This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

AM67A: Unable to successfully run "Compile and Validate on X86_PC" while using edgeai-tidl-tools

Part Number: AM67A


Tool/software:

Hi Expert,

I use Ubuntu 22.04 and Python 3.10.14 built with pyenv virtual environment to use edgeai-tidl-tools.
I followed the steps in "Setup on X86_PC".
git clone https://github.com/TexasInstruments/edgeai-tidl-tools.git
cd edgeai-tidl-tools
export SOC=am67a
source ./setup.sh

cd edgeai-tidl-tools
export SOC=am67a
export TIDL_TOOLS_PATH=$(pwd)/tidl_tools
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TIDL_TOOLS_PATH
export ARM64_GCC_PATH=$(pwd)/gcc-arm-9.2-2019.12-x86_64-aarch64-none-linux-gnu

mkdir build && cd build
cmake ../examples && make -j && cd ..
source ./scripts/run_python_examples.sh

While executing source ./scripts/run_python_examples.sh, I encountered AttributeError: 'InferenceSession' object has no attribute 'get_TI_benchmark_data'.
ace428@ace428-System-Product-Name:~/Desktop/edgeai-tidl-tools$ source ./scripts/run_python_examples.sh
X64 Architecture
Running 4 Models - ['cl-tfl-mobilenet_v1_1.0_224', 'ss-tfl-deeplabv3_mnv2_ade20k_float', 'od-tfl-ssd_mobilenet_v2_300_float', 'od-tfl-ssdlite_mobiledet_dsp_320x320_coco']


Running_Model :  cl-tfl-mobilenet_v1_1.0_224

Running_Model :  ss-tfl-deeplabv3_mnv2_ade20k_float

Running_Model :  od-tfl-ssd_mobilenet_v2_300_float

Running_Model :  od-tfl-ssdlite_mobiledet_dsp_320x320_coco
========================= [Model Compilation Started] =========================

Model compilation will perform the following stages:
1. Parsing
2. Graph Optimization
3. Quantization & Calibration
4. Memory Planning

============================== [Version Summary] ==============================

-------------------------------------------------------------------------------
|          TIDL Tools Version          |              10_00_04_00             |
-------------------------------------------------------------------------------
|         C7x Firmware Version         |              10_00_02_00             |
-------------------------------------------------------------------------------

============================== [Parsing Started] ==============================

[TIDL Import] [PARSER] WARNING: Network not identified as Object Detection network : (1) Ignore if network is not Object Detection network (2) If network is Object Detection network, please specify "model_type":"OD" as part of OSRT compilation options
========================= [Model Compilation Started] =========================

Model compilation will perform the following stages:
1. Parsing
2. Graph Optimization
3. Quantization & Calibration
4. Memory Planning

============================== [Version Summary] ==============================

========================= [Model Compilation Started] =========================

Model compilation will perform the following stages:
1. Parsing
2. Graph Optimization
3. Quantization & Calibration
4. Memory Planning

============================== [Version Summary] ==============================

-------------------------------------------------------------------------------
|          TIDL Tools Version          |              10_00_04_00             |
-------------------------------------------------------------------------------
|         C7x Firmware Version         |              10_00_02_00             |
-------------------------------------------------------------------------------

============================== [Parsing Started] ==============================

[TIDL Import] [PARSER] WARNING: Network not identified as Object Detection network : (1) Ignore if network is not Object Detection network (2) If network is Object Detection network, please specify "model_type":"OD" as part of OSRT compilation options
-------------------------------------------------------------------------------
|          TIDL Tools Version          |              10_00_04_00             |
-------------------------------------------------------------------------------
|         C7x Firmware Version         |              10_00_02_00             |
-------------------------------------------------------------------------------

============================== [Parsing Started] ==============================

TIDL Meta pipeLine (proto) file  : ../../../models/public/ssdlite_mobiledet_dsp_320x320_coco_20200519.prototxt  
========================= [Model Compilation Started] =========================

