Hi,
I tried to model compilation on PC using EdgeAI TIDL Tools.
I setup environment for the model compilation and tried to model compile using TI's sample models(ONNX, TFLite).
But result is failed.(Also not working edgeAI Apps on EVM) model compilation shows below warning messages:
WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC.
Please look into perfsim log.
This model can only be used on PC emulation, it will get fault on target.
I checked the perfsim log(model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_io_.perf_sim_config.txt) file.
# Size of L2 SRAM Memory in KB which can be used by TIDL, Recommended value is # 448KB considering that 64KB of L2 shall be configured as cache. TIDL test bench # configures L2 cache as 64 KB, so any value higher than 448 KB would require # user to change the L2 cache setting in TIDL test bench L2MEMSIZE_KB = 448 # Size of L3 (MSMC) SRAM Memory in KB which can be used by TIDL MSMCSIZE_KB = 7968 #ID for a Device, TDA4VMID = 0, TIDL_TDA4AEP = 1, TIDL_TDA4AM = 2, TIDL_TDA4AMPlus = 3 DEVICE_NAME = 0 ENABLE_PERSIT_WT_ALLOC = 1 DDRFREQ_MHZ = 4266 FILENAME_NET = /home/edgeai-tidl-tools/model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_net.bin FILEFORMAT_NET = -1 OUTPUT_DIR = /home/edgeai-tidl-tools/model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_net.bin
I can't find compile option about cache size in EdgeAI TIDL Tools.
Available execution providers : ['TIDLExecutionProvider', 'TIDLCompilationProvider', 'CPUExecutionProvider']
Running 1 Models - ['cl-ort-resnet18-v1']
2022-03-22 11:14:23.113709000 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer4.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
2022-03-22 11:14:23.113749200 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer4.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
2022-03-22 11:14:23.113756200 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer4.0.downsample.1.num_batches_tracked'. It is not used by any node and should be removed from the model.
2022-03-22 11:14:23.113761400 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer4.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
2022-03-22 11:14:23.113766500 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer3.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
2022-03-22 11:14:23.113771900 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer1.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
2022-03-22 11:14:23.113776700 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer1.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
2022-03-22 11:14:23.113781300 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer4.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
2022-03-22 11:14:23.113785800 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer3.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
2022-03-22 11:14:23.113790500 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer3.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
2022-03-22 11:14:23.113795400 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
2022-03-22 11:14:23.113800400 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer1.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
2022-03-22 11:14:23.113804900 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer2.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
2022-03-22 11:14:23.113809800 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer1.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
2022-03-22 11:14:23.113814600 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer2.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
2022-03-22 11:14:23.113819200 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer2.0.downsample.1.num_batches_tracked'. It is not used by any node and should be removed from the model.
2022-03-22 11:14:23.113824200 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer2.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
2022-03-22 11:14:23.113829300 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer2.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
2022-03-22 11:14:23.113834200 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer3.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
2022-03-22 11:14:23.113846100 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer3.0.downsample.1.num_batches_tracked'. It is not used by any node and should be removed from the model.
tidl_tools_path = /home/edgeai-tidl-tools/tidl_tools
artifacts_folder = ../../../model-artifacts//cl-ort-resnet18-v1/
tidl_tensor_bits = 8
debug_level = 3
num_tidl_subgraphs = 16
tidl_denylist =
tidl_calibration_accuracy_level = 7
tidl_calibration_options:num_frames_calibration = 2
tidl_calibration_options:bias_calibration_iterations = 5
power_of_2_quantization = 2
enable_high_resolution_optimization = 0
