TDA4VL-Q1: [E-mirror] Is TIDL in PC emulation mode different form target mode?

Part Number: TDA4VL-Q1

Tool/software:

Hello TI:

           We have a .onnx model and it is HRNet. We use tidl_model_import.out convert to two bin file. And follow is our import txt file.

tidl_import_mymodel_detection.txt
modelType          = 2
numParamBits       = 8
numFeatureBits     = 8
#quantizationStyle  = 3
quantizationStyle  = 2
inputNetFile       = "../../test/testvecs/sh_model/keypoint/model/mymodel.onnx"
outputNetFile      = "../../test/testvecs/sh_model/keypoint/out/tidl_net_mymodel.bin"
outputParamsFile   = "../../test/testvecs/sh_model/keypoint/out/tidl_io_mymodel_"
inData  =   "../../test/testvecs/sh_model/keypoint/in/detection_list.txt"

perfSimConfig = ../../test/testvecs/config/import/device_config.cfg
#perfSimConfig = ../../test/testvecs/sh_model/keypoint/in/device_config.cfg

inDataNorm  = 1
inMean = 123.675 116.28 103.53
inScale = 0.017125 0.017507 0.017429

inWidth  = 256
inHeight = 256
inNumChannels = 3

inDataFormat = 1
inResizeType = 1
numFrames = 1
inElementType = 0

     Then we get two bin file. And we write a app, follow is our graph.

     And we find that the result we get from pc emulation is correct. But the result was wrong when the we run in target.

     We use same bin file in both emulation mode and target mode. Our model is HRNet which is used for face detection.

     So we want to know whether or not emulation mode is different from target mode when we use tidl?

regards,

  • Hello,

    I apologize for the delay in getting to your question. 

    Can you clarify what version of TIDL and SDK you are using? 

    Before integrating your model as a TIDL node, did you test the inference within the TIDL import/inference interface with PC_dsp_test_dl_algo.out (host emulation) and TI_DEVICE_a72_test_dl_algo_host_rt.out (target) and verify that the results were correct? 

    If not, could you follow the steps for debugging target vs host emulation mismatch in Steps to Debug Error Scenarios for target(EVM) execution that is documented here? Please report the results that you get back on this thread. 

    Best,

    Asha

  • Hello, 

    Can you clarify what version of TIDL and SDK you are using? 

            Our sdk version is 8.5.

    Before integrating your model as a TIDL node, did you test the inference within the TIDL import/inference interface with PC_dsp_test_dl_algo.out (host emulation) and TI_DEVICE_a72_test_dl_algo_host_rt.out (target) and verify that the results were correct? 

           We found that the result of host emulation is correct but the result of target is wrong. 

    If not, could you follow the steps for debugging target vs host emulation mismatch in Steps to Debug Error Scenarios for target(EVM) execution that is documented here? Please report the results that you get back on this thread. 

           We use this method to debug error. And we found that the two results is difference begin at the data id of 0048.

          

          How to local data id? 

