 34 Alg Init for Layer # - 20 out of 34 Alg Init for Layer # - 21 out of 34 Alg Init for Layer # - 22 out of 34 Alg Init for Layer # - 23 out of 34 Alg Init for Layer # - 24 out of 34 Alg Init for Layer # - 25 out of 34 Alg Init for Layer # - 26 out of 34 Alg Init for Layer # - 27 out of 34 Alg Init for Layer # - 28 out of 34 Alg Init for Layer # - 29 out of 34 Alg Init for Layer # - 30 out of 34 Alg Init for Layer # - 31 out of 34 Alg Init for Layer # - 32 out of 34 Alg Init for Layer # - 33 out of 34 Alg Init for Layer # - 34 out of 34 ************ TIDL_subgraphRtCreate done ************ ******* In TIDL_subgraphRtInvoke ******** TIDL_activate is called with handle : 2c010190 Starting Layer # - 1 0 1.00000 13.00000 255.00000 6 Processing Layer # - 1 1 1.00000 13.00000 255.00000 6 End of Layer # - 1 with outPtrs[0] = 0x7f015e95a010 Starting Layer # - 2 Processing Layer # - 2 2 1.00000 0.00000 3.24673 6 End of Layer # - 2 with outPtrs[0] = 0x7f015e9f3a10 Starting Layer # - 3 Processing Layer # - 3 3 1.00000 0.00000 3.24673 6 End of Layer # - 3 with outPtrs[0] = 0x7f015ed1fd10 Starting Layer # - 4 Processing Layer # - 4 4 1.00000 0.00000 1.37021 6 End of Layer # - 4 with outPtrs[0] = 0x7f015edf2010 Starting Layer # - 5 Processing Layer # - 5 5 1.00000 -2.85065 2.32687 6 End of Layer # - 5 with outPtrs[0] = 0x7f015eec4310 Starting Layer # - 6 Processing Layer # - 6 6 1.00000 0.00000 3.78996 6 End of Layer # - 6 with outPtrs[0] = 0x7f015ef88310 Starting Layer # - 7 Processing Layer # - 7 7 1.00000 0.00000 2.41517 6 End of Layer # - 7 with outPtrs[0] = 0x7f015edf2010 Starting Layer # - 8 Processing Layer # - 8 8 1.00000 -4.03907 3.50151 6 End of Layer # - 8 with outPtrs[0] = 0x7f015eec4310 Starting Layer # - 9 Processing Layer # - 9 9 1.00000 0.00000 4.79530 6 End of Layer # - 9 with outPtrs[0] = 0x7f015f05a610 Starting Layer # - 10 Processing Layer # - 10 10 1.00000 0.00000 2.11946 6 End of Layer # - 10 with outPtrs[0] = 0x7f015f12c910 Starting Layer # - 11 Processing Layer # - 11 11 1.00000 -2.99241 2.95832 6 End of Layer # - 11 with outPtrs[0] = 0x7f015f19cf10 Starting Layer # - 12 Processing Layer # - 12 12 1.00000 -2.36892 1.84864 6 End of Layer # - 12 with outPtrs[0] = 0x7f015f1fef10 Starting Layer # - 13 Processing Layer # - 13 13 1.00000 0.00000 3.29244 6 End of Layer # - 13 with outPtrs[0] = 0x7f015f260f10 Starting Layer # - 14 Processing Layer # - 14 14 1.00000 0.00000 1.89355 6 End of Layer # - 14 with outPtrs[0] = 0x7f015f12c910 Starting Layer # - 15 Processing Layer # - 15 15 1.00000 -2.87346 2.74429 6 End of Layer # - 15 with outPtrs[0] = 0x7f015f1fef10 Starting Layer # - 16 Processing Layer # - 16 16 1.00000 0.00000 4.25615 6 End of Layer # - 16 with outPtrs[0] = 0x7f015f2d1510 Starting Layer # - 17 Processing Layer # - 17 17 1.00000 0.00000 2.57455 6 End of Layer # - 17 with outPtrs[0] = 0x7f015f341b10 Starting Layer # - 18 Processing Layer # - 18 18 1.00000 -1.81724 3.67904 6 End of Layer # - 18 with outPtrs[0] = 0x7f015f381710 Starting Layer # - 19 Processing Layer # - 19 19 1.00000 -1.22743 0.52273 6 End of Layer # - 19 with outPtrs[0] = 0x7f015f3b2710 Starting Layer # - 20 Processing Layer # - 20 20 1.00000 0.00000 3.24563 6 End of Layer # - 20 with outPtrs[0] = 0x7f015f3e3710 Starting Layer # - 21 Processing Layer # - 21 21 1.00000 0.00000 1.52359 6 End of Layer # - 21 with outPtrs[0] = 0x7f015f341b10 Starting Layer # - 