pre_batchnorm_fold = 1
add_data_convert_ops = 3
output_feature_16bit_names_list =
m_params_16bit_names_list =
reserved_compile_constraints_flag = 1601
ti_internal_reserved_1 =
****** WARNING : Network not identified as Object Detection network - Ignore if network is not OD *****
Supported TIDL layer type --- Cast --
Supported TIDL layer type --- Add --
Supported TIDL layer type --- Mul --
Supported TIDL layer type --- Conv --
Supported TIDL layer type --- Relu --
Supported TIDL layer type --- MaxPool --
Supported TIDL layer type --- Conv --
Supported TIDL layer type --- Relu --
Supported TIDL layer type --- Conv --
Supported TIDL layer type --- Add --
Supported TIDL layer type --- Relu --
Supported TIDL layer type --- Conv --
Supported TIDL layer type --- Relu --
Supported TIDL layer type --- Conv --
Supported TIDL layer type --- Add --
Supported TIDL layer type --- Relu --
Supported TIDL layer type --- Conv --
Supported TIDL layer type --- Conv --
Supported TIDL layer type --- Relu --
Supported TIDL layer type --- Conv --
Supported TIDL layer type --- Add --
Supported TIDL layer type --- Relu --
Supported TIDL layer type --- Conv --
Supported TIDL layer type --- Relu --
Supported TIDL layer type --- Conv --
Supported TIDL layer type --- Add --
Supported TIDL layer type --- Relu --
Supported TIDL layer type --- Conv --
Supported TIDL layer type --- Conv --
Supported TIDL layer type --- Relu --
Supported TIDL layer type --- Conv --
Supported TIDL layer type --- Add --
Supported TIDL layer type --- Relu --
Supported TIDL layer type --- Conv --
Supported TIDL layer type --- Relu --
Supported TIDL layer type --- Conv --
Supported TIDL layer type --- Add --
Supported TIDL layer type --- Relu --
Supported TIDL layer type --- Conv --
Supported TIDL layer type --- Conv --
Supported TIDL layer type --- Relu --
Supported TIDL layer type --- Conv --
Supported TIDL layer type --- Add --
Supported TIDL layer type --- Relu --
Supported TIDL layer type --- Conv --
Supported TIDL layer type --- Relu --
Supported TIDL layer type --- Conv --
Supported TIDL layer type --- Add --
Supported TIDL layer type --- Relu --
Supported TIDL layer type --- GlobalAveragePool --
Supported TIDL layer type --- Flatten --
Supported TIDL layer type --- Gemm --
Preliminary subgraphs created = 1
Final number of subgraphs created are : 1, - Offloaded Nodes - 52, Total Nodes - 52
Running runtimes graphviz - /home/edgeai-tidl-tools/tidl_tools/tidl_graphVisualiser_runtimes.out ../../../model-artifacts//cl-ort-resnet18-v1//allowedNode.txt ../../../model-artifacts//cl-ort-resnet18-v1//tempDir/graphvizInfo.txt ../../../model-artifacts//cl-ort-resnet18-v1//tempDir/runtimes_visualization.svg
*** In TIDL_createStateImportFunc ***
Compute on node : TIDLExecutionProvider_TIDL_0_0
0, Cast, 1, 1, input.1Net_IN, TIDL_cast_in
1, Add, 2, 1, TIDL_cast_in, TIDL_Scale_In
2, Mul, 2, 1, TIDL_Scale_In, input.1
3, Conv, 3, 1, input.1, 124
4, Relu, 1, 1, 124, 125
5, MaxPool, 1, 1, 125, 126
6, Conv, 3, 1, 126, 128
7, Relu, 1, 1, 128, 129
8, Conv, 3, 1, 129, 131
9, Add, 2, 1, 131, 132
10, Relu, 1, 1, 132, 133
11, Conv, 3, 1, 133, 135
12, Relu, 1, 1, 135, 136
13, Conv, 3, 1, 136, 138
14, Add, 2, 1, 138, 139
15, Relu, 1, 1, 139, 140
16, Conv, 3, 1, 140, 142
17, Relu, 1, 1, 142, 143
18, Conv, 3, 1, 143, 145
19, Conv, 3, 1, 140, 147
20, Add, 2, 1, 145, 148
21, Relu, 1, 1, 148, 149
22, Conv, 3, 1, 149, 151
23, Relu, 1, 1, 151, 152
24, Conv, 3, 1, 152, 154
25, Add, 2, 1, 154, 155
26, Relu, 1, 1, 155, 156
27, Conv, 3, 1, 156, 158
28, Relu, 1, 1, 158, 159
29, Conv, 3, 1, 159, 161
30, Conv, 3, 1, 156, 163
31, Add, 2, 1, 161, 164
32, Relu, 1, 1, 164, 165
33, Conv, 3, 1, 165, 167
34, Relu, 1, 1, 167, 168
35, Conv, 3, 1, 168, 170
36, Add, 2, 1, 170, 171
37, Relu, 1, 1, 171, 172
38, Conv, 3, 1, 172, 174
39, Relu, 1, 1, 174, 175
40, Conv, 3, 1, 175, 177
41, Conv, 3, 1, 172, 179
42, Add, 2, 1, 177, 180
43, Relu, 1, 1, 180, 181
44, Conv, 3, 1, 181, 183
45, Relu, 1, 1, 183, 184
46, Conv, 3, 1, 184, 186
47, Add, 2, 1, 186, 187
48, Relu, 1, 1, 187, 188
49, GlobalAveragePool, 1, 1, 188, 189
50, Flatten, 1, 1, 189, 190
51, Gemm, 3, 1, 190, 191
Input tensor name - input.1Net_IN
Output tensor name - 191
In TIDL_onnxRtImportInit subgraph_name=191
Layer 0, subgraph id 191, name=191
Layer 1, subgraph id 191, name=input.1Net_IN
In TIDL_runtimesOptimizeNet: LayerIndex = 54, dataIndex = 53
************** Frame index 1 : Running float import *************
In TIDL_runtimesPostProcessNet
WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
****************************************************
** 1 WARNINGS 0 ERRORS **
****************************************************
************ in TIDL_subgraphRtCreate ************
0.0s: VX_ZONE_INIT:Enabled
0.6s: VX_ZONE_ERROR:Enabled
0.7s: VX_ZONE_WARNING:Enabled
0.962s: VX_ZONE_INIT:[tivxInit:178] Initialization Done !!!
