This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

SK-TDA4VM: Evaluation of Object detection model performance on EdgeAI

Part Number: SK-TDA4VM

I am trying to evaluate Object detection model performance on TI Edge AI. I have been getting some weird issues. 

 

  • Sometimes the Kernel dies when compiling the model. 
  • While compiling bad alloc issue came a couple of times at line "interpreter = tflite.Interpreter(model_path=fptflite_model_path, experimental_delegates=tidl_delegate)"
  • If the compilation is successful then I am getting No module named tflites.utils

Kernel Died

  • Error No Module named tflites.utils

  • Hi Akash, In the cloud, please check custom-model-tfl.ipynb as I think your notebook has the wrong "image_class_to_name" import. It should be  "from scripts.utils". You can also inspect notebooks from TI's edgeai-tidl-tools in github

    https://github.com/TexasInstruments/edgeai-tidl-tools/blob/master/examples/jupyter_notebooks/custom-model-tfl.ipynb 

    Also, below few more tips to debug issues:

    - Does the model run on ARM only? You can check vcls-tfl-arm.ipynb if needed

    Did he got compilation logs? Any errors?. You can check custom-model-tfl.ipynb on how to add "loggerWritter" to your notebook. Currently, we are saving compilation docker's container logs in "notebooks/logs/"

    - Also, we added a way to get EVM's console logs. Not always we get info there, but in case of errors, it might get some things printed there and worthy to check it. You can do that by running evm-console-log.ipynb

    - Additionally, a good way to debug if subgraphs are created and are correct is by inspecting *.svg files inside notebooks/custom-artifacts/ folder (or /custom-artifacts-temp if you didn't copy them inside your workspace - last cell to run). *.svg files are inside "tempDir". Alternatively, we added subgraph visualization to our custom-model notebooks. You can copy that particular cell in your notebook as well.

    thank you,

    Paula

  • Hello Paula, 

    Thanks for the reply. I switched the notebook. I still have the kernel dying issue though. could you please help me to understand the issue? Please find the attached log. 

    tidl_tools_path                                 = /opt/tidl_tools 
    artifacts_folder                                = ../custom-artifacts-temp/tflite/mobilenetv1 
    tidl_tensor_bits                                = 8 
    debug_level                                     = 3 
    num_tidl_subgraphs                              = 16 
    tidl_denylist                                   = 1   25   
    tidl_calibration_accuracy_level                 = 7 
    tidl_calibration_options:num_frames_calibration = 1 
    tidl_calibration_options:bias_calibration_iterations = 3 
    power_of_2_quantization                         = 2 
    enable_high_resolution_optimization             = 0 
    pre_batchnorm_fold                              = 1 
    add_data_convert_ops                          = 0 
    output_feature_16bit_names_list                 =  
    m_params_16bit_names_list                       =  
    reserved_compile_constraints_flag               = 1601 
    ti_internal_reserved_1                          = 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/Conv/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/Conv/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/Conv/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 4 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv/depthwise/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv/depthwise/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv/depthwise/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv/project/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv/project/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_1/expand/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_1/expand/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_1/expand/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 4 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_1/depthwise/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_1/depthwise/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_1/depthwise/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_1/project/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_1/project/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_2/expand/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_2/expand/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_2/expand/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 4 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_2/depthwise/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_2/depthwise/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_2/depthwise/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_2/project/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_2/project/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 5 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_2/add_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_3/expand/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_3/expand/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_3/expand/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 4 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_3/depthwise/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_3/depthwise/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_3/depthwise/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_3/project/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_3/project/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_4/expand/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_4/expand/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_4/expand/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 4 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_4/depthwise/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_4/depthwise/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_4/depthwise/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_4/project/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_4/project/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 5 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_4/add_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_5/expand/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_5/expand/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_5/expand/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 4 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_5/depthwise/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_5/depthwise/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_5/depthwise/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_5/project/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_5/project/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 5 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_5/add_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_6/expand/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_6/expand/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_6/expand/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 4 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_6/depthwise/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_6/depthwise/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_6/depthwise/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_6/project/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_6/project/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_7/expand/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_7/expand/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_7/expand/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 4 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_7/depthwise/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_7/depthwise/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_7/depthwise/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_7/project/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_7/project/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 5 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_7/add_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_8/expand/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_8/expand/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_8/expand/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 4 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_8/depthwise/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_8/depthwise/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_8/depthwise/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_8/project/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_8/project/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 5 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_8/add_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_9/expand/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_9/expand/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_9/expand/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 4 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_9/depthwise/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_9/depthwise/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_9/depthwise/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_9/project/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_9/project/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 5 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_9/add_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_10/expand/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_10/expand/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_10/expand/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 4 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_10/depthwise/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_10/depthwise/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_10/depthwise/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_10/project/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_10/project/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_11/expand/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_11/expand/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_11/expand/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 4 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_11/depthwise/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_11/depthwise/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_11/depthwise/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_11/project/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_11/project/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 5 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_11/add_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_12/expand/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_12/expand/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_12/expand/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 4 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_12/depthwise/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_12/depthwise/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_12/depthwise/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_12/project/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_12/project/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 5 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_12/add_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_13/expand/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_13/expand/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_13/expand/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 4 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_13/depthwise/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_13/depthwise/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_13/depthwise/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_13/project/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_13/project/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_14/expand/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_14/expand/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_14/expand/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 4 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_14/depthwise/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_14/depthwise/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_14/depthwise/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_14/project/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_14/project/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 5 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_14/add_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_15/expand/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_15/expand/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_15/expand/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 4 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_15/depthwise/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_15/depthwise/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_15/depthwise/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_15/project/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_15/project/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 5 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_15/add_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_16/expand/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_16/expand/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_16/expand/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 4 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_16/depthwise/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_16/depthwise/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_16/depthwise/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_16/project/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/expanded_conv_16/project/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/Conv_1/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/Conv_1/BatchNorm/FusedBatchNorm_original 
    Unsupported (import) TIDL layer type for Tflite layer type --- 21  layer output name--- FeatureExtractor/MobilenetV2/Conv_1/Relu6_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_2_1x1_256/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_2_1x1_256/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 3 Tflite layer type --- 19 layer output name--- FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_2_1x1_256/Relu_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 3 Tflite layer type --- 19 layer output name--- FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512/Relu_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_3_1x1_128/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_3_1x1_128/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 3 Tflite layer type --- 19 layer output name--- FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_3_1x1_128/Relu_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 3 Tflite layer type --- 19 layer output name--- FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256/Relu_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_4_1x1_128/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_4_1x1_128/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 3 Tflite layer type --- 19 layer output name--- FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_4_1x1_128/Relu_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 3 Tflite layer type --- 19 layer output name--- FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256/Relu_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_5_1x1_64/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_5_1x1_64/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 3 Tflite layer type --- 19 layer output name--- FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_5_1x1_64/Relu_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128/BatchNorm/FusedBatchNorm/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128/BatchNorm/FusedBatchNorm_original 
    Supported TIDL layer type --- 3 Tflite layer type --- 19 layer output name--- FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128/Relu_original 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- BoxPredictor_0/BoxEncodingPredictor/BiasAdd/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- BoxPredictor_0/BoxEncodingPredictor/BiasAdd_original 
    Unsupported (TIDL check) TIDL layer type --- 39 Tflite layer type --- 22 layer output name--- BoxPredictor_0/Reshape 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- BoxPredictor_0/ClassPredictor/BiasAdd/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- BoxPredictor_0/ClassPredictor/BiasAdd_original 
    Unsupported (TIDL check) TIDL layer type --- 39 Tflite layer type --- 22 layer output name--- BoxPredictor_0/Reshape_1 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- BoxPredictor_1/BoxEncodingPredictor/BiasAdd/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- BoxPredictor_1/BoxEncodingPredictor/BiasAdd_original 
    Unsupported (TIDL check) TIDL layer type --- 39 Tflite layer type --- 22 layer output name--- BoxPredictor_1/Reshape 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- BoxPredictor_1/ClassPredictor/BiasAdd/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- BoxPredictor_1/ClassPredictor/BiasAdd_original 
    Unsupported (TIDL check) TIDL layer type --- 39 Tflite layer type --- 22 layer output name--- BoxPredictor_1/Reshape_1 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- BoxPredictor_2/BoxEncodingPredictor/BiasAdd/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- BoxPredictor_2/BoxEncodingPredictor/BiasAdd_original 
    Unsupported (TIDL check) TIDL layer type --- 39 Tflite layer type --- 22 layer output name--- BoxPredictor_2/Reshape 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- BoxPredictor_2/ClassPredictor/BiasAdd/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- BoxPredictor_2/ClassPredictor/BiasAdd_original 
    Unsupported (TIDL check) TIDL layer type --- 39 Tflite layer type --- 22 layer output name--- BoxPredictor_2/Reshape_1 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- BoxPredictor_3/BoxEncodingPredictor/BiasAdd/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- BoxPredictor_3/BoxEncodingPredictor/BiasAdd_original 
    Unsupported (TIDL check) TIDL layer type --- 39 Tflite layer type --- 22 layer output name--- BoxPredictor_3/Reshape 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- BoxPredictor_3/ClassPredictor/BiasAdd/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- BoxPredictor_3/ClassPredictor/BiasAdd_original 
    Unsupported (TIDL check) TIDL layer type --- 39 Tflite layer type --- 22 layer output name--- BoxPredictor_3/Reshape_1 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- BoxPredictor_4/BoxEncodingPredictor/BiasAdd/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- BoxPredictor_4/BoxEncodingPredictor/BiasAdd_original 
    Unsupported (TIDL check) TIDL layer type --- 39 Tflite layer type --- 22 layer output name--- BoxPredictor_4/Reshape 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- BoxPredictor_4/ClassPredictor/BiasAdd/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- BoxPredictor_4/ClassPredictor/BiasAdd_original 
    Unsupported (TIDL check) TIDL layer type --- 39 Tflite layer type --- 22 layer output name--- BoxPredictor_4/Reshape_1 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- BoxPredictor_5/BoxEncodingPredictor/BiasAdd/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- BoxPredictor_5/BoxEncodingPredictor/BiasAdd_original 
    Unsupported (TIDL check) TIDL layer type --- 39 Tflite layer type --- 22 layer output name--- BoxPredictor_5/Reshape 
    Supported TIDL layer type --- 1 Tflite layer type --- 3 layer output name--- BoxPredictor_5/ClassPredictor/BiasAdd/conv_original 
    Supported TIDL layer type --- 8 Tflite layer type --- 0 layer output name--- BoxPredictor_5/ClassPredictor/BiasAdd_original 
    Unsupported (TIDL check) TIDL layer type --- 39 Tflite layer type --- 22 layer output name--- BoxPredictor_5/Reshape_1 
    Supported TIDL layer type --- 12 Tflite layer type --- 2 layer output name---          concat 
    Warning : concat requires 4D input tensors - only 3 dims present..  Ignore if object detection network
    Unsupported (TIDL check) TIDL layer type --- 12 Tflite layer type --- 2 layer output name---        concat_1 
    