Model compilation will perform the following stages:
1. Parsing
2. Graph Optimization
3. Quantization & Calibration
4. Memory Planning

============================== [Version Summary] ==============================

Number of OD backbone nodes = 112 
Size of odBackboneNodeIds = 112 
[TIDL Import]  WARNING: Kernel with non-power of 2 in [] is not optimal
-------------------------------------------------------------------------------
|          TIDL Tools Version          |              10_00_04_00             |
-------------------------------------------------------------------------------
|         C7x Firmware Version         |              10_00_02_00             |
-------------------------------------------------------------------------------

============================== [Parsing Started] ==============================


Total Nodes = 81
Number of OD backbone nodes = 89 
Size of odBackboneNodeIds = 89 
-------------------------------------------------------------------------------
|          Core           |      No. of Nodes       |   Number of Subgraphs   |
-------------------------------------------------------------------------------
| C7x                     |                      81 |                       1 |
| CPU                     |                       0 |                       x |
-------------------------------------------------------------------------------
============================= [Parsing Completed] =============================


Total Nodes = 34
-------------------------------------------------------------------------------
|          Core           |      No. of Nodes       |   Number of Subgraphs   |
-------------------------------------------------------------------------------
| C7x                     |                      34 |                       1 |
| CPU                     |                       0 |                       x |
-------------------------------------------------------------------------------
============================= [Parsing Completed] =============================


Total Nodes = 129
-------------------------------------------------------------------------------
|          Core           |      No. of Nodes       |   Number of Subgraphs   |
-------------------------------------------------------------------------------
| C7x                     |                     129 |                       1 |
| CPU                     |                       0 |                       x |
-------------------------------------------------------------------------------
============================= [Parsing Completed] =============================

=================== [Optimization for subgraph_201 started] ===================


Total Nodes = 107
-------------------------------------------------------------------------------
|          Core           |      No. of Nodes       |   Number of Subgraphs   |
-------------------------------------------------------------------------------
| C7x                     |                     107 |                       1 |
| CPU                     |                       0 |                       x |
-------------------------------------------------------------------------------
============================= [Parsing Completed] =============================

TF Meta pipeLine (proto) file : ../../../models/public/ssdlite_mobiledet_dsp_320x320_coco_20200519.prototxt 
num_classes :              91
y_scale :                  10.000000
x_scale :                  10.000000
w_scale :                  5.000000
h_scale :                  5.000000
num_keypoints :            5.000000
score_threshold :          0.600000
iou_threshold :            0.450000
max_detections_per_class : 200
max_total_detections :     100
      scales, height_stride, width_stride, height_offset, width_offset
   0.2000000,   -1.0000000,   -1.0000000,   -1.0000000,   -1.0000000
   0.3500000,   -1.0000000,   -1.0000000,   -1.0000000,   -1.0000000
   0.5000000,   -1.0000000,   -1.0000000,   -1.0000000,   -1.0000000
   0.6500000,   -1.0000000,   -1.0000000,   -1.0000000,   -1.0000000
   0.8000000,   -1.0000000,   -1.0000000,   -1.0000000,   -1.0000000
   0.9500000,   -1.0000000,   -1.0000000,   -1.0000000,   -1.0000000
aspect_ratios
   1.0000000
   2.0000000
   0.5000000
   3.0000000
   0.3333000
==================== [Optimization for subgraph_86 started] ====================