TIDL_initDebugTraceParams Done
Alg Alloc for Layer # - 0
Alg Alloc for Layer # - 1
Alg Alloc for Layer # - 2
Alg Alloc for Layer # - 3
Alg Alloc for Layer # - 4
Alg Alloc for Layer # - 5
Alg Alloc for Layer # - 6
Alg Alloc for Layer # - 7
Alg Alloc for Layer # - 8
Alg Alloc for Layer # - 9
Alg Alloc for Layer # - 10
Alg Alloc for Layer # - 11
Alg Alloc for Layer # - 12
Alg Alloc for Layer # - 13
Alg Alloc for Layer # - 14
Alg Alloc for Layer # - 15
Alg Alloc for Layer # - 16
Alg Alloc for Layer # - 17
Alg Alloc for Layer # - 18
Alg Alloc for Layer # - 19
Alg Alloc for Layer # - 20
Alg Alloc for Layer # - 21
Alg Alloc for Layer # - 22
Alg Alloc for Layer # - 23
Alg Alloc for Layer # - 24
Alg Alloc for Layer # - 25
Alg Alloc for Layer # - 26
Alg Alloc for Layer # - 27
Alg Alloc for Layer # - 28
Alg Alloc for Layer # - 29
Alg Alloc for Layer # - 30
Alg Alloc for Layer # - 31
Alg Alloc for Layer # - 32
Alg Alloc for Layer # - 33
Alg Alloc for Layer # - 34
TIDL Memory requiement
MemRecNum , Space , Attribute , SizeinBytes
0 , DDR , Persistent, 15208
1 , DDR , Persistent, 136
2 , DDR , Scratch , 16384
3 , DDR , Scratch , 4096
4 , DDR , Scratch , 57344
5 , DDR , Persistent, 103328
6 , DDR , Scratch , 15355804
7 , DDR , Scratch , 256
8 , DDR , Scratch , 4990208
9 , DDR , Scratch , 26616832
10 , DDR , Persistent, 5431680
11 , DDR , Persistent, 441536
12 , DDR , Scratch , 256
13 , DDR , Persistent, 128
NOTE: Memory requirement in host emulation can be different from the same on EVM
To get the actual TIDL memory requirement make sure to run on EVM with
writeTraceLevel = 0
Alg Init for Layer # - 0 out of 34
Alg Init for Layer # - 1 out of 34
Alg Init for Layer # - 2 out of 34
Alg Init for Layer # - 3 out of 34
Alg Init for Layer # - 4 out of 34
Alg Init for Layer # - 5 out of 34
Alg Init for Layer # - 6 out of 34
Alg Init for Layer # - 7 out of 34
Alg Init for Layer # - 8 out of 34
Alg Init for Layer # - 9 out of 34
Alg Init for Layer # - 10 out of 34
Alg Init for Layer # - 11 out of 34
Alg Init for Layer # - 12 out of 34
Alg Init for Layer # - 13 out of 34
Alg Init for Layer # - 14 out of 34
Alg Init for Layer # - 15 out of 34
Alg Init for Layer # - 16 out of 34
Alg Init for Layer # - 17 out of 34
Alg Init for Layer # - 18 out of 34
Alg Init for Layer # - 19 out of 34
Alg Init for Layer # - 20 out of 34
Alg Init for Layer # - 21 out of 34
Alg Init for Layer # - 22 out of 34
Alg Init for Layer # - 23 out of 34
Alg Init for Layer # - 24 out of 34
Alg Init for Layer # - 25 out of 34
Alg Init for Layer # - 26 out of 34
Alg Init for Layer # - 27 out of 34
Alg Init for Layer # - 28 out of 34
Alg Init for Layer # - 29 out of 34
Alg Init for Layer # - 30 out of 34
Alg Init for Layer # - 31 out of 34
Alg Init for Layer # - 32 out of 34
Alg Init for Layer # - 33 out of 34
Alg Init for Layer # - 34 out of 34
************ TIDL_subgraphRtCreate done ************
******* In TIDL_subgraphRtInvoke ********
TIDL_activate is called with handle : 2c010190
Starting Layer # - 1
0 1.00000 13.00000 255.00000 6
Processing Layer # - 1
1 1.00000 13.00000 255.00000 6
End of Layer # - 1 with outPtrs[0] = 0x7f015e95a010
Starting Layer # - 2
Processing Layer # - 2