    tidl_net_mymodel.bin.layer_info.txt
    0 0 input_original 
    1 1 1842 
    2 2 1845 
    3 3 1848 
    4 5 1851 
    5 6 3075 
    6 4 3078 
    7 7 1857 
    8 8 1860 
    9 9 1863 
    10 10 3087 
    11 11 1867 
    12 12 1870 
    13 13 1873 
    14 14 3096 
    15 15 1877 
    16 16 1880 
    17 17 1883 
    18 18 3105 
    19 19 1887 
    20 20 1893 
    21 22 1924 
    22 24 3141 
    23 26 1928 
    24 28 1931 
    25 30 3147 
    26 32 1935 
    27 34 1938 
    28 36 3153 
    29 38 1942 
    30 40 1945 
    31 42 3159 
    32 44 1949 
    33 46 3162 
    34 48 1956 
    35 21 1890 
    36 23 1896 
    37 25 3117 
    38 27 1900 
    39 29 1903 
    40 31 3123 
    41 33 1907 
    42 35 1910 
    43 37 3129 
    44 39 1914 
    45 41 1917 
    46 43 3135 
    47 45 1921 
    48 47 3165 
    49 49 1962 
    50 51 1996 
    51 54 3198 
    52 57 2000 
    53 60 2003 
    54 63 3204 
    55 66 2007 
    56 69 2010 
    57 72 3210 
    58 75 2014 
    59 78 2017 
    60 81 3216 
    61 84 2021 
    62 87 3243 
    63 92 2056 
    64 88 3261 
    65 53 1965 
    66 55 2024 
    67 59 3222 
    68 62 2028 
    69 64 2031 
    70 68 3228 
    71 71 2035 
    72 73 2038 
    73 77 3234 
    74 80 2042 
    75 82 2045 
    76 86 3240 
    77 89 2049 
    78 94 3252 
    79 98 2076 
    80 96 3246 
    81 99 2064 
    82 50 1958 
    83 52 1968 
    84 56 3174 
    85 58 1972 
    86 61 1975 
    87 65 3180 
    88 67 1979 
    89 70 1982 
    90 74 3186 
    91 76 1986 
    92 79 1989 
    93 83 3192 
    94 85 1993 
    95 90 3249 
    96 93 2069 
    97 101 2078 
    98 104 2119 
    99 107 3291 
    100 110 2123 
    101 113 2126 
    102 116 3297 
    103 119 2130 
    104 122 2133 
    105 125 3303 
    106 128 2137 
    107 131 2140 
    108 134 3309 
    109 137 2144 
    110 140 3336 
    111 145 2179 
    112 141 3354 
    113 91 2081 
    114 97 3258 
    115 100 2086 
    116 103 2088 
    117 106 2147 
    118 109 3315 
    119 112 2151 
    120 115 2154 
    121 118 3321 
    122 121 2158 
    123 124 2161 
    124 127 3327 
    125 130 2165 
    126 133 2168 
    127 136 3333 
    128 139 2172 
    129 143 3345 
    130 148 2199 
    131 146 3339 
    132 150 2187 
    133 95 2057 
    134 102 2066 
    135 105 2091 
    136 108 3267 
    137 111 2095 
    138 114 2098 
    139 117 3273 
    140 120 2102 
    141 123 2105 
    142 126 3279 
    143 129 2109 
    144 132 2112 
    145 135 3285 
    146 138 2116 
    147 142 3342 
    148 147 2192 
    149 151 2201 
    150 155 2242 
    151 158 3384 
    152 161 2246 
    153 164 2249 
    154 167 3390 
    155 170 2253 
    156 173 2256 
    157 176 3396 
    158 179 2260 
    159 182 2263 
    160 185 3402 
    161 188 2267 
    162 191 3429 
    163 196 2302 
    164 192 3447 
    165 144 2204 
    166 152 3351 
    167 154 2209 
    168 157 2211 
    169 159 2270 
    170 163 3408 
    171 166 2274 
    172 168 2277 
    173 172 3414 
    174 175 2281 
    175 177 2284 
    176 181 3420 
    177 184 2288 
    178 186 2291 
    179 190 3426 
    180 193 2295 
    181 198 3438 
    182 202 2322 
    183 200 3432 
    184 203 2310 
    185 149 2180 
    186 153 2189 
    187 156 2214 
    188 160 3360 
    189 162 2218 
    190 165 2221 
    191 169 3366 
    192 171 2225 
    193 174 2228 
    194 178 3372 
    195 180 2232 
    196 183 2235 
    197 187 3378 
    198 189 2239 
    199 194 3435 
    200 197 2315 
    201 205 2324 
    202 208 2365 
    203 211 3477 
    204 214 2369 
    205 217 2372 
    206 220 3483 
    207 223 2376 
    208 226 2379 
    209 229 3489 
    210 232 2383 
    211 235 2386 
    212 238 3495 
    213 241 2390 
    214 246 3540 
    215 245 3522 
    216 249 2425 
    217 195 2327 
    218 201 3444 
    219 204 2332 
    220 207 2334 
    221 210 2393 
    222 213 3501 
    223 216 2397 
    224 219 2400 
    225 222 3507 
    226 225 2404 
    227 228 2407 
    228 231 3513 
    229 234 2411 
    230 237 2414 
    231 240 3519 
    232 243 2418 
    233 250 3525 
    234 253 2433 
    235 251 3531 
    236 254 2445 
    237 199 2303 
    238 206 2312 
    239 209 2337 
    240 212 3453 
    241 215 2341 
    242 218 2344 
    243 221 3459 
    244 224 2348 
    245 227 2351 
    246 230 3465 
    247 233 2355 
    248 236 2358 
    249 239 3471 
    250 242 2362 
    251 244 3528 
    252 247 2438 
    253 257 2447 
    254 260 2491 
    255 264 3573 
    256 267 2495 
    257 271 2498 
    258 276 3579 
    259 279 2502 
    260 283 2505 
    261 288 3585 
    262 291 2509 
    263 295 2512 
    264 300 3591 