=================== [Optimization for subgraph_321 started] ===================

=================== [Optimization for subgraph_264 started] ===================

[TIDL Import] [PARSER] WARNING: Requested output data convert layer is not added to the network, It is currently not optimal
[TIDL Import] [PARSER] WARNING: Requested output data convert layer is not added to the network, It is currently not optimal
[TIDL Import] [PARSER] WARNING: Requested output data convert layer is not added to the network, It is currently not optimal
[TIDL Import] [PARSER] WARNING: Requested output data convert layer is not added to the network, It is currently not optimal
[TIDL Import] [PARSER] WARNING: Requested output data convert layer is not added to the network, It is currently not optimal
[TIDL Import] [PARSER] WARNING: Requested output data convert layer is not added to the network, It is currently not optimal
[TIDL Import] [PARSER] WARNING: Requested output data convert layer is not added to the network, It is currently not optimal
[TIDL Import] [PARSER] WARNING: Requested output data convert layer is not added to the network, It is currently not optimal
[TIDL Import] [PARSER] WARNING: Requested output data convert layer is not added to the network, It is currently not optimal
[TIDL Import] [PARSER] WARNING: Requested output data convert layer is not added to the network, It is currently not optimal
----------------------------- Optimization Summary -----------------------------
---------------------------------------------------------------------------------
|          Layer         | Nodes before optimization | Nodes after optimization |
---------------------------------------------------------------------------------
| TIDL_SoftMaxLayer      |                         1 |                        1 |
| TIDL_SqueezeLayer      |                         1 |                        0 |
| TIDL_ConvolutionLayer  |                        28 |                       27 |
| TIDL_EltWiseLayer      |                         2 |                        0 |
| TIDL_InnerProductLayer |                         0 |                        1 |
| TIDL_CastLayer         |                         1 |                        0 |
| TIDL_PoolingLayer      |                         1 |                        1 |
---------------------------------------------------------------------------------

=================== [Optimization for subgraph_86 completed] ===================

----------------------------- Optimization Summary -----------------------------
--------------------------------------------------------------------------------
|         Layer         | Nodes before optimization | Nodes after optimization |
--------------------------------------------------------------------------------
| TIDL_ArgMaxLayer      |                         1 |                        1 |
| TIDL_ConcatLayer      |                         2 |                        2 |
| TIDL_ResizeLayer      |                         3 |                        5 |
| TIDL_ConvolutionLayer |                        60 |                       60 |
| TIDL_EltWiseLayer     |                        12 |                       10 |
| TIDL_CastLayer        |                         2 |                        0 |
| TIDL_PoolingLayer     |                         1 |                        1 |
--------------------------------------------------------------------------------

================== [Optimization for subgraph_201 completed] ==================

----------------------------- Optimization Summary -----------------------------
-------------------------------------------------------------------------------------
|            Layer           | Nodes before optimization | Nodes after optimization |
-------------------------------------------------------------------------------------
| TIDL_OdOutputReformatLayer |                         0 |                        4 |
| TIDL_ConvolutionLayer      |                        94 |                       94 |
| TIDL_EltWiseLayer          |                        17 |                       15 |
| TIDL_DetectionOutputLayer  |                         0 |                        1 |
| TIDL_CastLayer             |                         1 |                        0 |
-------------------------------------------------------------------------------------

================== [Optimization for subgraph_321 completed] ==================

----------------------------- Optimization Summary -----------------------------
-------------------------------------------------------------------------------------
|            Layer           | Nodes before optimization | Nodes after optimization |
-------------------------------------------------------------------------------------
| TIDL_OdOutputReformatLayer |                         0 |                        4 |
| TIDL_ConvolutionLayer      |                        76 |                       76 |
| TIDL_EltWiseLayer          |                        12 |                       10 |
| TIDL_DetectionOutputLayer  |                         0 |                        1 |
| TIDL_CastLayer             |                         1 |                        0 |
-------------------------------------------------------------------------------------