2 1.00000 0.00000 3.24673 6
End of Layer # - 2 with outPtrs[0] = 0x7f015e9f3a10
Starting Layer # - 3
Processing Layer # - 3
3 1.00000 0.00000 3.24673 6
End of Layer # - 3 with outPtrs[0] = 0x7f015ed1fd10
Starting Layer # - 4
Processing Layer # - 4
4 1.00000 0.00000 1.37021 6
End of Layer # - 4 with outPtrs[0] = 0x7f015edf2010
Starting Layer # - 5
Processing Layer # - 5
5 1.00000 -2.85065 2.32687 6
End of Layer # - 5 with outPtrs[0] = 0x7f015eec4310
Starting Layer # - 6
Processing Layer # - 6
6 1.00000 0.00000 3.78996 6
End of Layer # - 6 with outPtrs[0] = 0x7f015ef88310
Starting Layer # - 7
Processing Layer # - 7
7 1.00000 0.00000 2.41517 6
End of Layer # - 7 with outPtrs[0] = 0x7f015edf2010
Starting Layer # - 8
Processing Layer # - 8
8 1.00000 -4.03907 3.50151 6
End of Layer # - 8 with outPtrs[0] = 0x7f015eec4310
Starting Layer # - 9
Processing Layer # - 9
9 1.00000 0.00000 4.79530 6
End of Layer # - 9 with outPtrs[0] = 0x7f015f05a610
Starting Layer # - 10
Processing Layer # - 10
10 1.00000 0.00000 2.11946 6
End of Layer # - 10 with outPtrs[0] = 0x7f015f12c910
Starting Layer # - 11
Processing Layer # - 11
11 1.00000 -2.99241 2.95832 6
End of Layer # - 11 with outPtrs[0] = 0x7f015f19cf10
Starting Layer # - 12
Processing Layer # - 12
12 1.00000 -2.36892 1.84864 6
End of Layer # - 12 with outPtrs[0] = 0x7f015f1fef10
Starting Layer # - 13
Processing Layer # - 13
13 1.00000 0.00000 3.29244 6
End of Layer # - 13 with outPtrs[0] = 0x7f015f260f10
Starting Layer # - 14
Processing Layer # - 14
14 1.00000 0.00000 1.89355 6
End of Layer # - 14 with outPtrs[0] = 0x7f015f12c910
Starting Layer # - 15
Processing Layer # - 15
15 1.00000 -2.87346 2.74429 6
End of Layer # - 15 with outPtrs[0] = 0x7f015f1fef10
Starting Layer # - 16
Processing Layer # - 16
16 1.00000 0.00000 4.25615 6
End of Layer # - 16 with outPtrs[0] = 0x7f015f2d1510
Starting Layer # - 17
Processing Layer # - 17
17 1.00000 0.00000 2.57455 6
End of Layer # - 17 with outPtrs[0] = 0x7f015f341b10
Starting Layer # - 18
Processing Layer # - 18
18 1.00000 -1.81724 3.67904 6
End of Layer # - 18 with outPtrs[0] = 0x7f015f381710
Starting Layer # - 19
Processing Layer # - 19
19 1.00000 -1.22743 0.52273 6
End of Layer # - 19 with outPtrs[0] = 0x7f015f3b2710
Starting Layer # - 20
Processing Layer # - 20
20 1.00000 0.00000 3.24563 6
End of Layer # - 20 with outPtrs[0] = 0x7f015f3e3710
Starting Layer # - 21
Processing Layer # - 21
21 1.00000 0.00000 1.52359 6
End of Layer # - 21 with outPtrs[0] = 0x7f015f341b10
Starting Layer # - 22
Processing Layer # - 22
22 1.00000 -2.17227 2.12657 6
End of Layer # - 22 with outPtrs[0] = 0x7f015f3b2710
Starting Layer # - 23
Processing Layer # - 23
23 1.00000 0.00000 2.62711 6
End of Layer # - 23 with outPtrs[0] = 0x7f015f423310
Starting Layer # - 24
Processing Layer # - 24
24 1.00000 0.00000 1.54402 6
End of Layer # - 24 with outPtrs[0] = 0x7f015f462f10
Starting Layer # - 25
Processing Layer # - 25
25 1.00000 -2.26611 2.34110 6
End of Layer # - 25 with outPtrs[0] = 0x7f015f48af10
Starting Layer # - 26
Processing Layer # - 26
26 1.00000 -2.26553 1.66404 6
End of Layer # - 26 with outPtrs[0] = 0x7f015f4a3710
Starting Layer # - 27
Processing Layer # - 27
27 1.00000 0.00000 2.53993 6