     Number of subgraphs:48 , 163 nodes delegated out of 211 nodes 
     
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/Conv/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv/depthwise/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_1/expand/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_1/depthwise/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_2/expand/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_2/depthwise/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_3/expand/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_3/depthwise/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_4/expand/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_4/depthwise/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_5/expand/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_5/depthwise/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_6/expand/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_6/depthwise/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_7/expand/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_7/depthwise/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_8/expand/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_8/depthwise/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_9/expand/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_9/depthwise/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_10/expand/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_10/depthwise/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_11/expand/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_11/depthwise/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_12/expand/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_12/depthwise/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_13/expand/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_13/depthwise/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_14/expand/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_14/depthwise/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_15/expand/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_15/depthwise/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_16/expand/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/expanded_conv_16/depthwise/Relu6_original  
    Layer type not supported by TIDL ----  tflite layer code - 21, tensor name - FeatureExtractor/MobilenetV2/Conv_1/Relu6_original  
    TIDL ALLOWLISTING LAYER CHECK -- [TIDL_ReshapeLayer]  Only N th dimension can be non-zero, first N-1 dimension must be 1, only flatten reshape layer supported.  
    TIDL ALLOWLISTING LAYER CHECK -- [TIDL_ReshapeLayer]  Only N th dimension can be non-zero, first N-1 dimension must be 1, only flatten reshape layer supported.  
    TIDL ALLOWLISTING LAYER CHECK -- [TIDL_ReshapeLayer]  Only N th dimension can be non-zero, first N-1 dimension must be 1, only flatten reshape layer supported.  
    TIDL ALLOWLISTING LAYER CHECK -- [TIDL_ReshapeLayer]  Only N th dimension can be non-zero, first N-1 dimension must be 1, only flatten reshape layer supported.  
    TIDL ALLOWLISTING LAYER CHECK -- [TIDL_ReshapeLayer]  Only N th dimension can be non-zero, first N-1 dimension must be 1, only flatten reshape layer supported.  
    TIDL ALLOWLISTING LAYER CHECK -- [TIDL_ReshapeLayer]  Only N th dimension can be non-zero, first N-1 dimension must be 1, only flatten reshape layer supported.  
    TIDL ALLOWLISTING LAYER CHECK -- [TIDL_ReshapeLayer]  Only N th dimension can be non-zero, first N-1 dimension must be 1, only flatten reshape layer supported.  
    TIDL ALLOWLISTING LAYER CHECK -- [TIDL_ReshapeLayer]  Only N th dimension can be non-zero, first N-1 dimension must be 1, only flatten reshape layer supported.  
    TIDL ALLOWLISTING LAYER CHECK -- [TIDL_ReshapeLayer]  Only N th dimension can be non-zero, first N-1 dimension must be 1, only flatten reshape layer supported.  
    TIDL ALLOWLISTING LAYER CHECK -- [TIDL_ReshapeLayer]  Only N th dimension can be non-zero, first N-1 dimension must be 1, only flatten reshape layer supported.  
    TIDL ALLOWLISTING LAYER CHECK -- [TIDL_ReshapeLayer]  Only N th dimension can be non-zero, first N-1 dimension must be 1, only flatten reshape layer supported.  
    TIDL ALLOWLISTING LAYER CHECK -- [TIDL_ReshapeLayer]  Only N th dimension can be non-zero, first N-1 dimension must be 1, only flatten reshape layer supported.  
    In TIDL_tfliteRtImportInit subgraph_id=86
    Layer 0, subgraph id 86, name=FeatureExtractor/MobilenetV2/Conv/BatchNorm/FusedBatchNorm_original
    Layer 1, subgraph id 86, name=Preprocessor/sub
    In TIDL_tfliteRtImportNode  TIDL Layer type 1   Tflite builtin code type 3 
    In TIDL_tfliteRtImportNode  TIDL Layer type 8   Tflite builtin code type 0 
    In TIDL_runtimesOptimizeNet: LayerIndex = 4, dataIndex = 3 
    
     ************** Frame index 1 : Running float import ************* 
    In TIDL_runtimesPostProcessNet 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    ************ in TIDL_subgraphRtCreate ************ 
      0.0s:  VX_ZONE_INIT:Enabled
     0.5s:  VX_ZONE_ERROR:Enabled
     0.6s:  VX_ZONE_WARNING:Enabled
     0.585s:  VX_ZONE_INIT:[tivxInit:178] Initialization Done !!!
    TIDL_initDebugTraceParams Done 
    Alg Alloc for Layer # -    0
    Alg Alloc for Layer # -    1
    Alg Alloc for Layer # -    2
    Alg Alloc for Layer # -    3
    
    TIDL Memory requiement 
    MemRecNum , Space     , Attribute ,    SizeinBytes 
     0         , DDR       , Persistent,    15208      
     1         , DDR       , Persistent,    136        
     2         , DDR       , Scratch   ,    16384      
     3         , DDR       , Scratch   ,    4096       
     4         , DDR       , Scratch   ,    57344      
     5         , DDR       , Persistent,    1664       
     6         , DDR       , Scratch   ,    3142528    
     7         , DDR       , Scratch   ,    256        
     8         , DDR       , Scratch   ,    46080128   
     9         , DDR       , Scratch   ,    23043072   
     10        , DDR       , Persistent,    5431680    
     11        , DDR       , Persistent,    153856     
     12        , DDR       , Scratch   ,    256        
     13        , DDR       , Persistent,    128        
    NOTE: Memory requirement in host emulation can be different from the same on EVM
          To get the actual TIDL memory requirement make sure to run on EVM with 
          writeTraceLevel = 0
    
    Alg Init for Layer # -    0 out of    3
    Alg Init for Layer # -    1 out of    3
    Alg Init for Layer # -    2 out of    3
    Alg Init for Layer # -    3 out of    3
    ************ TIDL_subgraphRtCreate done ************ 
     In TIDL_tfliteRtImportInit subgraph_id=98
    Layer 0, subgraph id 98, name=FeatureExtractor/MobilenetV2/expanded_conv/depthwise/BatchNorm/FusedBatchNorm_original
    Layer 1, subgraph id 98, name=FeatureExtractor/MobilenetV2/Conv/Relu6_original
    In TIDL_tfliteRtImportNode  TIDL Layer type 1   Tflite builtin code type 4 
    In TIDL_tfliteRtImportNode  TIDL Layer type 8   Tflite builtin code type 0 
    In TIDL_runtimesOptimizeNet: LayerIndex = 4, dataIndex = 3 
    
     ************** Frame index 1 : Running float import ************* 
    In TIDL_runtimesPostProcessNet 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    ************ in TIDL_subgraphRtCreate ************ 
     TIDL_initDebugTraceParams Done 
    Alg Alloc for Layer # -    0
    Alg Alloc for Layer # -    1
    Alg Alloc for Layer # -    2
    Alg Alloc for Layer # -    3
    
    TIDL Memory requiement 
    MemRecNum , Space     , Attribute ,    SizeinBytes 
     0         , DDR       , Persistent,    15208      
     1         , DDR       , Persistent,    136        
     2         , DDR       , Scratch   ,    16384      
     3         , DDR       , Scratch   ,    4096       
     4         , DDR       , Scratch   ,    57344      
     5         , DDR       , Persistent,    1664       
     6         , DDR       , Scratch   ,    3142528    
     7         , DDR       , Scratch   ,    256        
     8         , DDR       , Scratch   ,    46080128   
     9         , DDR       , Scratch   ,    23660544   
     10        , DDR       , Persistent,    5431680    
     11        , DDR       , Persistent,    153856     
     12        , DDR       , Scratch   ,    256        
     13        , DDR       , Persistent,    128        
    NOTE: Memory requirement in host emulation can be different from the same on EVM
          To get the actual TIDL memory requirement make sure to run on EVM with 
          writeTraceLevel = 0
    
    Alg Init for Layer # -    0 out of    3
    Alg Init for Layer # -    1 out of    3
    Alg Init for Layer # -    2 out of    3
    Alg Init for Layer # -    3 out of    3
    ************ TIDL_subgraphRtCreate done ************ 
     In TIDL_tfliteRtImportInit subgraph_id=115
    Layer 0, subgraph id 115, name=FeatureExtractor/MobilenetV2/expanded_conv_1/expand/BatchNorm/FusedBatchNorm_original
    Layer 1, subgraph id 115, name=FeatureExtractor/MobilenetV2/expanded_conv/depthwise/Relu6_original
    In TIDL_tfliteRtImportNode  TIDL Layer type 1   Tflite builtin code type 3 
    In TIDL_tfliteRtImportNode  TIDL Layer type 8   Tflite builtin code type 0 
    In TIDL_tfliteRtImportNode  TIDL Layer type 1   Tflite builtin code type 3 
    In TIDL_tfliteRtImportNode  TIDL Layer type 8   Tflite builtin code type 0 
    In TIDL_runtimesOptimizeNet: LayerIndex = 6, dataIndex = 5 
    
     ************** Frame index 1 : Running float import ************* 
    In TIDL_runtimesPostProcessNet 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    ************ in TIDL_subgraphRtCreate ************ 
     TIDL_initDebugTraceParams Done 
    Alg Alloc for Layer # -    0
    Alg Alloc for Layer # -    1
    Alg Alloc for Layer # -    2
    Alg Alloc for Layer # -    3
    Alg Alloc for Layer # -    4
    Alg Alloc for Layer # -    5
    
    TIDL Memory requiement 
    MemRecNum , Space     , Attribute ,    SizeinBytes 
     0         , DDR       , Persistent,    15208      
     1         , DDR       , Persistent,    136        
     2         , DDR       , Scratch   ,    16384      
     3         , DDR       , Scratch   ,    4096       
     4         , DDR       , Scratch   ,    57344      
     5         , DDR       , Persistent,    3648       
     6         , DDR       , Scratch   ,    12044928   
     7         , DDR       , Scratch   ,    256        
     8         , DDR       , Scratch   ,    138240128  
     9         , DDR       , Scratch   ,    69123072   
     10        , DDR       , Persistent,    5431680    
     11        , DDR       , Persistent,    172416     
     12        , DDR       , Scratch   ,    256        
     13        , DDR       , Persistent,    128        
    NOTE: Memory requirement in host emulation can be different from the same on EVM
          To get the actual TIDL memory requirement make sure to run on EVM with 
          writeTraceLevel = 0
    