================== [Optimization for subgraph_264 completed] ==================

The soft limit is 10240
The hard limit is 10240
MEM: Init ... !!!
MEM: Init ... Done !!!
 0.0s:  VX_ZONE_INIT:Enabled
 0.7s:  VX_ZONE_ERROR:Enabled
 0.8s:  VX_ZONE_WARNING:Enabled
 0.1219s:  VX_ZONE_INIT:[tivxInit:190] Initialization Done !!!
The soft limit is 10240
The hard limit is 10240
MEM: Init ... !!!
MEM: Init ... Done !!!
 0.0s:  VX_ZONE_INIT:Enabled
 0.5s:  VX_ZONE_ERROR:Enabled
 0.7s:  VX_ZONE_WARNING:Enabled
 0.1157s:  VX_ZONE_INIT:[tivxInit:190] Initialization Done !!!
The soft limit is 10240
The hard limit is 10240
MEM: Init ... !!!
MEM: Init ... Done !!!
 0.0s:  VX_ZONE_INIT:Enabled
 0.5s:  VX_ZONE_ERROR:Enabled
 0.6s:  VX_ZONE_WARNING:Enabled
 0.1096s:  VX_ZONE_INIT:[tivxInit:190] Initialization Done !!!
The soft limit is 10240
The hard limit is 10240
MEM: Init ... !!!
MEM: Init ... Done !!!
 0.0s:  VX_ZONE_INIT:Enabled
 0.5s:  VX_ZONE_ERROR:Enabled
 0.6s:  VX_ZONE_WARNING:Enabled
 0.1121s:  VX_ZONE_INIT:[tivxInit:190] Initialization Done !!!

 ************ Frame index 1 : Running float inference **************** 


 ************ Frame index 2 : Running fixed point mode for calibration **************** 


-------- Running Calibration in Float Mode to Collect Tensor Statistics --------
[======================================>                                      ] [=============================================================================] 100 %
 ************ Frame index 1 : Running float inference **************** 



------------------ Fixed-point Calibration Iteration [1 / 5]: ------------------

 ************ Frame index 1 : Running float inference **************** 

[======================================>                                      ] [=============================================================================] 100 %
 ************ Frame index 2 : Running fixed point mode for calibration **************** 



------------------ Fixed-point Calibration Iteration [2 / 5]: ------------------

-------- Running Calibration in Float Mode to Collect Tensor Statistics --------
[======================================>                                      ] [======================================>                                      ] [=============================================================================] 100 %

------------------ Fixed-point Calibration Iteration [3 / 5]: ------------------

 ************ Frame index 2 : Running fixed point mode for calibration **************** 

[======================================>                                      ] 50 %
-------- Running Calibration in Float Mode to Collect Tensor Statistics --------
[======================================>                                      ] [=============================================================================] [=============================================================================] 100 %

------------------ Fixed-point Calibration Iteration [4 / 5]: ------------------
[======================================>                                      ] [=============================================================================] 100 %

------------------ Fixed-point Calibration Iteration [1 / 5]: ------------------


------------------ Fixed-point Calibration Iteration [5 / 5]: ------------------
[======================================>                                      ] [=============================================================================] [======================================>                                      ] [=============================================================================] 100 %

==================== [Quantization & Calibration Completed] ====================

========================== [Memory Planning Started] ==========================


------------------------- Network Compiler Traces ------------------------------
Successful Memory Allocation
Successful Workload Creation

========================= [Memory Planning Completed] =========================

======================== Subgraph Compiled Successfully ========================


 Final number of subgraphs:1 , 34 nodes delegated to accelerator 


 
Completed_Model :     1, Name : cl-tfl-mobilenet_v1_1.0_224                       , Total time :    2420.16, Offload Time :       0.00 , DDR RW MBs : 18446744073709.55, Output File : py_out_cl-tfl-mobilenet_v1_1.0_224_ADE_val_00001801.jpg
 
 
MEM: Deinit ... !!!
MEM: Alloc's: 26 alloc's of 87828789 bytes 
MEM: Free's : 26 free's  of 87828789 bytes 
MEM: Open's : 0 allocs  of 0 bytes 
MEM: Deinit ... Done !!!
[=============================================================================] 100 %

------------------ Fixed-point Calibration Iteration [1 / 5]: ------------------
[======================================>                                      ] 50 %

------------------ Fixed-point Calibration Iteration [2 / 5]: ------------------
[======================================>                                      ] [=============================================================================] [=============================================================================] 100 %

------------------ Fixed-point Calibration Iteration [3 / 5]: ------------------


------------------ Fixed-point Calibration Iteration [2 / 5]: ------------------
[======================================>                                      ] [======================================>                                      ] [=============================================================================] [=============================================================================] 100 %