End of Layer # - 27 with outPtrs[0] = 0x7f015f4bbf10
Starting Layer # - 28
Processing Layer # - 28
28 1.00000 0.00000 1.61172 6
End of Layer # - 28 with outPtrs[0] = 0x7f015f462f10
Starting Layer # - 29
Processing Layer # - 29
29 1.00000 -9.35423 16.83671 6
End of Layer # - 29 with outPtrs[0] = 0x7f015f4a3710
Starting Layer # - 30
Processing Layer # - 30
30 1.00000 0.00000 16.88544 6
End of Layer # - 30 with outPtrs[0] = 0x7f015f4e3f10
Starting Layer # - 31
Processing Layer # - 31
31 1.00000 0.00000 6.78721 6
End of Layer # - 31 with outPtrs[0] = 0x7f015f4fc710
Starting Layer # - 32
Processing Layer # - 32
32 1.00000 -7.60278 23.56697 6
End of Layer # - 32 with outPtrs[0] = 0x7f015f4fcf10
Starting Layer # - 33
Processing Layer # - 33
33 1.00000 -7.60278 23.56697 6
End of Layer # - 33 with outPtrs[0] = 0x11259290
Network Cycles 0
Layer, Layer Cycles,kernelOnlyCycles, coreLoopCycles,LayerSetupCycles,dmaPipeupCycles, dmaPipeDownCycles, PrefetchCycles,copyKerCoeffCycles,LayerDeinitCycles,LastBlockCycles, paddingTrigger, paddingWait,LayerWithoutPad,LayerHandleCopy, BackupCycles, RestoreCycles,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
28, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
33, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
Sum of Layer Cycles 0
TIDL_process is completed with handle : 2c010190
Sub Graph Stats 72.000000 1381043.000000 11.000000
******* TIDL_subgraphRtInvoke done ********
********** Frame Index 1 : Running float inference **********
******* In TIDL_subgraphRtInvoke ********
Starting Layer # - 1
0 1.00000 3.00000 255.00000 6
Processing Layer # - 1
1 1.00000 3.00000 255.00000 6
End of Layer # - 1 with outPtrs[0] = 0x7f015e95a010
Starting Layer # - 2
Processing Layer # - 2
2 1.00000 0.00000 3.90396 6
End of Layer # - 2 with outPtrs[0] = 0x7f015e9f3a10
Starting Layer # - 3
Processing Layer # - 3
3 1.00000 0.00000 3.90396 6
End of Layer # - 3 with outPtrs[0] = 0x7f015ed1fd10
Starting Layer # - 4
Processing Layer # - 4
4 1.00000 0.00000 1.68208 6
End of Layer # - 4 with outPtrs[0] = 0x7f015edf2010
Starting Layer # - 5
Processing Layer # - 5
5 1.00000 -3.29620 3.00474 6
End of Layer # - 5 with outPtrs[0] = 0x7f015eec4310
Starting Layer # - 6
Processing Layer # - 6
6 1.00000 0.00000 4.33991 6
End of Layer # - 6 with outPtrs[0] = 0x7f015ef88310
Starting Layer # - 7
Processing Layer # - 7
7 1.00000 0.00000 1.93982 6
End of Layer # - 7 with outPtrs[0] = 0x7f015edf2010
Starting Layer # - 8
Processing Layer # - 8
8 1.00000 -5.37677 3.22763 6
End of Layer # - 8 with outPtrs[0] = 0x7f015eec4310
Starting Layer # - 9
Processing Layer # - 9
9 1.00000 0.00000 5.80481 6
End of Layer # - 9 with outPtrs[0] = 0x7f015f05a610
Starting Layer # - 10
Processing Layer # - 10
10 1.00000 0.00000 2.13034 6
End of Layer # - 10 with outPtrs[0] = 0x7f015f12c910
Starting Layer # - 11
Processing Layer # - 11
11 1.00000 -2.50881 3.60856 6
End of Layer # - 11 with outPtrs[0] = 0x7f015f19cf10
Starting Layer # - 12
Processing Layer # - 12
12 1.00000 -2.77404 2.50183 6
End of Layer # - 12 with outPtrs[0] = 0x7f015f1fef10
Starting Layer # - 13
Processing Layer # - 13
13 1.00000 0.00000 3.92768 6