    Alg Init for Layer # -    0 out of    5
    Alg Init for Layer # -    1 out of    5
    Alg Init for Layer # -    2 out of    5
    Alg Init for Layer # -    3 out of    5
    Alg Init for Layer # -    4 out of    5
    Alg Init for Layer # -    5 out of    5
    ************ TIDL_subgraphRtCreate done ************ 
     In TIDL_tfliteRtImportInit subgraph_id=109
    Layer 0, subgraph id 109, name=FeatureExtractor/MobilenetV2/expanded_conv_1/depthwise/BatchNorm/FusedBatchNorm_original
    Layer 1, subgraph id 109, name=FeatureExtractor/MobilenetV2/expanded_conv_1/expand/Relu6_original
    In TIDL_tfliteRtImportNode  TIDL Layer type 1   Tflite builtin code type 4 
    In TIDL_tfliteRtImportNode  TIDL Layer type 8   Tflite builtin code type 0 
    In TIDL_runtimesOptimizeNet: LayerIndex = 4, dataIndex = 3 
    
     ************** Frame index 1 : Running float import ************* 
    In TIDL_runtimesPostProcessNet 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    ************ in TIDL_subgraphRtCreate ************ 
     TIDL_initDebugTraceParams Done 
    Alg Alloc for Layer # -    0
    Alg Alloc for Layer # -    1
    Alg Alloc for Layer # -    2
    Alg Alloc for Layer # -    3
    
    TIDL Memory requiement 
    MemRecNum , Space     , Attribute ,    SizeinBytes 
     0         , DDR       , Persistent,    15208      
     1         , DDR       , Persistent,    136        
     2         , DDR       , Scratch   ,    16384      
     3         , DDR       , Scratch   ,    4096       
     4         , DDR       , Scratch   ,    57344      
     5         , DDR       , Persistent,    2432       
     6         , DDR       , Scratch   ,    2422528    
     7         , DDR       , Scratch   ,    256        
     8         , DDR       , Scratch   ,    34560128   
     9         , DDR       , Scratch   ,    70975488   
     10        , DDR       , Persistent,    5431680    
     11        , DDR       , Persistent,    153856     
     12        , DDR       , Scratch   ,    256        
     13        , DDR       , Persistent,    128        
    NOTE: Memory requirement in host emulation can be different from the same on EVM
          To get the actual TIDL memory requirement make sure to run on EVM with 
          writeTraceLevel = 0
    
    Alg Init for Layer # -    0 out of    3
    Alg Init for Layer # -    1 out of    3
    Alg Init for Layer # -    2 out of    3
    Alg Init for Layer # -    3 out of    3
    ************ TIDL_subgraphRtCreate done ************ 
     In TIDL_tfliteRtImportInit subgraph_id=256
    Layer 0, subgraph id 256, name=FeatureExtractor/MobilenetV2/expanded_conv_1/project/BatchNorm/FusedBatchNorm_original
    Layer 1, subgraph id 256, name=FeatureExtractor/MobilenetV2/expanded_conv_2/expand/BatchNorm/FusedBatchNorm_original
    Layer 2, subgraph id 256, name=FeatureExtractor/MobilenetV2/expanded_conv_1/depthwise/Relu6_original
    In TIDL_tfliteRtImportNode  TIDL Layer type 1   Tflite builtin code type 3 
    In TIDL_tfliteRtImportNode  TIDL Layer type 8   Tflite builtin code type 0 
    In TIDL_tfliteRtImportNode  TIDL Layer type 1   Tflite builtin code type 3 
    In TIDL_tfliteRtImportNode  TIDL Layer type 8   Tflite builtin code type 0 
    In TIDL_runtimesOptimizeNet: LayerIndex = 7, dataIndex = 5 
    
     ************** Frame index 1 : Running float import ************* 
    In TIDL_runtimesPostProcessNet 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    ************ in TIDL_subgraphRtCreate ************ 
     TIDL_initDebugTraceParams Done 
    Alg Alloc for Layer # -    0
    Alg Alloc for Layer # -    1
    Alg Alloc for Layer # -    2
    Alg Alloc for Layer # -    3
    Alg Alloc for Layer # -    4
    Alg Alloc for Layer # -    5
    Alg Alloc for Layer # -    6
    
    TIDL Memory requiement 
    MemRecNum , Space     , Attribute ,    SizeinBytes 
     0         , DDR       , Persistent,    15208      
     1         , DDR       , Persistent,    136        
     2         , DDR       , Scratch   ,    16384      
     3         , DDR       , Scratch   ,    4096       
     4         , DDR       , Scratch   ,    57344      
     5         , DDR       , Persistent,    4320       
     6         , DDR       , Scratch   ,    4304800    
     7         , DDR       , Scratch   ,    256        
     8         , DDR       , Scratch   ,    51840128   
     9         , DDR       , Scratch   ,    25923072   
     10        , DDR       , Persistent,    5431680    
     11        , DDR       , Persistent,    172416     
     12        , DDR       , Scratch   ,    256        
     13        , DDR       , Persistent,    128        
    NOTE: Memory requirement in host emulation can be different from the same on EVM
          To get the actual TIDL memory requirement make sure to run on EVM with 
          writeTraceLevel = 0
    
    Alg Init for Layer # -    0 out of    6
    Alg Init for Layer # -    1 out of    6
    Alg Init for Layer # -    2 out of    6
    Alg Init for Layer # -    3 out of    6
    Alg Init for Layer # -    4 out of    6
    Alg Init for Layer # -    5 out of    6
    Alg Init for Layer # -    6 out of    6
    ************ TIDL_subgraphRtCreate done ************ 
     In TIDL_tfliteRtImportInit subgraph_id=250
    Layer 0, subgraph id 250, name=FeatureExtractor/MobilenetV2/expanded_conv_2/depthwise/BatchNorm/FusedBatchNorm_original
    Layer 1, subgraph id 250, name=FeatureExtractor/MobilenetV2/expanded_conv_2/expand/Relu6_original
    In TIDL_tfliteRtImportNode  TIDL Layer type 1   Tflite builtin code type 4 
    In TIDL_tfliteRtImportNode  TIDL Layer type 8   Tflite builtin code type 0 
    In TIDL_runtimesOptimizeNet: LayerIndex = 4, dataIndex = 3 
    
     ************** Frame index 1 : Running float import ************* 
    In TIDL_runtimesPostProcessNet 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    ************ in TIDL_subgraphRtCreate ************ 
     TIDL_initDebugTraceParams Done 
    Alg Alloc for Layer # -    0
    Alg Alloc for Layer # -    1
    Alg Alloc for Layer # -    2
    Alg Alloc for Layer # -    3
    
    TIDL Memory requiement 
    MemRecNum , Space     , Attribute ,    SizeinBytes 
     0         , DDR       , Persistent,    15208      
     1         , DDR       , Persistent,    136        
     2         , DDR       , Scratch   ,    16384      
     3         , DDR       , Scratch   ,    4096       
     4         , DDR       , Scratch   ,    57344      
     5         , DDR       , Persistent,    3008       
     6         , DDR       , Scratch   ,    3502528    
     7         , DDR       , Scratch   ,    256        
     8         , DDR       , Scratch   ,    51840128   
     9         , DDR       , Scratch   ,    27319296   
     10        , DDR       , Persistent,    5431680    
     11        , DDR       , Persistent,    153856     
     12        , DDR       , Scratch   ,    256        
     13        , DDR       , Persistent,    128        
    NOTE: Memory requirement in host emulation can be different from the same on EVM
          To get the actual TIDL memory requirement make sure to run on EVM with 
          writeTraceLevel = 0
    
    Alg Init for Layer # -    0 out of    3
    Alg Init for Layer # -    1 out of    3
    Alg Init for Layer # -    2 out of    3
    Alg Init for Layer # -    3 out of    3
    ************ TIDL_subgraphRtCreate done ************ 
     In TIDL_tfliteRtImportInit subgraph_id=273
    Layer 0, subgraph id 273, name=FeatureExtractor/MobilenetV2/expanded_conv_3/expand/BatchNorm/FusedBatchNorm_original
    Layer 1, subgraph id 273, name=FeatureExtractor/MobilenetV2/expanded_conv_1/project/BatchNorm/FusedBatchNorm_original
    Layer 2, subgraph id 273, name=FeatureExtractor/MobilenetV2/expanded_conv_2/depthwise/Relu6_original
    In TIDL_tfliteRtImportNode  TIDL Layer type 1   Tflite builtin code type 3 
    In TIDL_tfliteRtImportNode  TIDL Layer type 8   Tflite builtin code type 0 
    In TIDL_tfliteRtImportNode  TIDL Layer type 5   Tflite builtin code type 0 
    In TIDL_tfliteRtImportNode  TIDL Layer type 1   Tflite builtin code type 3 
    In TIDL_tfliteRtImportNode  TIDL Layer type 8   Tflite builtin code type 0 
    In TIDL_runtimesOptimizeNet: LayerIndex = 8, dataIndex = 7 
    
     ************** Frame index 1 : Running float import ************* 
    In TIDL_runtimesPostProcessNet 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    ************ in TIDL

  • Akash, sorry for the delay. I was wondering if you can also compile this model using our github edgeai-tidl-tools

    The reason is above log is not completed (probably because the kernel died).

    Alternatively, if you can share this model with us we can test it.

    There is a potential issue with TFLite and Relu6. But we would like to confirm.

    thank you,

    Paula

  • Our's is a custom tflite model. I am trying to compile the model using the mentioned repo but I am not able to. I tried using this script python3 tflrt_delegate.py -c with my model. But getting errors that the "frozen inference graph is not available in config". Could you please provide me an example of how to do this?

  • Hi Akash, first at all I want to confirm. You were able to run ./run_python_examples.sh?

    If so, for adding a model in TFLite python script there are two main files to check

    In tflrt_delegate.py There is a list of models to run: https://github.com/TexasInstruments/edgeai-tidl-tools/blob/c6987ebeb67e48323a1e9e62f855d35c9da9d5d5/examples/osrt_python/tfl/tflrt_delegate.py#L213 you can add your model name there.