------------------ Fixed-point Calibration Iteration [4 / 5]: ------------------

 ************ Frame index 1 : Running float inference **************** 

[======================================>                                      ] 50 %

------------------ Fixed-point Calibration Iteration [3 / 5]: ------------------
[======================================>                                      ] [=============================================================================] [=============================================================================] 100 %

------------------ Fixed-point Calibration Iteration [5 / 5]: ------------------
[======================================>                                      ] 50 %

------------------ Fixed-point Calibration Iteration [4 / 5]: ------------------
[======================================>                                      ] [=============================================================================] 100 %

[=============================================================================] ==================== [Quantization & Calibration Completed] ====================

========================== [Memory Planning Started] ==========================


------------------------- Network Compiler Traces ------------------------------
Successful Memory Allocation
Successful Workload Creation

========================= [Memory Planning Completed] =========================

======================== Subgraph Compiled Successfully ========================


 Final number of subgraphs:1 , 107 nodes delegated to accelerator 


 
Completed_Model :     3, Name : od-tfl-ssd_mobilenet_v2_300_float                 , Total time :    6771.57, Offload Time :       0.00 , DDR RW MBs : 18446744073709.55, Output File : py_out_od-tfl-ssd_mobilenet_v2_300_float_ADE_val_00001801.jpg
 
 
MEM: Deinit ... !!!
MEM: Alloc's: 29 alloc's of 232691165 bytes 
MEM: Free's : 29 free's  of 232691165 bytes 
MEM: Open's : 0 allocs  of 0 bytes 
MEM: Deinit ... Done !!!


------------------ Fixed-point Calibration Iteration [5 / 5]: ------------------
[======================================>                                      ] [=============================================================================] 100 %

==================== [Quantization & Calibration Completed] ====================

========================== [Memory Planning Started] ==========================


------------------------- Network Compiler Traces ------------------------------
Successful Memory Allocation
Successful Workload Creation

========================= [Memory Planning Completed] =========================

======================== Subgraph Compiled Successfully ========================


 Final number of subgraphs:1 , 129 nodes delegated to accelerator 


 
Completed_Model :     4, Name : od-tfl-ssdlite_mobiledet_dsp_320x320_coco         , Total time :    8438.49, Offload Time :       0.00 , DDR RW MBs : 18446744073709.55, Output File : py_out_od-tfl-ssdlite_mobiledet_dsp_320x320_coco_ADE_val_00001801.jpg
 
 
MEM: Deinit ... !!!
MEM: Alloc's: 29 alloc's of 139198365 bytes 
MEM: Free's : 29 free's  of 139198365 bytes 
MEM: Open's : 0 allocs  of 0 bytes 
MEM: Deinit ... Done !!!

 ************ Frame index 2 : Running fixed point mode for calibration **************** 


-------- Running Calibration in Float Mode to Collect Tensor Statistics --------
[======================================>                                      ] [=============================================================================] 100 %

------------------ Fixed-point Calibration Iteration [1 / 5]: ------------------
[======================================>                                      ] [=============================================================================] 100 %

------------------ Fixed-point Calibration Iteration [2 / 5]: ------------------
[======================================>                                      ] [=============================================================================] 100 %

------------------ Fixed-point Calibration Iteration [3 / 5]: ------------------
[======================================>                                      ] [=============================================================================] 100 %

------------------ Fixed-point Calibration Iteration [4 / 5]: ------------------
[======================================>                                      ] [=============================================================================] 100 %

------------------ Fixed-point Calibration Iteration [5 / 5]: ------------------
[======================================>                                      ] [=============================================================================] 100 %

==================== [Quantization & Calibration Completed] ====================

========================== [Memory Planning Started] ==========================


------------------------- Network Compiler Traces ------------------------------
Successful Memory Allocation
Successful Workload Creation