22 Processing Layer # - 22 22 1.00000 -2.17227 2.12657 6 End of Layer # - 22 with outPtrs[0] = 0x7f015f3b2710 Starting Layer # - 23 Processing Layer # - 23 23 1.00000 0.00000 2.62711 6 End of Layer # - 23 with outPtrs[0] = 0x7f015f423310 Starting Layer # - 24 Processing Layer # - 24 24 1.00000 0.00000 1.54402 6 End of Layer # - 24 with outPtrs[0] = 0x7f015f462f10 Starting Layer # - 25 Processing Layer # - 25 25 1.00000 -2.26611 2.34110 6 End of Layer # - 25 with outPtrs[0] = 0x7f015f48af10 Starting Layer # - 26 Processing Layer # - 26 26 1.00000 -2.26553 1.66404 6 End of Layer # - 26 with outPtrs[0] = 0x7f015f4a3710 Starting Layer # - 27 Processing Layer # - 27 27 1.00000 0.00000 2.53993 6 End of Layer # - 27 with outPtrs[0] = 0x7f015f4bbf10 Starting Layer # - 28 Processing Layer # - 28 28 1.00000 0.00000 1.61172 6 End of Layer # - 28 with outPtrs[0] = 0x7f015f462f10 Starting Layer # - 29 Processing Layer # - 29 29 1.00000 -9.35423 16.83671 6 End of Layer # - 29 with outPtrs[0] = 0x7f015f4a3710 Starting Layer # - 30 Processing Layer # - 30 30 1.00000 0.00000 16.88544 6 End of Layer # - 30 with outPtrs[0] = 0x7f015f4e3f10 Starting Layer # - 31 Processing Layer # - 31 31 1.00000 0.00000 6.78721 6 End of Layer # - 31 with outPtrs[0] = 0x7f015f4fc710 Starting Layer # - 32 Processing Layer # - 32 32 1.00000 -7.60278 23.56697 6 End of Layer # - 32 with outPtrs[0] = 0x7f015f4fcf10 Starting Layer # - 33 Processing Layer # - 33 33 1.00000 -7.60278 23.56697 6 End of Layer # - 33 with outPtrs[0] = 0x11259290 Network Cycles 0 Layer, Layer Cycles,kernelOnlyCycles, coreLoopCycles,LayerSetupCycles,dmaPipeupCycles, dmaPipeDownCycles, PrefetchCycles,copyKerCoeffCycles,LayerDeinitCycles,LastBlockCycles, paddingTrigger, paddingWait,LayerWithoutPad,LayerHandleCopy, BackupCycles, RestoreCycles, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 33, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Sum of Layer Cycles 0 TIDL_process is completed with handle : 2c010190 Sub Graph Stats 72.000000 1381043.000000 11.000000 ******* TIDL_subgraphRtInvoke done ******** ********** Frame Index 1 : Running float inference ********** ******* In TIDL_subgraphRtInvoke ******** Starting Layer # - 1 0 1.00000 3.00000 255.00000 6 Processing Layer # - 1 1 1.00000 3.00000 255.00000 6 End of Layer # - 1 with outPtrs[0] = 0x7f015e95a010 Starting Layer # - 2 Processing Layer # - 2 2 1.00000 0.00000 3.90396 6 End of Layer # - 2 with outPtrs[0] = 0x7f015e9f3a10 Starting Layer # - 3 Processing Layer # - 3 3 1.00000 0.00000 3.90396 6 End of Layer # - 3 with outPtrs[0] = 0x7f015ed1fd10 Starting Layer # - 4 Processing Layer # - 4 4 1.00000 0.00000 1.68208 6 End of Layer # - 4 with outPtrs[0] = 0x7f015edf2010 Starting Layer # - 5 Processing Layer # - 5 5 1.00000 -3.29620 3.00474 6 End of Layer # - 5 with outPtrs[0] = 0x7f015eec4310 Starting Layer # - 6 Processing Layer # - 6 6 1.00000 0.00000 4.33991 6 End of Layer # - 6 with outPtrs[0] = 0x7f015ef88310 Starting Layer # - 7 Processing Layer # - 7 7 1.00000 0.00000 1.93982 6 End of Layer # - 7 with outPtrs[0] = 0x7f015edf2010 Starting Layer # - 8 Processing Layer # - 8 8 1.00000 -5.37677 3.22763 6 End of Layer # - 8 with outPtrs[0] = 0x7f015eec4310 Starting Layer # - 9 Processing Layer # - 9 9 1.00000 0.00000 5.80481 6 End of Layer # - 9 with outPtrs[0] = 0x7f015f05a610 Starting Layer # - 10 Processing Layer # - 10 10 1.00000 0.00000 