    In common_utils.py you can add your model following one of the examples in models_configs

    https://github.com/TexasInstruments/edgeai-tidl-tools/blob/c6987ebeb67e48323a1e9e62f855d35c9da9d5d5/examples/osrt_python/common_utils.py#L385

    Notes: 

    • You can copy your models inside "models_base_path" or you can change 'model_path'
    • 'model_type' is mainly for post-processing, so if you model doesn't fit in current categories (Classification, Object Dectection, Segmantic Segmentation) pick any one of those just for the compilation and initial test, and later modify post-processing accordingly
    • You can also change input image for calibration, and other knobs from these 2 python scripts

    Let me know if you face any issues running your model in edgeai-tidl-tools with python scripts

    thank you,

    Paula

  • Hello Paula, 

    Yes, I was able to run run_python_examples.sh. Please find the attached. I did the changes as you mentioned. When I ran the script again with my custom model it threw some warnings and then it stuck. Please find the log. Some files are generated in the model-artifacts directory for my custom model. 

    ripts/run_python_examples.sh
    X64 Architecture
    Running 3 Models - ['cl-tfl-mobilenet_v1_1.0_224', 'ss-tfl-deeplabv3_mnv2_ade20k_float', 'od-tfl-ssd_mobilenet_v2_300_float']
    
    
    Running_Model :  cl-tfl-mobilenet_v1_1.0_224
    
    Running_Model :  ss-tfl-deeplabv3_mnv2_ade20k_float
    
    Running_Model :  od-tfl-ssd_mobilenet_v2_300_float
    TIDL Meta PipeLine (Proto) File  :   
    
    Number of OD backbone nodes = 0 
    Size of odBackboneNodeIds = 0 
    
     Number of subgraphs:1 , 81 nodes delegated out of 81 nodes 
     
    
     Number of subgraphs:1 , 34 nodes delegated out of 34 nodes 
     
    Warning : concat requires 4D input tensors - only 3 dims present..  Ignore if object detection network
    
     Number of subgraphs:1 , 107 nodes delegated out of 107 nodes 
     
    Warning : concat requires 4D input tensors - only 3 dims present..  Ignore if object detection network
    WARNING: Batch Norm Layer scale_logits's coeff cannot be found(or not match) in coef file, Random bias will be generated! Only for evaluation usage! Results are all random!
    Warning : Requested Output Data Convert Layer is not Added to the network, It is currently not Optimal
    Warning : Requested Output Data Convert Layer is not Added to the network, It is currently not Optimal
    
     ************** Frame index 1 : Running float import ************* 
    
     ************** Frame index 1 : Running float import ************* 
    Warning : Requested Output Data Convert Layer is not Added to the network, It is currently not Optimal
    Warning : Requested Output Data Convert Layer is not Added to the network, It is currently not Optimal
    Warning : Requested Output Data Convert Layer is not Added to the network, It is currently not Optimal
    Warning : Requested Output Data Convert Layer is not Added to the network, It is currently not Optimal
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
     0.0s:  VX_ZONE_INIT:Enabled
     0.8s:  VX_ZONE_ERROR:Enabled
     0.10s:  VX_ZONE_WARNING:Enabled
     0.711s:  VX_ZONE_INIT:[tivxInit:178] Initialization Done !!!
    INFORMATION: [TIDL_ResizeLayer] ResizeBilinear_TIDL_0 Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize.
    INFORMATION: [TIDL_ResizeLayer] ResizeBilinear_TIDL_1 Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize.
    INFORMATION: [TIDL_ResizeLayer] ResizeBilinear Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize.
    INFORMATION: [TIDL_ResizeLayer] decoder/ResizeBilinear Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize.
    INFORMATION: [TIDL_ResizeLayer] ResizeBilinear_1 Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize.
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          6 WARNINGS          0 ERRORS          **
    ****************************************************
     0.0s:  VX_ZONE_INIT:Enabled
     0.11s:  VX_ZONE_ERROR:Enabled
     0.12s:  VX_ZONE_WARNING:Enabled
     0.402s:  VX_ZONE_INIT:[tivxInit:178] Initialization Done !!!
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
     0.0s:  VX_ZONE_INIT:Enabled
     0.9s:  VX_ZONE_ERROR:Enabled
     0.10s:  VX_ZONE_WARNING:Enabled
     0.339s:  VX_ZONE_INIT:[tivxInit:178] Initialization Done !!!
    
     ************ Frame index 1 : Running float inference **************** 
    
     ************ Frame index 2 : Running fixed point mode for calibration **************** 
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/cl-tfl-mobilenet_v1_1.0_224/tempDir/86_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T     474.26  .... ..... ... .... .....
    #    1 . ..
     ************ Frame index 1 : Running float inference **************** 
     T     487.03  .... ..... ... .... .....
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/cl-tfl-mobilenet_v1_1.0_224/tempDir/86_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T     532.76  .... ..... ... .... .....
    #    1 . ..
     ************ Frame index 2 : Running fixed point mode for calibration **************** 
     T     527.97  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 0 completed ************************ 
     
     
     
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/od-tfl-ssd_mobilenet_v2_300_float/tempDir/264_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . ..
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/cl-tfl-mobilenet_v1_1.0_224/tempDir/86_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T     541.12  .... ..... ... .... .....
    #    1 . .. T     542.12  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 1 completed ************************ 
     
     
     
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/cl-tfl-mobilenet_v1_1.0_224/tempDir/86_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T    1580.68  .... ..... ... .... .....
    #    1 . .. T     564.05  .... ..... ... .... .....
    #    1 . .. T     542.60  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 2 completed ************************ 
     
     
     
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/cl-tfl-mobilenet_v1_1.0_224/tempDir/86_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . ..
     ************ Frame index 1 : Running float inference **************** 
     T     535.30  .... ..... ... .... .....
    #    1 . .. T    1570.61  .... ..... ... .... ..... T     546.83  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 3 completed ************************ 
     
     
     
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/od-tfl-ssd_mobilenet_v2_300_float/tempDir/264_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . ..
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/cl-tfl-mobilenet_v1_1.0_224/tempDir/86_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T     523.36  .... ..... ... .... .....
    #    1 . .. T    1016.06  .... ..... ... .... .....
    #    1 . .. T     533.75  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 4 completed ************************ 
     
     
     
    
    ------------------ Network Compiler Traces -----------------------------
    successful Memory allocation
    substitute string tidl_net_ not found
    ****************************************************
    **                ALL MODEL CHECK PASSED          **
    ****************************************************
    
    
     
    Completed_Model :     1, Name : cl-tfl-mobilenet_v1_1.0_224                       , Total time :    4194.30, Offload Time :       0.00 , DDR RW MBs :       0.00, Output File : py_out_cl-tfl-mobilenet_v1_1.0_224_ADE_val_00001801.jpg
     
     
     T    1013.09  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 0 completed ************************ 
     
     
     
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/od-tfl-ssd_mobilenet_v2_300_float/tempDir/264_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T    1048.71  .... ..... ... .... .....
    #    1 . .. T    1066.50  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 1 completed ************************ 
     
     
     
    
     ************ Frame index 2 : Running fixed point mode for calibration **************** 
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/ss-tfl-deeplabv3_mnv2_ade20k_float/tempDir/201_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . ..
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/od-tfl-ssd_mobilenet_v2_300_float/tempDir/264_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T     978.42  .... ..... ... .... .....
    #    1 . .. T     973.17  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 2 completed ************************ 
     
     
     
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/od-tfl-ssd_mobilenet_v2_300_float/tempDir/264_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T    1033.09  .... ..... ... .... .....
    #    1 . .. T    1030.79  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 3 completed ************************ 
     
     
     
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/od-tfl-ssd_mobilenet_v2_300_float/tempDir/264_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T     994.04  .... ..... ... .... .....
    #    1 . .. T     999.78  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 4 completed ************************ 
     
     
     
    
    ------------------ Network Compiler Traces -----------------------------
    successful Memory allocation
    substitute string tidl_net_ not found
    ****************************************************
    **                ALL MODEL CHECK PASSED          **
    ****************************************************
    
    
     
    Completed_Model :     3, Name : od-tfl-ssd_mobilenet_v2_300_float                 , Total time :    9786.46, Offload Time :       0.00 , DDR RW MBs :       0.00, Output File : py_out_od-tfl-ssd_mobilenet_v2_300_float_ADE_val_00001801.jpg
     
     
     T   13495.86  .... ..... ... .... .....
    #    1 . .. T   13470.31  .... ..... ... .... .....
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/ss-tfl-deeplabv3_mnv2_ade20k_float/tempDir/201_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T    5208.85  .... ..... ... .... .....
    #    1 . .. T    5150.42  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 0 completed ************************ 
     
     
     
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/ss-tfl-deeplabv3_mnv2_ade20k_float/tempDir/201_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T    5122.47  .... ..... ... .... .....
    #    1 . .. T    5094.49  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 1 completed ************************ 
     
     
     
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/ss-tfl-deeplabv3_mnv2_ade20k_float/tempDir/201_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T    5222.35  .... ..... ... .... .....
    #    1 . .. T    5327.63  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 2 completed ************************ 
     
     
     
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/ss-tfl-deeplabv3_mnv2_ade20k_float/tempDir/201_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T    5413.74  .... ..... ... .... .....
    #    1 . .. T    5375.34  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 3 completed ************************ 
     
     
     
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/ss-tfl-deeplabv3_mnv2_ade20k_float/tempDir/201_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T    5397.48  .... ..... ... .... .....
    #    1 . .. T    5233.48  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 4 completed ************************ 
     
     
     
    
    ------------------ Network Compiler Traces -----------------------------
    successful Memory allocation
    substitute string tidl_net_ not found
    INFORMATION: [TIDL_ResizeLayer] ResizeBilinear_TIDL_0 Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize.
    INFORMATION: [TIDL_ResizeLayer] ResizeBilinear_TIDL_1 Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize.
    INFORMATION: [TIDL_ResizeLayer] ResizeBilinear Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize.
    INFORMATION: [TIDL_ResizeLayer] decoder/ResizeBilinear Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize.
    INFORMATION: [TIDL_ResizeLayer] ResizeBilinear_1 Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize.
    ****************************************************
    **          5 WARNINGS          0 ERRORS          **
    ****************************************************
    
     
    Completed_Model :     2, Name : ss-tfl-deeplabv3_mnv2_ade20k_float                , Total time :   46160.62, Offload Time :       0.00 , DDR RW MBs :       0.00, Output File : py_out_ss-tfl-deeplabv3_mnv2_ade20k_float_ADE_val_00001801.jpg
     
     
    Running 3 Models - ['cl-tfl-mobilenet_v1_1.0_224', 'ss-tfl-deeplabv3_mnv2_ade20k_float', 'od-tfl-ssd_mobilenet_v2_300_float']
    
    
    Running_Model :  cl-tfl-mobilenet_v1_1.0_224
    
    Running_Model :  ss-tfl-deeplabv3_mnv2_ade20k_float
    
    Running_Model :  od-tfl-ssd_mobilenet_v2_300_float
    
     Number of subgraphs:1 , 34 nodes delegated out of 34 nodes 
     
    
     Number of subgraphs:1 , 81 nodes delegated out of 81 nodes 
     
    
     Number of subgraphs:1 , 107 nodes delegated out of 107 nodes 
     
     0.0s:  VX_ZONE_INIT:Enabled
     0.9s:  VX_ZONE_ERROR:Enabled
     0.10s:  VX_ZONE_WARNING:Enabled
     0.0s:  VX_ZONE_INIT:Enabled
     0.27s:  VX_ZONE_ERROR:Enabled
     0.28s:  VX_ZONE_WARNING:Enabled
     0.346s:  VX_ZONE_INIT:[tivxInit:178] Initialization Done !!!
     0.365s:  VX_ZONE_INIT:[tivxInit:178] Initialization Done !!!
     0.0s:  VX_ZONE_INIT:Enabled
     0.12s:  VX_ZONE_ERROR:Enabled
     0.13s:  VX_ZONE_WARNING:Enabled
     0.401s:  VX_ZONE_INIT:[tivxInit:178] Initialization Done !!!
    