End of Layer # - 13 with outPtrs[0] = 0x7f015f260f10
Starting Layer # - 14
Processing Layer # - 14
14 1.00000 0.00000 2.39335 6
End of Layer # - 14 with outPtrs[0] = 0x7f015f12c910
Starting Layer # - 15
Processing Layer # - 15
15 1.00000 -3.77405 2.76853 6
End of Layer # - 15 with outPtrs[0] = 0x7f015f1fef10
Starting Layer # - 16
Processing Layer # - 16
16 1.00000 0.00000 4.32093 6
End of Layer # - 16 with outPtrs[0] = 0x7f015f2d1510
Starting Layer # - 17
Processing Layer # - 17
17 1.00000 0.00000 2.25309 6
End of Layer # - 17 with outPtrs[0] = 0x7f015f341b10
Starting Layer # - 18
Processing Layer # - 18
18 1.00000 -2.35707 3.87011 6
End of Layer # - 18 with outPtrs[0] = 0x7f015f381710
Starting Layer # - 19
Processing Layer # - 19
19 1.00000 -1.35732 0.74384 6
End of Layer # - 19 with outPtrs[0] = 0x7f015f3b2710
Starting Layer # - 20
Processing Layer # - 20
20 1.00000 0.00000 3.85120 6
End of Layer # - 20 with outPtrs[0] = 0x7f015f3e3710
Starting Layer # - 21
Processing Layer # - 21
21 1.00000 0.00000 1.65518 6
End of Layer # - 21 with outPtrs[0] = 0x7f015f341b10
Starting Layer # - 22
Processing Layer # - 22
22 1.00000 -2.87887 1.94139 6
End of Layer # - 22 with outPtrs[0] = 0x7f015f3b2710
Starting Layer # - 23
Processing Layer # - 23
23 1.00000 0.00000 3.09033 6
End of Layer # - 23 with outPtrs[0] = 0x7f015f423310
Starting Layer # - 24
Processing Layer # - 24
24 1.00000 0.00000 2.23149 6
End of Layer # - 24 with outPtrs[0] = 0x7f015f462f10
Starting Layer # - 25
Processing Layer # - 25
25 1.00000 -2.66252 2.87949 6
End of Layer # - 25 with outPtrs[0] = 0x7f015f48af10
Starting Layer # - 26
Processing Layer # - 26
26 1.00000 -1.77171 2.04739 6
End of Layer # - 26 with outPtrs[0] = 0x7f015f4a3710
Starting Layer # - 27
Processing Layer # - 27
27 1.00000 0.00000 2.96700 6
End of Layer # - 27 with outPtrs[0] = 0x7f015f4bbf10
Starting Layer # - 28
Processing Layer # - 28
28 1.00000 0.00000 1.45639 6
End of Layer # - 28 with outPtrs[0] = 0x7f015f462f10
Starting Layer # - 29
Processing Layer # - 29
29 1.00000 -8.52896 12.10018 6
End of Layer # - 29 with outPtrs[0] = 0x7f015f4a3710
Starting Layer # - 30
Processing Layer # - 30
30 1.00000 0.00000 14.64454 6
End of Layer # - 30 with outPtrs[0] = 0x7f015f4e3f10
Starting Layer # - 31
Processing Layer # - 31
31 1.00000 0.00000 4.99005 6
End of Layer # - 31 with outPtrs[0] = 0x7f015f4fc710
Starting Layer # - 32
Processing Layer # - 32
32 1.00000 -5.45609 10.80953 6
End of Layer # - 32 with outPtrs[0] = 0x7f015f4fcf10
Starting Layer # - 33
Processing Layer # - 33
33 1.00000 -5.45609 10.80953 6
End of Layer # - 33 with outPtrs[0] = 0x11259290
Network Cycles 0
Layer, Layer Cycles,kernelOnlyCycles, coreLoopCycles,LayerSetupCycles,dmaPipeupCycles, dmaPipeDownCycles, PrefetchCycles,copyKerCoeffCycles,LayerDeinitCycles,LastBlockCycles, paddingTrigger, paddingWait,LayerWithoutPad,LayerHandleCopy, BackupCycles, RestoreCycles,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
22,
Processing config file #0 : /home/edgeai-tidl-tools/model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_io_.qunat_stats_config.txt
----------------------- TIDL Process with REF_ONLY FLOW ------------------------