========================= [Memory Planning Completed] =========================

======================== Subgraph Compiled Successfully ========================


 Final number of subgraphs:1 , 81 nodes delegated to accelerator 


 
Completed_Model :     2, Name : ss-tfl-deeplabv3_mnv2_ade20k_float                , Total time :   38532.05, Offload Time :       0.00 , DDR RW MBs : 18446744073709.55, Output File : py_out_ss-tfl-deeplabv3_mnv2_ade20k_float_ADE_val_00001801.jpg
 
 
MEM: Deinit ... !!!
MEM: Alloc's: 26 alloc's of 408724625 bytes 
MEM: Free's : 26 free's  of 408724625 bytes 
MEM: Open's : 0 allocs  of 0 bytes 
MEM: Deinit ... Done !!!
run python3 tflrt_delegate.py
Running 4 Models - ['cl-tfl-mobilenet_v1_1.0_224', 'ss-tfl-deeplabv3_mnv2_ade20k_float', 'od-tfl-ssd_mobilenet_v2_300_float', 'od-tfl-ssdlite_mobiledet_dsp_320x320_coco']


Running_Model :  cl-tfl-mobilenet_v1_1.0_224

Running_Model :  ss-tfl-deeplabv3_mnv2_ade20k_float

Running_Model :  od-tfl-ssd_mobilenet_v2_300_float

Running_Model :  od-tfl-ssdlite_mobiledet_dsp_320x320_coco

 Number of subgraphs:1 , 34 nodes delegated out of 34 nodes 
 

 Number of subgraphs:1 , 81 nodes delegated out of 81 nodes 
 

 Number of subgraphs:1 , 107 nodes delegated out of 107 nodes 
 
The soft limit is 10240
The hard limit is 10240
MEM: Init ... !!!

 Number of subgraphs:1 , 129 nodes delegated out of 129 nodes 
 
MEM: Init ... Done !!!
The soft limit is 10240
The hard limit is 10240
MEM: Init ... !!!
 0.0s:  VX_ZONE_INIT:Enabled
 0.6s:  VX_ZONE_ERROR:Enabled
 0.7s:  VX_ZONE_WARNING:Enabled
MEM: Init ... Done !!!
 0.0s:  VX_ZONE_INIT:Enabled
 0.5s:  VX_ZONE_ERROR:Enabled
 0.7s:  VX_ZONE_WARNING:Enabled
 0.2013s:  VX_ZONE_INIT:[tivxInit:190] Initialization Done !!!
 0.2451s:  VX_ZONE_INIT:[tivxInit:190] Initialization Done !!!
The soft limit is 10240
The hard limit is 10240
MEM: Init ... !!!
MEM: Init ... Done !!!
 0.0s:  VX_ZONE_INIT:Enabled
 0.5s:  VX_ZONE_ERROR:Enabled
 0.7s:  VX_ZONE_WARNING:Enabled
 0.1102s:  VX_ZONE_INIT:[tivxInit:190] Initialization Done !!!
The soft limit is 10240
The hard limit is 10240
MEM: Init ... !!!
MEM: Init ... Done !!!
 0.0s:  VX_ZONE_INIT:Enabled
 0.7s:  VX_ZONE_ERROR:Enabled
 0.9s:  VX_ZONE_WARNING:Enabled
 0.1510s:  VX_ZONE_INIT:[tivxInit:190] Initialization Done !!!

 ,  0  0.691726  warplane, military plane ,,  1  0.181373  missile ,,  2  0.109571  projectile, missile ,,  3  0.006352  cannon ,,  4  0.005370  aircraft carrier, carrier, flattop, attack aircraft carrier ,

Saving image to  ../../../output_images/

 
Completed_Model :     1, Name : cl-tfl-mobilenet_v1_1.0_224                       , Total time :     252.48, Offload Time :     252.47 , DDR RW MBs : 18446744073709.55, Output File : py_out_cl-tfl-mobilenet_v1_1.0_224_airshow.jpg
 
 
MEM: Deinit ... !!!
MEM: Alloc's: 26 alloc's of 27127485 bytes 
MEM: Free's : 26 free's  of 27127485 bytes 
MEM: Open's : 0 allocs  of 0 bytes 
MEM: Deinit ... Done !!!