     ,  0  0.511485  missile ,,  1  0.262215  warplane, military plane ,,  2  0.187196  projectile, missile ,,  3  0.025072  cannon ,,  4  0.007760  submarine, pigboat, sub, U-boat ,
    
    Saving image to  ../../../output_images/
    
     
    Completed_Model :     1, Name : cl-tfl-mobilenet_v1_1.0_224                       , Total time :     118.93, Offload Time :     118.93 , DDR RW MBs :       0.00, Output File : py_out_cl-tfl-mobilenet_v1_1.0_224_airshow.jpg
     
     
    
    Saving image to  ../../../output_images/
    
     
    Completed_Model :     3, Name : od-tfl-ssd_mobilenet_v2_300_float                 , Total time :     313.00, Offload Time :     312.99 , DDR RW MBs :       0.00, Output File : py_out_od-tfl-ssd_mobilenet_v2_300_float_image1.png
     
     
    
    Saving image to  ../../../output_images/
    
     
    Completed_Model :     2, Name : ss-tfl-deeplabv3_mnv2_ade20k_float                , Total time :    1292.48, Offload Time :    1292.47 , DDR RW MBs :       0.00, Output File : py_out_ss-tfl-deeplabv3_mnv2_ade20k_float_ADE_val_00001801.jpg
     
     
    Available execution providers :  ['TIDLExecutionProvider', 'TIDLCompilationProvider', 'CPUExecutionProvider']
    
    Running 4 Models - ['cl-ort-resnet18-v1', 'cl-ort-caffe_squeezenet_v1_1', 'ss-ort-deeplabv3lite_mobilenetv2', 'od-ort-ssd-lite_mobilenetv2_fpn']
    
    
    Running_Model :  cl-ort-resnet18-v1  
    
    Downloading   ../../../models/public/resnet18_opset9.onnx
    
    Running_Model :  cl-ort-caffe_squeezenet_v1_1  
    
    Downloading   ../../../models/public/caffe_squeezenet_v1_1.prototxt
    
    Running_Model :  ss-ort-deeplabv3lite_mobilenetv2  
    
    Downloading   ../../../models/public/deeplabv3lite_mobilenetv2.onnx
    
    Running_Model :  od-ort-ssd-lite_mobilenetv2_fpn  
    
    Downloading   ../../../models/public/ssd-lite_mobilenetv2_fpn.onnx
    Downloading   ../../../models/public/caffe_squeezenet_v1_1.caffemodel
    Converted model is valid!
    
    Preliminary subgraphs created = 1 
    Final number of subgraphs created are : 1, - Offloaded Nodes - 124, Total Nodes - 124 
    Warning : Requested Output Data Convert Layer is not Added to the network, It is currently not Optimal
    
     ************** Frame index 1 : Running float import ************* 
    INFORMATION: [TIDL_ResizeLayer] 571 Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize.
    INFORMATION: [TIDL_ResizeLayer] 576 Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize.
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          3 WARNINGS          0 ERRORS          **
    ****************************************************
     0.0s:  VX_ZONE_INIT:Enabled
     0.6s:  VX_ZONE_ERROR:Enabled
     0.7s:  VX_ZONE_WARNING:Enabled
     0.332s:  VX_ZONE_INIT:[tivxInit:178] Initialization Done !!!
    caffemodel was successfully loaded
    add model input information
    add model output information and model intermediate output information
    *.onnx model conversion completed
    removing not constant initializers from model
    frozen graph has been created
    Converted model is valid!
    Downloading   ../../../models/public/ssd-lite_mobilenetv2_fpn.prototxt
    the model has been successfully saved to ../../../models/public/caffe_squeezenet_v1_1.onnx
    TIDL Meta PipeLine (Proto) File  : ../../../models/public/ssd-lite_mobilenetv2_fpn.prototxt  
    ssd
    
    Number of OD backbone nodes = 159 
    Size of odBackboneNodeIds = 159 
    
    Preliminary subgraphs created = 1 
    Final number of subgraphs created are : 1, - Offloaded Nodes - 494, Total Nodes - 494 
    
    **********  Frame Index 1 : Running float inference **********
    Converted model is valid!
    
    Preliminary subgraphs created = 1 
    Final number of subgraphs created are : 1, - Offloaded Nodes - 68, Total Nodes - 68 
    TIDL Meta PipeLine (Proto) File  : ../../../models/public/ssd-lite_mobilenetv2_fpn.prototxt  
    ssd
    
    Warning :: img_w & img_h or img_size is not provided as part of prior_box_param,    hence using img_w =  512 and img_h =  512 in prior box decoding
    Warning :: img_w & img_h or img_size is not provided as part of prior_box_param,    hence using img_w =  512 and img_h =  512 in prior box decoding
    Warning :: img_w & img_h or img_size is not provided as part of prior_box_param,    hence using img_w =  512 and img_h =  512 in prior box decoding
    Warning :: img_w & img_h or img_size is not provided as part of prior_box_param,    hence using img_w =  512 and img_h =  512 in prior box decoding
    Warning :: img_w & img_h or img_size is not provided as part of prior_box_param,    hence using img_w =  512 and img_h =  512 in prior box decoding
    Warning :: img_w & img_h or img_size is not provided as part of prior_box_param,    hence using img_w =  512 and img_h =  512 in prior box decoding
    Warning : Requested Output Data Convert Layer is not Added to the network, It is currently not Optimal
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
     0.0s:  VX_ZONE_INIT:Enabled
     0.8s:  VX_ZONE_ERROR:Enabled
     0.9s:  VX_ZONE_WARNING:Enabled
     0.439s:  VX_ZONE_INIT:[tivxInit:178] Initialization Done !!!
    Warning : Requested Output Data Convert Layer is not Added to the network, It is currently not Optimal
    Warning : Requested Output Data Convert Layer is not Added to the network, It is currently not Optimal
    
     ************** Frame index 1 : Running float import ************* 
    INFORMATION: [TIDL_ResizeLayer] Resize_153 Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize.
    INFORMATION: [TIDL_ResizeLayer] Resize_156 Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize.
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          3 WARNINGS          0 ERRORS          **
    ****************************************************
     0.0s:  VX_ZONE_INIT:Enabled
     0.9s:  VX_ZONE_ERROR:Enabled
     0.10s:  VX_ZONE_WARNING:Enabled
     0.356s:  VX_ZONE_INIT:[tivxInit:178] Initialization Done !!!
    
    **********  Frame Index 1 : Running float inference **********
    
    **********  Frame Index 2 : Running fixed point mode for calibration **********
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/ss-ort-deeplabv3lite_mobilenetv2/tempDir/566TIDL_cast_out_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . ..
    **********  Frame Index 2 : Running fixed point mode for calibration **********
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/cl-ort-caffe_squeezenet_v1_1/tempDir/prob_Y_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T     305.59  .... ..... ... .... .....
    #    1 . .. T     301.56  .... ..... ... .... .....
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/cl-ort-caffe_squeezenet_v1_1/tempDir/prob_Y_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T     238.00  .... ..... ... .... .....
    #    1 . .. T     229.80  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 0 completed ************************ 
     
     
     
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/cl-ort-caffe_squeezenet_v1_1/tempDir/prob_Y_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T     226.05  .... ..... ... .... .....
    #    1 . ..
    **********  Frame Index 1 : Running float inference **********
     T     219.20  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 1 completed ************************ 
     
     
     
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/cl-ort-caffe_squeezenet_v1_1/tempDir/prob_Y_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T     238.23  .... ..... ... .... .....
    #    1 . .. T     238.13  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 2 completed ************************ 
     
     
     
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/cl-ort-caffe_squeezenet_v1_1/tempDir/prob_Y_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T     234.60  .... ..... ... .... .....
    #    1 . .. T     229.31  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 3 completed ************************ 
     
     
     
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/cl-ort-caffe_squeezenet_v1_1/tempDir/prob_Y_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T     239.89  .... ..... ... .... .....
    #    1 . .. T     229.35  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 4 completed ************************ 
     
     
     
    
    ------------------ Network Compiler Traces -----------------------------
    successful Memory allocation
    substitute string tidl_net_ not found
    ****************************************************
    **                ALL MODEL CHECK PASSED          **
    ****************************************************
    
    
     
    Completed_Model :     2, Name : cl-ort-caffe_squeezenet_v1_1                      , Total time :    2335.22, Offload Time :     294.18 , DDR RW MBs : 0, Output File : py_out_cl-ort-caffe_squeezenet_v1_1_ADE_val_00001801.jpg 
     
     
     T    3567.88  .... ..... ... .... .....
    #    1 . ..
    **********  Frame Index 2 : Running fixed point mode for calibration **********
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/od-ort-ssd-lite_mobilenetv2_fpn/tempDir/boxeslabels_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T    2123.56  .... ..... ... .... .....
    #    1 . .. T    3377.50  .... ..... ... .... .....
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/ss-ort-deeplabv3lite_mobilenetv2/tempDir/566TIDL_cast_out_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T    2027.05  .... ..... ... .... .....
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/od-ort-ssd-lite_mobilenetv2_fpn/tempDir/boxeslabels_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T    2380.03  .... ..... ... .... .....
    #    1 . .. T    3738.21  .... ..... ... .... .....
    #    1 . .. T    2354.68  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 0 completed ************************ 
     
     
     
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/od-ort-ssd-lite_mobilenetv2_fpn/tempDir/boxeslabels_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . ..Converted model is valid!
    2022-04-21 11:43:00.620251230 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer4.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:00.622074544 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer4.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:00.622080860 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer3.0.downsample.1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:00.622086837 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer4.0.downsample.1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:00.622091961 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer3.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:00.622097094 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer3.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:00.622102482 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer2.0.downsample.1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:00.622107747 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer3.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:00.622112605 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer1.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:00.622117714 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer1.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:00.622123029 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:00.622128619 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer1.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:00.622133902 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer2.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:00.622138755 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer1.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:00.622143400 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer4.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:00.622148206 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer4.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:00.622153084 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer2.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:00.622158765 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer3.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:00.622163559 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer2.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:00.622169038 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer2.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
    
    Preliminary subgraphs created = 1 
    Final number of subgraphs created are : 1, - Offloaded Nodes - 52, Total Nodes - 52 
     T    3791.61  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 0 completed ************************ 
     
     
     
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/ss-ort-deeplabv3lite_mobilenetv2/tempDir/566TIDL_cast_out_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . ..
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
     0.0s:  VX_ZONE_INIT:Enabled
     0.6s:  VX_ZONE_ERROR:Enabled
     0.8s:  VX_ZONE_WARNING:Enabled
     0.311s:  VX_ZONE_INIT:[tivxInit:178] Initialization Done !!!
     T    2514.11  .... ..... ... .... .....
    #    1 . ..
    **********  Frame Index 1 : Running float inference **********
     T    2400.66  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 1 completed ************************ 
     