# 0 . .. T 1396.71 .... ..... ... .... .....
# 1 . .. T 1382.61 .... ..... ... .... .....
Processing config file #0 : /home/edgeai-tidl-tools/model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_io_.qunat_stats_config.txt
----------------------- TIDL Process with REF_ONLY FLOW ------------------------
# 0 . .. T 775.12 .... ..... ... .... .....
# 1 . .. T 781.11 .... ..... ... .... .....
Processing config file #0 : /home/edgeai-tidl-tools/model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_io_.qunat_stats_config.txt
----------------------- TIDL Process with REF_ONLY FLOW ------------------------
# 0 . .. T 776.99 .... ..... ... .... .....
# 1 . .. T 778.33 .... ..... ... .... .....
Processing config file #0 : /home/edgeai-tidl-tools/model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_io_.qunat_stats_config.txt
----------------------- TIDL Process with REF_ONLY FLOW ------------------------
# 0 . .. T 776.21 .... ..... ... .... .....
# 1 . .. T 772.15 .... ..... ... .... ..... 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
28, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
33, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
Sum of Layer Cycles 0
TIDL_process is completed with handle : 2c010190
Sub Graph Stats 80.000000 1380728.000000 6.000000
******* TIDL_subgraphRtInvoke done ********
********** Frame Index 2 : Running fixed point mode for calibration **********
In TIDL_runtimesPostProcessNet
~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
***************** Calibration iteration number 0 completed ************************
~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
***************** Calibration iteration number 1 completed ************************
~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
***************** Calibra
Processing config file #0 : /home/edgeai-tidl-tools/model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_io_.qunat_stats_config.txt
----------------------- TIDL Process with REF_ONLY FLOW ------------------------
# 0 . .. T 779.92 .... ..... ... .... .....
# 1 . .. T 779.80 .... ..... ... .... .....
Processing config file #0 : /home/edgeai-tidl-tools/model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_io_.qunat_stats_config.txt
----------------------- TIDL Process with REF_ONLY FLOW ------------------------
# 0 . .. T 777.46 .... ..... ... .... .....
# 1 . .. T 776.50 .... ..... ... .... .....
------------------ Network Compiler Traces -----------------------------
successful Memory allocation
Running_Model : cl-ort-resnet18-v1
Completed_Model : 1, Name : cl-ort-resnet18-v1 , Total time : 8936.09, Offload Time : 1380.89 , DDR RW MBs : 0, Output File : py_out_cl-ort-resnet18-v1_ADE_val_00001801.jpg
I attached log files. (set debug_level 3)
I have read README and proceeding in order. What is my problem?
If the sample model compilation fails, is there a problem with my environment?
I tried to it on VM(Ubuntu), WSL2 Docker(Ubuntu), result is all same.
I wondered if it was a problem with the sample model.
so I copied the model(ONR-CL-6100-resNet18) file from EVM to PC. And try to compile, but it's failed.
Also shows same message that "fails to allocate memory..."
Regards,
Lee.