Saving image to  ../../../output_images/

 
Completed_Model :     3, Name : od-tfl-ssd_mobilenet_v2_300_float                 , Total time :     930.89, Offload Time :     930.88 , DDR RW MBs : 18446744073709.55, Output File : py_out_od-tfl-ssd_mobilenet_v2_300_float_ADE_val_00001801.jpg
 
 
MEM: Deinit ... !!!
MEM: Alloc's: 29 alloc's of 86511875 bytes 
MEM: Free's : 29 free's  of 86511875 bytes 
MEM: Open's : 0 allocs  of 0 bytes 
MEM: Deinit ... Done !!!

Saving image to  ../../../output_images/

 
Completed_Model :     4, Name : od-tfl-ssdlite_mobiledet_dsp_320x320_coco         , Total time :    1429.23, Offload Time :    1429.22 , DDR RW MBs : 18446744073709.55, Output File : py_out_od-tfl-ssdlite_mobiledet_dsp_320x320_coco_ADE_val_00001801.jpg
 
 
MEM: Deinit ... !!!
MEM: Alloc's: 29 alloc's of 38501115 bytes 
MEM: Free's : 29 free's  of 38501115 bytes 
MEM: Open's : 0 allocs  of 0 bytes 
MEM: Deinit ... Done !!!

Saving image to  ../../../output_images/

 
Completed_Model :     2, Name : ss-tfl-deeplabv3_mnv2_ade20k_float                , Total time :    4264.49, Offload Time :    4264.48 , DDR RW MBs : 18446744073709.55, Output File : py_out_ss-tfl-deeplabv3_mnv2_ade20k_float_ADE_val_00001801.jpg
 
 
MEM: Deinit ... !!!
MEM: Alloc's: 26 alloc's of 85712597 bytes 
MEM: Free's : 26 free's  of 85712597 bytes 
MEM: Open's : 0 allocs  of 0 bytes 
MEM: Deinit ... Done !!!
Available execution providers :  ['AzureExecutionProvider', 'CPUExecutionProvider']

Running 2 Models - ['cl-ort-resnet18-v1', 'od-ort-ssd-lite_mobilenetv2_fpn']


Running_Model :  cl-ort-resnet18-v1  

Downloading   ../../../models/public/resnet18_opset9.onnx

Running_Model :  od-ort-ssd-lite_mobilenetv2_fpn  


Running shape inference on model ../../../models/public/ssd-lite_mobilenetv2_fpn.onnx 

/home/ace428/.local/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:69: UserWarning: Specified provider 'TIDLCompilationProvider' is not in available provider names.Available providers: 'AzureExecutionProvider, CPUExecutionProvider'
  warnings.warn(
*************** EP Error ***************
EP Error Unknown Provider Type: TIDLCompilationProvider when using ['TIDLCompilationProvider', 'CPUExecutionProvider']
Falling back to ['CPUExecutionProvider'] and retrying.
****************************************
Process Process-2:
Traceback (most recent call last):
  File "/home/ace428/.pyenv/versions/3.10.14/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
    self.run()
  File "/home/ace428/.pyenv/versions/3.10.14/lib/python3.10/multiprocessing/process.py", line 108, in run
    self._target(*self._args, **self._kwargs)
  File "/home/ace428/Desktop/edgeai-tidl-tools/examples/osrt_python/ort/onnxrt_ep.py", line 239, in run_model
    imgs, output, proc_time, sub_graph_time, height, width  = infer_image(sess, input_images, config)
  File "/home/ace428/Desktop/edgeai-tidl-tools/examples/osrt_python/ort/onnxrt_ep.py", line 135, in infer_image
    copy_time, sub_graphs_proc_time, totaltime = get_benchmark_output(sess)
  File "/home/ace428/Desktop/edgeai-tidl-tools/examples/osrt_python/ort/onnxrt_ep.py", line 84, in get_benchmark_output
    benchmark_dict = interpreter.get_TI_benchmark_data()
AttributeError: 'InferenceSession' object has no attribute 'get_TI_benchmark_data' 