     
     
    
    **********  Frame Index 2 : Running fixed point mode for calibration **********
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_io_.qunat_stats_config.txt 
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/od-ort-ssd-lite_mobilenetv2_fpn/tempDir/boxeslabels_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T    4000.78  .... ..... ... .... .....
    #    1 . .. T    1182.22  .... ..... ... .... .....
    #    1 . .. T    1178.04  .... ..... ... .... ..... T    2375.80  .... ..... ... .... .....
    #    1 . ..
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T     641.08  .... ..... ... .... .....
    #    1 . .. T     637.81  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 0 completed ************************ 
     
     
     
     T    3956.45  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 1 completed ************************ 
     
     
     
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . ..
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/ss-ort-deeplabv3lite_mobilenetv2/tempDir/566TIDL_cast_out_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T    2426.68  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 2 completed ************************ 
     
     
     
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/od-ort-ssd-lite_mobilenetv2_fpn/tempDir/boxeslabels_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T     648.55  .... ..... ... .... .....
    #    1 . .. T     648.96  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 1 completed ************************ 
     
     
     
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T     637.77  .... ..... ... .... .....
    #    1 . .. T     628.32  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 2 completed ************************ 
     
     
     
     T    2513.77  .... ..... ... .... .....
    #    1 . ..
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T    3863.65  .... ..... ... .... .....
    #    1 . .. T     641.37  .... ..... ... .... .....
    #    1 . .. T     637.52  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 3 completed ************************ 
     
     
     
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/cl-ort-resnet18-v1/tempDir/191_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T    2467.16  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 3 completed ************************ 
     
     
     
     T     635.57  .... ..... ... .... .....
    #    1 . ..
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/od-ort-ssd-lite_mobilenetv2_fpn/tempDir/boxeslabels_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T     637.23  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 4 completed ************************ 
     
     
     
    
    ------------------ Network Compiler Traces -----------------------------
    successful Memory allocation
    substitute string tidl_net_ not found
    ****************************************************
    **                ALL MODEL CHECK PASSED          **
    ****************************************************
    
    
     
    Completed_Model :     1, Name : cl-ort-resnet18-v1                                , Total time :    7018.86, Offload Time :    1188.73 , DDR RW MBs : 0, Output File : py_out_cl-ort-resnet18-v1_ADE_val_00001801.jpg 
     
     
     T    3806.35  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 2 completed ************************ 
     
     
     
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/ss-ort-deeplabv3lite_mobilenetv2/tempDir/566TIDL_cast_out_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T    2505.98  .... ..... ... .... .....
    #    1 . .. T    2403.59  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 4 completed ************************ 
     
     
     
    
    ------------------ Network Compiler Traces -----------------------------
    successful Memory allocation
    substitute string tidl_net_ not found
    INFORMATION: [TIDL_ResizeLayer] Resize_153 Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize.
    INFORMATION: [TIDL_ResizeLayer] Resize_156 Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize.
    ****************************************************
    **          2 WARNINGS          0 ERRORS          **
    ****************************************************
    
     
    Completed_Model :     4, Name : od-ort-ssd-lite_mobilenetv2_fpn                   , Total time :   17277.04, Offload Time :    2129.65 , DDR RW MBs : 0, Output File : py_out_od-ort-ssd-lite_mobilenetv2_fpn_ADE_val_00001801.jpg 
     
     
     T    3948.75  .... ..... ... .... .....
    #    1 . .. T    3901.57  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 3 completed ************************ 
     
     
     
    
    ~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~
    
    Processing config file #0 : /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/model-artifacts/ss-ort-deeplabv3lite_mobilenetv2/tempDir/566TIDL_cast_out_tidl_io_.qunat_stats_config.txt 
     ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    
    #    0 . .. T    3618.03  .... ..... ... .... .....
    #    1 . .. T    3615.57  .... ..... ... .... .....
     
     
     *****************   Calibration iteration number 4 completed ************************ 
     
     
     
    
    ------------------ Network Compiler Traces -----------------------------
    successful Memory allocation
    substitute string tidl_net_ not found
    INFORMATION: [TIDL_ResizeLayer] 571 Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize.
    INFORMATION: [TIDL_ResizeLayer] 576 Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize.
    ****************************************************
    **          2 WARNINGS          0 ERRORS          **
    ****************************************************
    
     
    Completed_Model :     3, Name : ss-ort-deeplabv3lite_mobilenetv2                  , Total time :   27679.58, Offload Time :    4512.37 , DDR RW MBs : 0, Output File : py_out_ss-ort-deeplabv3lite_mobilenetv2_ADE_val_00001801.jpg 
     
     
    Available execution providers :  ['TIDLExecutionProvider', 'TIDLCompilationProvider', 'CPUExecutionProvider']
    
    Running 4 Models - ['cl-ort-resnet18-v1', 'cl-ort-caffe_squeezenet_v1_1', 'ss-ort-deeplabv3lite_mobilenetv2', 'od-ort-ssd-lite_mobilenetv2_fpn']
    
    
    Running_Model :  cl-ort-resnet18-v1  
    
    
    Running_Model :  cl-ort-caffe_squeezenet_v1_1  
    
    
    Running_Model :  ss-ort-deeplabv3lite_mobilenetv2  
    
    
    Running_Model :  od-ort-ssd-lite_mobilenetv2_fpn  
    
    libtidl_onnxrt_EP loaded 0x3a6ec80 
    libtidl_onnxrt_EP loaded 0x3502e30 
    2022-04-21 11:43:32.890967946 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer4.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:32.891011938 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer4.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:32.891018694 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer3.0.downsample.1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:32.891024159 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer4.0.downsample.1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:32.891029255 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer3.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:32.891034446 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer3.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:32.891040543 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer2.0.downsample.1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:32.891045626 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer3.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:32.891050336 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer1.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:32.891055306 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer1.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:32.891060594 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:32.891068208 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer1.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:32.891073448 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer2.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:32.891078092 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer1.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:32.891082656 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer4.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:32.891087428 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer4.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:32.891092262 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer2.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:32.891097790 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer3.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:32.891102463 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer2.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
    2022-04-21 11:43:32.891107657 [W:onnxruntime:, graph.cc:3106 CleanUnusedInitializers] Removing initializer 'layer2.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model.
    libtidl_onnxrt_EP loaded 0x35a3b00 
    libtidl_onnxrt_EP loaded 0x411adf0 
    Final number of subgraphs created are : 1, - Offloaded Nodes - 68, Total Nodes - 68 
    Final number of subgraphs created are : 1, - Offloaded Nodes - 124, Total Nodes - 124 
     0.0s:  VX_ZONE_INIT:Enabled
     0.16s:  VX_ZONE_ERROR:Enabled
     0.18s:  VX_ZONE_WARNING:Enabled
     0.426s:  VX_ZONE_INIT:[tivxInit:178] Initialization Done !!!
     0.0s:  VX_ZONE_INIT:Enabled
     0.9s:  VX_ZONE_ERROR:Enabled
     0.11s:  VX_ZONE_WARNING:Enabled
     0.348s:  VX_ZONE_INIT:[tivxInit:178] Initialization Done !!!
    Final number of subgraphs created are : 1, - Offloaded Nodes - 494, Total Nodes - 494 
    Final number of subgraphs created are : 1, - Offloaded Nodes - 52, Total Nodes - 52 
     0.0s:  VX_ZONE_INIT:Enabled
     0.10s:  VX_ZONE_ERROR:Enabled
     0.11s:  VX_ZONE_WARNING:Enabled
     0.392s:  VX_ZONE_INIT:[tivxInit:178] Initialization Done !!!
     0.0s:  VX_ZONE_INIT:Enabled
     0.9s:  VX_ZONE_ERROR:Enabled
     0.10s:  VX_ZONE_WARNING:Enabled
     0.325s:  VX_ZONE_INIT:[tivxInit:178] Initialization Done !!!
    
     ,  0  0.518756  warplane, military plane ,,  1  0.321064  aircraft carrier, carrier, flattop, attack aircraft carrier ,,  2  0.108971  airliner ,,  3  0.020307  missile ,,  4  0.015969  projectile, missile ,
    
    Saving image to  ../../../output_images/
    
     
    Completed_Model :     2, Name : cl-ort-caffe_squeezenet_v1_1                      , Total time :     102.56, Offload Time :     102.51 , DDR RW MBs : 0, Output File : py_out_cl-ort-caffe_squeezenet_v1_1_airshow.jpg 
     
     
    
     ,  0  23.311415  warplane, military plane ,,  1  22.239624  aircraft carrier, carrier, flattop, attack aircraft carrier ,,  2  18.488363  projectile, missile ,,  3  18.220415  missile ,,  4  15.540942  wing ,
    
    Saving image to  ../../../output_images/
    
     
    Completed_Model :     1, Name : cl-ort-resnet18-v1                                , Total time :     339.18, Offload Time :     339.15 , DDR RW MBs : 0, Output File : py_out_cl-ort-resnet18-v1_airshow.jpg 
     
     
    
    Saving image to  ../../../output_images/
    
     
    Completed_Model :     4, Name : od-ort-ssd-lite_mobilenetv2_fpn                   , Total time :     771.48, Offload Time :     771.40 , DDR RW MBs : 0, Output File : py_out_od-ort-ssd-lite_mobilenetv2_fpn_ADE_val_00001801.jpg 
     
     
    
    Saving image to  ../../../output_images/
    
     
    Completed_Model :     3, Name : ss-ort-deeplabv3lite_mobilenetv2                  , Total time :     978.30, Offload Time :     978.25 , DDR RW MBs : 0, Output File : py_out_ss-ort-deeplabv3lite_mobilenetv2_ADE_val_00001801.jpg 
     