    265 303 2516 
    266 306 3642 
    267 313 2579 
    268 311 3666 
    269 312 2646 
    270 323 3684 
    271 248 2450 
    272 255 3537 
    273 258 2455 
    274 261 2457 
    275 262 2519 
    276 268 3597 
    277 272 2523 
    278 274 2526 
    279 280 3603 
    280 284 2530 
    281 286 2533 
    282 292 3609 
    283 296 2537 
    284 298 2540 
    285 304 3615 
    286 310 2544 
    287 319 3645 
    288 325 2587 
    289 320 3654 
    290 326 2607 
    291 321 3687 
    292 265 2460 
    293 269 2547 
    294 273 3621 
    295 277 2551 
    296 281 2554 
    297 285 3627 
    298 289 2558 
    299 293 2561 
    300 297 3633 
    301 301 2565 
    302 305 2568 
    303 315 3639 
    304 322 2572 
    305 330 3669 
    306 335 2633 
    307 331 3648 
    308 392 2595_TIDL_0 
    309 394 2595 
    310 333 3657 
    311 336 2615 
    312 252 2426 
    313 256 2435 
    314 259 2463 
    315 263 3549 
    316 266 2467 
    317 270 2470 
    318 275 3555 
    319 278 2474 
    320 282 2477 
    321 287 3561 
    322 290 2481 
    323 294 2484 
    324 299 3567 
    325 302 2488 
    326 307 3651 
    327 314 2600 
    328 332 2608 
    329 339 2617 
    330 342 2685 
    331 345 3717 
    332 348 2689 
    333 351 2692 
    334 354 3723 
    335 357 2696 
    336 360 2699 
    337 363 3729 
    338 366 2703 
    339 369 2706 
    340 372 3735 
    341 375 2710 
    342 379 2840 
    343 390 3828 
    344 386 3810 
    345 387 3786 
    346 391 2773 
    347 308 2620 
    348 317 3663 
    349 324 2625 
    350 327 2626 
    351 338 2635 
    352 341 2713 
    353 344 3741 
    354 347 2717 
    355 350 2720 
    356 353 3747 
    357 356 2724 
    358 359 2727 
    359 362 3753 
    360 365 2731 
    361 368 2734 
    362 371 3759 
    363 374 2738 
    364 377 3789 
    365 381 2781 
    366 378 3798 
    367 384 2801 
    368 380 3831 
    369 309 2638 
    370 318 2641 
    371 328 3678 
    372 334 2649 
    373 337 2652 
    374 340 2654 
    375 343 2741 
    376 346 3765 
    377 349 2745 
    378 352 2748 
    379 355 3771 
    380 358 2752 
    381 361 2755 
    382 364 3777 
    383 367 2759 
    384 370 2762 
    385 373 3783 
    386 376 2766 
    387 382 3792 
    388 393 2789_TIDL_0 
    389 412 2789 
    390 383 3813 
    391 388 2827 
    392 385 3801 
    393 389 2809 
    394 316 2580 
    395 329 2588 
    396 395 2597 
    397 396 2657 
    398 397 3693 
    399 398 2661 
    400 399 2664 
    401 400 3699 
    402 401 2668 
    403 402 2671 
    404 403 3705 
    405 404 2675 
    406 405 2678 
    407 406 3711 
    408 407 2682 
    409 408 3795 
    410 411 2794 
    411 413 2802 
    412 416 2811 
    413 421 2879 
    414 426 3861 
    415 430 2883 
    416 434 2886 
    417 438 3867 
    418 442 2890 
    419 446 2893 
    420 450 3873 
    421 454 2897 
    422 458 2900 
    423 462 3879 
    424 466 2904 
    425 468 3954 
    426 471 3034 
    427 480 3972 
    428 474 3930 
    429 476 2967 
    430 409 2814 
    431 414 3807 
    432 418 2819 
    433 420 2820 
    434 424 2829 
    435 429 2907 
    436 433 3885 
    437 437 2911 
    438 441 2914 
    439 445 3891 
    440 449 2918 
    441 453 2921 
    442 457 3897 
    443 461 2925 
    444 465 2928 
    445 470 3903 
    446 475 2932 
    447 477 3975 
    448 479 3942 
    449 487 2995 
    450 485 3933 
    451 489 2975 
    452 410 2832 
    453 415 2835 
    454 422 3822 
    455 425 2843 
    456 427 2846 
    457 431 2848 
    458 435 2935 
    459 439 3909 
    460 443 2939 
    461 447 2942 
    462 451 3915 
    463 455 2946 
    464 459 2949 
    465 463 3921 
    466 467 2953 
    467 472 2956 
    468 481 3927 
    469 488 2960 
    470 491 3945 
    471 497 3003 
    472 492 3957 
    473 498 3021 
    474 496 3936 
    475 509 2983_TIDL_0 
    476 511 2983 
    477 417 2774 
    478 419 2782 
    479 423 2791 
    480 428 2851 
    481 432 3837 
    482 436 2855 
    483 440 2858 
    484 444 3843 
    485 448 2862 
    486 452 2865 
    487 456 3849 
    488 460 2869 
    489 464 2872 
    490 469 3855 
    491 473 2876 
    492 478 3939 
    493 486 2988 
    494 490 2996 
    495 500 3005 
    496 505 3047 
    497 482 3008 
    498 493 3951 
    499 499 3013 
    500 501 3014 
    501 503 3023 
    502 507 3052 
    503 483 3026 
    504 494 3029 
    505 502 3966 
    506 504 3037 
    507 506 3040 
    508 508 3042 
    509 510 3057_TIDL_0 
    510 513 3057 
    511 484 2968 
    512 495 2976 
    513 512 2985 
    514 514 3058 
    515 515 3061 
    516 516 output 
    517 0 input_original 