2.13034 6 End of Layer # - 10 with outPtrs[0] = 0x7f015f12c910 Starting Layer # - 11 Processing Layer # - 11 11 1.00000 -2.50881 3.60856 6 End of Layer # - 11 with outPtrs[0] = 0x7f015f19cf10 Starting Layer # - 12 Processing Layer # - 12 12 1.00000 -2.77404 2.50183 6 End of Layer # - 12 with outPtrs[0] = 0x7f015f1fef10 Starting Layer # - 13 Processing Layer # - 13 13 1.00000 0.00000 3.92768 6 End of Layer # - 13 with outPtrs[0] = 0x7f015f260f10 Starting Layer # - 14 Processing Layer # - 14 14 1.00000 0.00000 2.39335 6 End of Layer # - 14 with outPtrs[0] = 0x7f015f12c910 Starting Layer # - 15 Processing Layer # - 15 15 1.00000 -3.77405 2.76853 6 End of Layer # - 15 with outPtrs[0] = 0x7f015f1fef10 Starting Layer # - 16 Processing Layer # - 16 16 1.00000 0.00000 4.32093 6 End of Layer # - 16 with outPtrs[0] = 0x7f015f2d1510 Starting Layer # - 17 Processing Layer # - 17 17 1.00000 0.00000 2.25309 6 End of Layer # - 17 with outPtrs[0] = 0x7f015f341b10 Starting Layer # - 18 Processing Layer # - 18 18 1.00000 -2.35707 3.87011 6 End of Layer # - 18 with outPtrs[0] = 0x7f015f381710 Starting Layer # - 19 Processing Layer # - 19 19 1.00000 -1.35732 0.74384 6 End of Layer # - 19 with outPtrs[0] = 0x7f015f3b2710 Starting Layer # - 20 Processing Layer # - 20 20 1.00000 0.00000 3.85120 6 End of Layer # - 20 with outPtrs[0] = 0x7f015f3e3710 Starting Layer # - 21 Processing Layer # - 21 21 1.00000 0.00000 1.65518 6 End of Layer # - 21 with outPtrs[0] = 0x7f015f341b10 Starting Layer # - 22 Processing Layer # - 22 22 1.00000 -2.87887 1.94139 6 End of Layer # - 22 with outPtrs[0] = 0x7f015f3b2710 Starting Layer # - 23 Processing Layer # - 23 23 1.00000 0.00000 3.09033 6 End of Layer # - 23 with outPtrs[0] = 0x7f015f423310 Starting Layer # - 24 Processing Layer # - 24 24 1.00000 0.00000 2.23149 6 End of Layer # - 24 with outPtrs[0] = 0x7f015f462f10 Starting Layer # - 25 Processing Layer # - 25 25 1.00000 -2.66252 2.87949 6 End of Layer # - 25 with outPtrs[0] = 0x7f015f48af10 Starting Layer # - 26 Processing Layer # - 26 26 1.00000 -1.77171 2.04739 6 End of Layer # - 26 with outPtrs[0] = 0x7f015f4a3710 Starting Layer # - 27 Processing Layer # - 27 27 1.00000 0.00000 2.96700 6 End of Layer # - 27 with outPtrs[0] = 0x7f015f4bbf10 Starting Layer # - 28 Processing Layer # - 28 28 1.00000 0.00000 1.45639 6 End of Layer # - 28 with outPtrs[0] = 0x7f015f462f10 Starting Layer # - 29 Processing Layer # - 29 29 1.00000 -8.52896 12.10018 6 End of Layer # - 29 with outPtrs[0] = 0x7f015f4a3710 Starting Layer # - 30 Processing Layer # - 30 30 1.00000 0.00000 14.64454 6 End of Layer # - 30 with outPtrs[0] = 0x7f015f4e3f10 Starting Layer # - 31 Processing Layer # - 31 31 1.00000 0.00000 4.99005 6 End of Layer # - 31 with outPtrs[0] = 0x7f015f4fc710 Starting Layer # - 32 Processing Layer # - 32 32 1.00000 -5.45609 10.80953 6 End of Layer # - 32 with outPtrs[0] = 0x7f015f4fcf10 Starting Layer # - 33 Processing Layer # - 33 33 1.00000 -5.45609 10.80953 6 End of Layer # - 33 with outPtrs[0] = 0x11259290 Network Cycles 0 Layer, Layer Cycles,kernelOnlyCycles, coreLoopCycles,LayerSetupCycles,dmaPipeupCycles, dmaPipeDownCycles, PrefetchCycles,copyKerCoeffCycles,LayerDeinitCycles,LastBlockCycles, paddingTrigger, paddingWait,LayerWithoutPad,LayerHandleCopy, BackupCycles, RestoreCycles, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, Processing config file #0 : /home/edgeai-tidl-tools/model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_io_.qunat_stats_config.txt ----------------------- TIDL Process with REF_ONLY FLOW ------------------------ # 0 . .. T 1396.71 .... ..... ... .... ..... # 1 . .. T 1382.61 .... ..... ... .... ..... Processing config file #0 : /home/edgeai-tidl-tools/model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_io_.qunat_stats_config.txt ----------------------- TIDL Process with REF_ONLY FLOW ------------------------ # 0 . .. T 775.12 .... ..... ... .... ..... # 1 . .. T 781.11 .... ..... ... .... ..... Processing config file #0 : /home/edgeai-tidl-tools/model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_io_.qunat_stats_config.txt ----------------------- TIDL Process with REF_ONLY FLOW ------------------------ # 0 . .. T 776.99 .... ..... ... .... ..... # 1 . .. T 778.33 .... ..... ... .... ..... Processing config file #0 : /home/edgeai-tidl-tools/model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_io_.qunat_stats_config.txt ----------------------- TIDL Process with REF_ONLY FLOW ------------------------ # 0 . .. T 776.21 .... ..... ... .... ..... # 1 . .. T 772.15 .... ..... ... .... ..... 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 33, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Sum of Layer Cycles 0 TIDL_process is completed with handle : 2c010190 Sub Graph Stats 80.000000 1380728.000000 6.000000 ******* TIDL_subgraphRtInvoke done ******** ********** Frame Index 2 : Running fixed point mode for calibration ********** In TIDL_runtimesPostProcessNet ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~ ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~ ***************** Calibration iteration number 0 completed ************************ ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~ ***************** Calibration iteration number 1 completed ************************ ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~ ***************** Calibra Processing config file #0 : /home/edgeai-tidl-tools/model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_io_.qunat_stats_config.txt ----------------------- TIDL Process with REF_ONLY FLOW ------------------------ # 0 . .. T 779.92 .... ..... ... .... ..... # 1 . .. T 779.80 .... ..... ... .... ..... Processing config file #0 : /home/edgeai-tidl-tools/model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_io_.qunat_stats_config.txt ----------------------- TIDL Process with REF_ONLY FLOW ------------------------ # 0 . .. T 777.46 .... ..... ... .... ..... # 1 . .. T 776.50 .... ..... ... .... ..... ------------------ Network Compiler Traces ----------------------------- successful Memory allocation Running_Model : cl-ort-resnet18-v1 Completed_Model : 1, Name : cl-ort-resnet18-v1 , Total time : 8936.09, Offload Time : 1380.89 , DDR RW MBs : 0, Output File : py_out_cl-ort-resnet18-v1_ADE_val_00001801.jpg
I attached log files. (set debug_level 3)
I have read README and proceeding in order. What is my problem?
If the sample model compilation fails, is there a problem with my environment?
I tried to it on VM(Ubuntu), WSL2 Docker(Ubuntu), result is all same.
I wondered if it was a problem with the sample model.
so I copied the model(ONR-CL-6100-resNet18) file from EVM to PC. And try to compile, but it's failed.
Also shows same message that "fails to allocate memory..."
Regards,
Lee.