     
    Downloading   ../../../models/public/mobilenetv2-1.0.onnx
    Converted model is valid!
    Traceback (most recent call last):
      File "tvm_compilation_onnx_example.py", line 38, in <module>
        from tvm import relay
      File "/home/achavan8/.local/lib/python3.6/site-packages/tvm/__init__.py", line 26, in <module>
        from ._ffi.base import TVMError, __version__
      File "/home/achavan8/.local/lib/python3.6/site-packages/tvm/_ffi/__init__.py", line 28, in <module>
        from .base import register_error
      File "/home/achavan8/.local/lib/python3.6/site-packages/tvm/_ffi/base.py", line 71, in <module>
        _LIB, _LIB_NAME = _load_lib()
      File "/home/achavan8/.local/lib/python3.6/site-packages/tvm/_ffi/base.py", line 57, in _load_lib
        lib = ctypes.CDLL(lib_path[0], ctypes.RTLD_GLOBAL)
      File "/usr/lib/python3.6/ctypes/__init__.py", line 348, in __init__
        self._handle = _dlopen(self._name, mode)
    OSError: libtinfo.so.5: cannot open shared object file: No such file or directory
    Downloading   ../../../models/public/inception_v3.tflite
    /home/achavan8/Documents/Projects/AutoHitch/Model_Training/TI-DL-EVM_local/edgeai-tidl-tools/models/public/inception_v3.tflite
    Traceback (most recent call last):
      File "tvm_compilation_tflite_example.py", line 40, in <module>
        from tvm import relay
      File "/home/achavan8/.local/lib/python3.6/site-packages/tvm/__init__.py", line 26, in <module>
        from ._ffi.base import TVMError, __version__
      File "/home/achavan8/.local/lib/python3.6/site-packages/tvm/_ffi/__init__.py", line 28, in <module>
        from .base import register_error
      File "/home/achavan8/.local/lib/python3.6/site-packages/tvm/_ffi/base.py", line 71, in <module>
        _LIB, _LIB_NAME = _load_lib()
      File "/home/achavan8/.local/lib/python3.6/site-packages/tvm/_ffi/base.py", line 57, in _load_lib
        lib = ctypes.CDLL(lib_path[0], ctypes.RTLD_GLOBAL)
      File "/usr/lib/python3.6/ctypes/__init__.py", line 348, in __init__
        self._handle = _dlopen(self._name, mode)
    OSError: libtinfo.so.5: cannot open shared object file: No such file or directory
    Traceback (most recent call last):
      File "tvm_compilation_onnx_example.py", line 38, in <module>
        from tvm import relay
      File "/home/achavan8/.local/lib/python3.6/site-packages/tvm/__init__.py", line 26, in <module>
        from ._ffi.base import TVMError, __version__
      File "/home/achavan8/.local/lib/python3.6/site-packages/tvm/_ffi/__init__.py", line 28, in <module>
        from .base import register_error
      File "/home/achavan8/.local/lib/python3.6/site-packages/tvm/_ffi/base.py", line 71, in <module>
        _LIB, _LIB_NAME = _load_lib()
      File "/home/achavan8/.local/lib/python3.6/site-packages/tvm/_ffi/base.py", line 57, in _load_lib
        lib = ctypes.CDLL(lib_path[0], ctypes.RTLD_GLOBAL)
      File "/usr/lib/python3.6/ctypes/__init__.py", line 348, in __init__
        self._handle = _dlopen(self._name, mode)
    OSError: libtinfo.so.5: cannot open shared object file: No such file or directory
    Traceback (most recent call last):
      File "tvm_compilation_tflite_example.py", line 40, in <module>
        from tvm import relay
      File "/home/achavan8/.local/lib/python3.6/site-packages/tvm/__init__.py", line 26, in <module>
        from ._ffi.base import TVMError, __version__
      File "/home/achavan8/.local/lib/python3.6/site-packages/tvm/_ffi/__init__.py", line 28, in <module>
        from .base import register_error
      File "/home/achavan8/.local/lib/python3.6/site-packages/tvm/_ffi/base.py", line 71, in <module>
        _LIB, _LIB_NAME = _load_lib()
      File "/home/achavan8/.local/lib/python3.6/site-packages/tvm/_ffi/base.py", line 57, in _load_lib
        lib = ctypes.CDLL(lib_path[0], ctypes.RTLD_GLOBAL)
      File "/usr/lib/python3.6/ctypes/__init__.py", line 348, in __init__
        self._handle = _dlopen(self._name, mode)
    OSError: libtinfo.so.5: cannot open shared object file: No such file or directory
    Traceback (most recent call last):
      File "tvm_compilation_mxnet_example.py", line 37, in <module>
        from gluoncv import model_zoo
    ModuleNotFoundError: No module named 'gluoncv'
    
    
    Running Inference on Model -  ../../../model-artifacts/cl-dlr-tflite_inceptionnetv3
    
    2022-04-21 12:44:46,130 ERROR error in DLRModel instantiation model_path ../../../model-artifacts/cl-dlr-tflite_inceptionnetv3 doesn't exist
    Traceback (most recent call last):
      File "/home/achavan8/.local/lib/python3.6/site-packages/dlr/api.py", line 89, in __init__
        self._impl = DLRModelImpl(model_path, dev_type, dev_id, error_log_file, use_default_dlr)
      File "/home/achavan8/.local/lib/python3.6/site-packages/dlr/dlr_model.py", line 65, in __init__
        raise ValueError("model_path %s doesn't exist" % model_path)
    ValueError: model_path ../../../model-artifacts/cl-dlr-tflite_inceptionnetv3 doesn't exist
    Traceback (most recent call last):
      File "dlr_inference_example.py", line 194, in <module>
        postprocess_for_tflite_inceptionnetv3, 0)
      File "dlr_inference_example.py", line 157, in model_create_and_run
        model = DLRModel(model_dir, 'cpu')
      File "/home/achavan8/.local/lib/python3.6/site-packages/dlr/api.py", line 92, in __init__
        raise ex
      File "/home/achavan8/.local/lib/python3.6/site-packages/dlr/api.py", line 89, in __init__
        self._impl = DLRModelImpl(model_path, dev_type, dev_id, error_log_file, use_default_dlr)
      File "/home/achavan8/.local/lib/python3.6/site-packages/dlr/dlr_model.py", line 65, in __init__
        raise ValueError("model_path %s doesn't exist" % model_path)
    ValueError: model_path ../../../model-artifacts/cl-dlr-tflite_inceptionnetv3 doesn't exist
    
    
    X64 Architecture
    Running 1 Models - ['od-tfl-20220331_frozen_inference_graph_8b']
    
    
    Running_Model :  od-tfl-20220331_frozen_inference_graph_8b
    Warning : concat requires 4D input tensors - only 3 dims present..  Ignore if object detection network
    
     Number of subgraphs:48 , 163 nodes delegated out of 211 nodes 
     
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
     0.0s:  VX_ZONE_INIT:Enabled
     0.4s:  VX_ZONE_ERROR:Enabled
     0.5s:  VX_ZONE_WARNING:Enabled
     0.305s:  VX_ZONE_INIT:[tivxInit:178] Initialization Done !!!
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
     4.792553s:  VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
     4.792556s:  VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
     4.792558s:  VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
     4.792572s:  VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
     4.792574s:  VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
     4.792575s:  VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
     4.792576s:  VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
     4.792577s:  VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
     4.792757s:  VX_ZONE_ERROR:[vxSetParameterByIndex:257] Invalid type 0x00000811!
     4.792760s:  VX_ZONE_ERROR:[vxSetParameterByIndex:306] Specified: parameter[1] type:00000811 => 0x7f35d23399d0
     4.792761s:  VX_ZONE_ERROR:[vxSetParameterByIndex:310] Required: parameter[1] dir:0 type:00000816
     4.792782s:  VX_ZONE_ERROR:[vxSetReferenceName:659] Invalid reference
     4.792837s:  VX_ZONE_ERROR:[ownGraphNodeKernelValidate:531] node kernel validate failed for kernel com.ti.tidl at index 0
     4.792839s:  VX_ZONE_ERROR:[vxVerifyGraph:1941] Node kernel Validate failed
     4.792841s:  VX_ZONE_ERROR:[vxVerifyGraph:2109] Graph verify failed
    TIDL_RT_OVX: ERROR: Verifying TIDL graph ... Failed !!!
    TIDL_RT_OVX: ERROR: Verify OpenVX graph failed
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
     5.46680s:  VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
     5.46684s:  VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
     5.46688s:  VX_ZONE_ERROR:[tivxAddKernelTIDL:259] invalid values for num_input_tensors or num_output_tensors 
     5.46690s:  VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
     5.46691s:  VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
     5.46693s:  VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
     5.46695s:  VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
     5.46697s:  VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
     5.46699s:  VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
     5.46701s:  VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
     5.46702s:  VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
     5.46712s:  VX_ZONE_ERROR:[vxMapUserDataObject:473] Invalid user data object reference
     5.46741s:  VX_ZONE_ERROR:[vxUnmapUserDataObject:558] Invalid user data object reference
     5.46746s:  VX_ZONE_ERROR:[vxCreateNodeByStructure:96] failed to retrieve kernel enum 0
     5.46749s:  VX_ZONE_ERROR:[vxSetReferenceName:659] Invalid reference
     5.46750s:  VX_ZONE_ERROR:[vxSetReferenceName:659] Invalid reference
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
     5.298480s:  VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
     5.298484s:  VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
     5.298487s:  VX_ZONE_ERROR:[tivxAddKernelTIDL:259] invalid values for num_input_tensors or num_output_tensors 
     5.298488s:  VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
     5.298489s:  VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
     5.298490s:  VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
     5.298492s:  VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
     5.298493s:  VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
     5.298494s:  VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
     5.298514s:  VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
     5.298515s:  VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
     5.298524s:  VX_ZONE_ERROR:[vxMapUserDataObject:473] Invalid user data object reference
     5.298526s:  VX_ZONE_ERROR:[vxUnmapUserDataObject:558] Invalid user data object reference
     5.298530s:  VX_ZONE_ERROR:[vxCreateNodeByStructure:96] failed to retrieve kernel enum 0
     5.298531s:  VX_ZONE_ERROR:[vxSetReferenceName:659] Invalid reference
     5.298533s:  VX_ZONE_ERROR:[vxSetReferenceName:659] Invalid reference
    
     ************** Frame index 1 : Running float import ************* 
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    **          1 WARNINGS          0 ERRORS          **
    ****************************************************
     5.552226s:  VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
     5.552230s:  VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
     5.552233s:  VX_ZONE_ERROR:[tivxAddKernelTIDL:259] invalid values for num_input_tensors or num_output_tensors 
     5.552254s:  VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
     5.552256s:  VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
     5.552259s:  VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
     5.552261s:  VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
     5.552262s:  VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
     5.552264s:  VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
     5.552265s:  VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
     5.552266s:  VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
     5.552281s:  VX_ZONE_ERROR:[ownTensorCheckSizes:189] Invalid view parameter(s) in dimension: 1
    
    

  • Hi Akash, "run_python_examples.sh" does compilation an inference for ONNX RT, TFLite, and DLR. I think your model is TFLite.
    So, I propose to run only that demo. For that you can comment out ONNX and DLR from "run_python_examples.sh" or you can run directly "tflrt_delegate.py"

    https://github.com/TexasInstruments/edgeai-tidl-tools/blob/c6987ebeb67e48323a1e9e62f855d35c9da9d5d5/scripts/run_python_examples.sh#L14 
    cd $CURDIR/examples/osrt_python/tfl
    python3 tflrt_delegate.py -c
    python3 tflrt_delegate.py

    By the way, I only see the 3 OOB models listed in TFLite from your log, I don't see yours..
    Running 3 Models - ['cl-tfl-mobilenet_v1_1.0_224', 'ss-tfl-deeplabv3_mnv2_ade20k_float', 'od-tfl-ssd_mobilenet_v2_300_float']

    You could also only run your model by modifying models list:
    https://github.com/TexasInstruments/edgeai-tidl-tools/blob/c6987ebeb67e48323a1e9e62f855d35c9da9d5d5/examples/osrt_python/tfl/tflrt_delegate.py#L213 

    thank you,

    Paula

  • Hello Paula, 

    I had uploaded to two logs. The second log is from the compilation step of my custom model. The compilation never finished, it stuck. 