    Best,

    Alun

  • Hi Alun,

    If you are having difficulty determining the layer from the layer_info.txt file, you can try the second method that is given in the documentation:

    Second way is to read the output of model visualization tool (*.svg file, gets generated in the same folder as TIDL model output location), here this information can be read from each layer box inside the square brackets [layerIdx, dataIdx].

    Best,

    Asha

  • Hi, 

        OK. Thank you very much. I get it.

    Best,

    Alun

  • Hi Alun,

    I apologize for not responding earlier to this. This looks like it pinpoints to the Resize layer being the issue. Are you able to test this model on the latest version of the toolset (this is now 10.0 SDK) as there would have been changes since 8.5 SDK. If you can also share the model that would also be beneficial.

    Best,

    Asha

  • Hi, 

       This is our model.

    mymodel.zip

    Best,

    Alun

  • Hi, 

        Sorry, We have no plans to  update  to 10.0  SDK.

  • Unlock this thread. 

  • Hello, 

         Anything update?

    Best,

    Alun

  • Hi Alun,

    i would request to help. 

    Regards,

    Brijesh

  • Hi Alun,

    Asha has moved to another role, and I will do my best to help.   Is this still an issue?

    Chris

  • it is still an issue.

  • Hi Alun,

    The model appears to compile/run in testing with 10.0 but gives some warnings that may be causing the incorrect behaivior you are seeing.  Or at least inconsisthent behavior between emulation and device execution.  Perhaps this check was not in the 8.2 versiion and is what is causing the delta.

    WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored

    One point to make is I would encourage you to go to TIDL 10.1 as the 8.2 version 4 releases back and is no longer supported for updates.  You may be able to get by on 8.2 but updates will be difficult and you may not see the better diagnositcs available in newer TIDL releases. 

    Compile:

    mymodel_compile.txt
    #!wget https://akm-img-a-in.tosshub.com/indiatoday/images/story/201804/jet.jpeg
    modeldir = 'mymodel/'
    modelname = 'mymodel.onnx'
    
    # Set TIDL_TOOLS you want to use
    # TIDL tools should be pre-installed from the command line
    # after cloning edgeai-tidl-tools and running source ./setup.sh 
    # after setting SOC environment variable
    TIDL_TOOLS='/home/a0194920local/10_0/edgeai-tidl-tools/'
    #!wget https://git.ti.com/cgit/jacinto-ai/jacinto-ai-modelzoo/plain/models/vision/classification/imagenet1k/torchvision/resnet18_opset9.onnx
    
    !mkdir -p {modeldir} 
    !cp jet.jpeg {modeldir}
    #!wget https://akm-img-a-in.tosshub.com/indiatoday/images/story/201804/car.jpeg
    #!mv car.jpeg {model_dir}
    Create config and in_data_list.txt files.
    These files contain the simulator configuration and a set of input images with their groundtruth.
    