This is my current environment information.
Package                  Version         Editable project location
------------------------ --------------- ----------------------------------------------
absl-py                  2.1.0
attrs                    24.2.0
autocfg                  0.0.8
caffe2onnx               1.0.2
certifi                  2024.8.30
charset-normalizer       3.3.2
cloudpickle              3.0.0
coloredlogs              15.0.1
contourpy                1.3.0
cycler                   0.12.1
dataclasses              0.6
decorator                5.1.1
distro                   1.9.0
dlr                      1.13.0
exceptiongroup           1.2.2
filelock                 3.16.0
flatbuffers              1.12
fonttools                4.53.1
fsspec                   2024.9.0
gluoncv                  0.10.5.post0
graphviz                 0.20.3
grpcio                   1.66.1
huggingface-hub          0.24.7
humanfriendly            10.0
idna                     3.8
iniconfig                2.0.0
Jinja2                   3.1.4
kiwisolver               1.4.7
Markdown                 3.7
markdown-it-py           3.0.0
MarkupSafe               2.1.5
matplotlib               3.9.2
mdurl                    0.1.2
mpmath                   1.3.0
networkx                 3.3
numpy                    1.23.0
nvidia-cublas-cu12       12.1.3.1
nvidia-cuda-cupti-cu12   12.1.105
nvidia-cuda-nvrtc-cu12   12.1.105
nvidia-cuda-runtime-cu12 12.1.105
nvidia-cudnn-cu12        9.1.0.70
nvidia-cufft-cu12        11.0.2.54
nvidia-curand-cu12       10.3.2.106
nvidia-cusolver-cu12     11.4.5.107
nvidia-cusparse-cu12     12.1.0.106
nvidia-nccl-cu12         2.20.5
nvidia-nvjitlink-cu12    12.6.68
nvidia-nvtx-cu12         12.1.105
onnx                     1.13.0
onnx_graphsurgeon        0.3.26
onnxruntime              1.19.0
onnxruntime-tidl         1.14.0+10000005
onnxsim                  0.4.35
opencv-python            4.10.0.84
osrt_model_tools         1.2             /home/ace428/Desktop/edgeai-tidl-tools/scripts
packaging                24.1
pandas                   2.2.2
pillow                   10.4.0
pip                      24.2
pluggy                   1.5.0
portalocker              2.10.1
protobuf                 3.20.3
psutil                   6.0.0
pybind11                 2.13.5
pybind11_global          2.13.5
Pygments                 2.18.0
pyparsing                3.1.4
pytest                   8.3.3
python-dateutil          2.9.0.post0
pytz                     2024.2
PyYAML                   6.0.2
requests                 2.32.3
rich                     13.8.1
safetensors              0.4.5
scipy                    1.13.1
seaborn                  0.13.2
setuptools               74.1.2
six                      1.16.0
sympy                    1.13.2
tensorboard              2.17.1
tensorboard-data-server  0.7.2
tflite                   2.10.0
tflite-runtime           2.12.0
timm                     1.0.9
tomli                    2.0.1
torch                    2.4.1
torchvision              0.19.1
tornado                  6.4.1
tqdm                     4.66.5
triton                   3.0.0
tvm                      0.12.0
typing_extensions        4.12.2
tzdata                   2024.1
urllib3                  2.2.3
Werkzeug                 3.0.4
wheel                    0.44.0
yacs                     0.1.8

How to resolve this issue?

Thanks

Kathy
  • Hi Kathy; what is the version that you were using? (I did not see it in your first window). Could you try to use "git checkout <version tag>" to checkout a specific version that matches your SDK?

    you can use "git tag" to list all the available version tags.

    Best regards

    Wen Li