    Below is the log when I ran python3.6 tflrt_delegate.py -c

    python3.6 tflrt_delegate.py -c
    Running 1 Models - ['od-tfl-20220331_frozen_inference_graph_8b']


    Running_Model : od-tfl-20220331_frozen_inference_graph_8b
    Warning : concat requires 4D input tensors - only 3 dims present.. Ignore if object detection network

    Number of subgraphs:48 , 163 nodes delegated out of 211 nodes

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************
    0.0s: VX_ZONE_INIT:Enabled
    0.5s: VX_ZONE_ERROR:Enabled
    0.6s: VX_ZONE_WARNING:Enabled
    0.287s: VX_ZONE_INIT:[tivxInit:178] Initialization Done !!!

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************
    4.653591s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    4.653595s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    4.653597s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    4.653599s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    4.653600s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    4.653601s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    4.653603s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    4.653604s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    4.653743s: VX_ZONE_ERROR:[vxSetParameterByIndex:257] Invalid type 0x00000811!
    4.653746s: VX_ZONE_ERROR:[vxSetParameterByIndex:306] Specified: parameter[1] type:00000811 => 0x7f752d6969d0
    4.653748s: VX_ZONE_ERROR:[vxSetParameterByIndex:310] Required: parameter[1] dir:0 type:00000816
    4.653750s: VX_ZONE_ERROR:[vxSetReferenceName:659] Invalid reference
    4.653784s: VX_ZONE_ERROR:[ownGraphNodeKernelValidate:531] node kernel validate failed for kernel com.ti.tidl at index 0
    4.653786s: VX_ZONE_ERROR:[vxVerifyGraph:1941] Node kernel Validate failed
    4.653787s: VX_ZONE_ERROR:[vxVerifyGraph:2109] Graph verify failed
    TIDL_RT_OVX: ERROR: Verifying TIDL graph ... Failed !!!
    TIDL_RT_OVX: ERROR: Verify OpenVX graph failed

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************
    4.904795s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    4.904800s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    4.904803s: VX_ZONE_ERROR:[tivxAddKernelTIDL:259] invalid values for num_input_tensors or num_output_tensors
    4.904804s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    4.904805s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    4.904807s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    4.904808s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    4.904809s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    4.904810s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    4.904811s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    4.904813s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    4.904822s: VX_ZONE_ERROR:[vxMapUserDataObject:473] Invalid user data object reference
    4.904825s: VX_ZONE_ERROR:[vxUnmapUserDataObject:558] Invalid user data object reference
    4.904829s: VX_ZONE_ERROR:[vxCreateNodeByStructure:96] failed to retrieve kernel enum 0
    4.904831s: VX_ZONE_ERROR:[vxSetReferenceName:659] Invalid reference
    4.904832s: VX_ZONE_ERROR:[vxSetReferenceName:659] Invalid reference

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************
    5.146370s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.146376s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.146379s: VX_ZONE_ERROR:[tivxAddKernelTIDL:259] invalid values for num_input_tensors or num_output_tensors
    5.146381s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.146382s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.146383s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.146384s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.146385s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.146387s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.146388s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.146389s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.146398s: VX_ZONE_ERROR:[vxMapUserDataObject:473] Invalid user data object reference
    5.146400s: VX_ZONE_ERROR:[vxUnmapUserDataObject:558] Invalid user data object reference
    5.146404s: VX_ZONE_ERROR:[vxCreateNodeByStructure:96] failed to retrieve kernel enum 0
    5.146405s: VX_ZONE_ERROR:[vxSetReferenceName:659] Invalid reference
    5.146406s: VX_ZONE_ERROR:[vxSetReferenceName:659] Invalid reference

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************
    5.390302s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.390306s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.390309s: VX_ZONE_ERROR:[tivxAddKernelTIDL:259] invalid values for num_input_tensors or num_output_tensors
    5.390311s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.390312s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.390313s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.390314s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.390315s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.390317s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.390318s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.390319s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.390332s: VX_ZONE_ERROR:[ownTensorCheckSizes:189] Invalid view parameter(s) in dimension: 1

  • Hi Akash, my bad, I missed the second log before. We will take a look.

    Thank you,

    Paula

  • Hello Paula, 

    Any updates?

    Thank You,

    Akash

  • Hi Akash, perfect timing =). I was about to update you. We got a potential fix. I will share with you a new tidl_model_import_tflite.so w/ this patch. I will target send it soon (next few hours).

    thank you,

    Paula

  • Sounds good thank you. 

  • Akash, can you send me your email address? in order to invite you to a ti.box share folder

    thank you,

    Paula 

  • Hi Paula, 

    It is achavan8@ford.com

  • Akash, you will get an email to accept ti.box. Let me know if you face any issues downloading the lib. 

    After downloading patched TIDL model import libs please replace them inside edgeai-tidl-tools "tidl_tools" folder and re-test your model. Please let us know if compilation is successful and if you can run inference. 

    thank you,

    Paula

  • Paula, 

    I am seeing the same behavior with new libs. The model doesn't compile. Below is the log

    python3.6 tflrt_delegate.py -c
    Running 1 Models - ['od-tfl-20220331_frozen_inference_graph_8b']


    Running_Model : od-tfl-20220331_frozen_inference_graph_8b
    Warning : concat requires 4D input tensors - only 3 dims present.. Ignore if object detection network

    Number of subgraphs:48 , 163 nodes delegated out of 211 nodes

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************
    0.0s: VX_ZONE_INIT:Enabled
    0.17s: VX_ZONE_ERROR:Enabled
    0.17s: VX_ZONE_WARNING:Enabled
    0.490s: VX_ZONE_INIT:[tivxInit:178] Initialization Done !!!

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************
    4.802218s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    4.802222s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    4.802224s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    4.802225s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    4.802226s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    4.802227s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    4.802229s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    4.802230s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    4.802403s: VX_ZONE_ERROR:[vxSetParameterByIndex:257] Invalid type 0x00000811!
    4.802406s: VX_ZONE_ERROR:[vxSetParameterByIndex:306] Specified: parameter[1] type:00000811 => 0x7f2c6f8cf9d0
    4.802408s: VX_ZONE_ERROR:[vxSetParameterByIndex:310] Required: parameter[1] dir:0 type:00000816
    4.802431s: VX_ZONE_ERROR:[vxSetReferenceName:659] Invalid reference
    4.802467s: VX_ZONE_ERROR:[ownGraphNodeKernelValidate:531] node kernel validate failed for kernel com.ti.tidl at index 0
    4.802469s: VX_ZONE_ERROR:[vxVerifyGraph:1941] Node kernel Validate failed
    4.802471s: VX_ZONE_ERROR:[vxVerifyGraph:2109] Graph verify failed
    TIDL_RT_OVX: ERROR: Verifying TIDL graph ... Failed !!!
    TIDL_RT_OVX: ERROR: Verify OpenVX graph failed

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************
    5.54595s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.54600s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.54622s: VX_ZONE_ERROR:[tivxAddKernelTIDL:259] invalid values for num_input_tensors or num_output_tensors
    5.54624s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.54626s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.54628s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.54650s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.54653s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.54654s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.54656s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.54657s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.54666s: VX_ZONE_ERROR:[vxMapUserDataObject:473] Invalid user data object reference
    5.54669s: VX_ZONE_ERROR:[vxUnmapUserDataObject:558] Invalid user data object reference
    5.54673s: VX_ZONE_ERROR:[vxCreateNodeByStructure:96] failed to retrieve kernel enum 0
    5.54676s: VX_ZONE_ERROR:[vxSetReferenceName:659] Invalid reference
    5.54677s: VX_ZONE_ERROR:[vxSetReferenceName:659] Invalid reference

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************
    5.306544s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.306548s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.306551s: VX_ZONE_ERROR:[tivxAddKernelTIDL:259] invalid values for num_input_tensors or num_output_tensors
    5.306553s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.306554s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.306570s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.306571s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.306573s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.306574s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.306575s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.306576s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.306604s: VX_ZONE_ERROR:[vxMapUserDataObject:473] Invalid user data object reference
    5.306626s: VX_ZONE_ERROR:[vxUnmapUserDataObject:558] Invalid user data object reference
    5.306631s: VX_ZONE_ERROR:[vxCreateNodeByStructure:96] failed to retrieve kernel enum 0
    5.306633s: VX_ZONE_ERROR:[vxSetReferenceName:659] Invalid reference
    5.306634s: VX_ZONE_ERROR:[vxSetReferenceName:659] Invalid reference

    ************** Frame index 1 : Running float import *************
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] ti_cnnperfsim.out fails to allocate memory in MSMC. Please look into perfsim log. This model can only be used on PC emulation, it will get fault on target.
    ****************************************************
    ** 1 WARNINGS 0 ERRORS **
    ****************************************************
    5.558158s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.558162s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.558185s: VX_ZONE_ERROR:[tivxAddKernelTIDL:259] invalid values for num_input_tensors or num_output_tensors
    5.558187s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.558189s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.558191s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.558192s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.558194s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.558196s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.558198s: VX_ZONE_WARNING:[ownAllocObject:765] May need to increase the value of TIVX_USER_DATA_OBJECT_MAX_OBJECTS in tiovx/include/TI/tivx_config.h
    5.558200s: VX_ZONE_ERROR:[ownCreateReference:342] Failed to allocate reference object
    5.558214s: VX_ZONE_ERROR:[ownTensorCheckSizes:189] Invalid view parameter(s) in dimension: 1

  • Hi Akash, it is still creating 48 subgraphs.. It is any way you can share this model with us? or a way to reproduce it (maybe a cut version of your model)?

    thank you,

    Paula

  • Hello Paula,

    I have uploaded the model file to ti.box.

    Regards,

    Akash

  • Hi Akash, can you send me the link? I don't see it

    Thank you,

    Paula

  • Paula,

    Could you please give me your email address?

    Thanks!

    Akash

  • My email address: p-carrillo@ti.com

    thank you

    Paula

  • Hi Akash, let me give you some updates. From shared model we see there are some "FakeQuantWithMinMaxVars" nodes which are not supported. This seems to be the cause of 48 subgraphs being created even after shared Relu fix.

    We support maximum 16 subgraphs in TIDL, however, the rest of the subgraphs should have run in ARM. We need to check why it is not the case.

    In any case, running 16 subgraphs and the rest on ARM probably will have a huge performance penalty. Therefore, do you think "FakeQuantWithMinMaxVars" could be replaced for some other supported operator(s) in TIDL?

    thank you,

    Paula

  • Hello Paula, 

    Thanks for the update. I will check internally how to proceed and let you know. 

    Thank you,

    Akash