    !mkdir -p  {modeldir}
    with open(modeldir+"/config", "w") as myfile:
        myfile.write("perfSimConfig = "+ TIDL_TOOLS + "tidl_tools/device_config.cfg")
    #!echo "perfSimConfig = "+ TIDL_TOOLS + "tidl_tools/device_config.cfg" >>  {modeldir}/config
    !echo "/home/a0194920local/colab-notebooks/{modeldir}/jet.jpeg 895" >  {modeldir}/in_data_list.txt
    #!echo "/home/a0194920local/colab-notebooks/{modeldir}/car.jpeg 846" >>  {modeldir}/in_data_list.txt
    
    #with open(modeldir+"in_data_list.txt", "a") as myfile:
    #    myfile.write(TIDL_TOOLS + " {modeldir}/jet.jpeg 895")
    Model import/compilation to generate artifacts for model inference on device
    
    
    
    
    
    
    print("Compiling: ",modelname)
    !/home/a0194920local/10_0/edgeai-tidl-tools/tidl_tools/tidl_model_import.out {modeldir}/config --modelType 2 \
    --inputNetFile {modelname}  --outputNetFile {modeldir}/tidl_net.bin \
    --outputParamsFile {modeldir}/tidl_io_buff  --inDataNorm 1 \
    --inMean 123.675 116.28 103.53  --inScale 0.017125 0.017507 0.017429 \
    --inData {modeldir}/in_data_list.txt --inFileFormat 2 \
    --tidlStatsTool /home/a0194920local/10_0/edgeai-tidl-tools/tidl_tools//PC_dsp_test_dl_algo.out \
    --perfSimTool /home/a0194920local/10_0/edgeai-tidl-tools/tidl_tools/ti_cnnperfsim.out \
    --graphVizTool /home/a0194920local/10_0/edgeai-tidl-tools/tidl_tools/tidl_graphVisualiser.out \
    --inHeight 224 --inWidth 224 --inNumChannels 3 --numFrames 1
    
    Compiling:  mymodel.onnx
    ========================= [Model Compilation Started] =========================
    
    Model compilation will perform the following stages:
    1. Parsing
    2. Graph Optimization
    3. Quantization & Calibration
    4. Memory Planning
    
    ============================== [Version Summary] ==============================
    
    -------------------------------------------------------------------------------
    |          TIDL Tools Version          |              10_00_08_00             |
    -------------------------------------------------------------------------------
    |         C7x Firmware Version         |              10_00_02_00             |
    -------------------------------------------------------------------------------
    
    ONNX model (Proto) file      : mymodel.onnx  
    TIDL network file            : mymodel//tidl_net.bin  
    TIDL IO info file            : mymodel//tidl_io_buff  
    Current ONNX OpSet version   : 11  
    ============================ [Optimization started] ============================
    
    ----------------------------- Optimization Summary -----------------------------
    --------------------------------------------------------------------------------
    |         Layer         | Nodes before optimization | Nodes after optimization |
    --------------------------------------------------------------------------------
    | TIDL_EltWiseLayer     |                       170 |                      170 |
    | TIDL_ConcatLayer      |                         1 |                        1 |
    | TIDL_ReLULayer        |                       269 |                        0 |
    | TIDL_ResizeLayer      |                        34 |                       38 |
    | TIDL_ConvolutionLayer |                       307 |                      307 |
    --------------------------------------------------------------------------------
    
    =========================== [Optimization completed] ===========================
    
    
    -------- Running Calibration in Float Mode to Collect Tensor Statistics --------
    [=============================================================================] 100 %
    
    ------------------ Fixed-point Calibration Iteration [1 / 1]: ------------------
    [=============================================================================] 100 %
    
    ==================== [Quantization & Calibration Completed] ====================
    
    ========================== [Memory Planning Started] ==========================
    
    
    ------------------------- Network Compiler Traces ------------------------------
    Successful Memory Allocation
    Successful Workload Creation
    
    ========================= [Memory Planning Completed] =========================
    
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    [TIDL Import]  WARNING: TIDL does not use coordinate_transformation_mode attribute in Resize layer, it will be ignored
    ======================== Subgraph Compiled Successfully ========================
    

    Host Run:

    mymodel_emu_run.txt

    Device Run:

    mymodel.txt