PROCESSOR-SDK-AM68A: edgeai-modelmaker

Part Number: PROCESSOR-SDK-AM68A
Other Parts Discussed in Thread: 4430

Tool/software:

i followed this guide https://github.com/TexasInstruments/edgeai-tensorlab/tree/main/edgeai-modelmaker
and used branch r9.1
The model can be trained and compiled normally and no errors are found. However, when I deploy it to a target board, it sometimes does not work. That is, if I use the same datasets, compile it multiple times, and deploy it to the target board, the model compiled at a certain time will not work and will not recognize the object detection at all. This happens when I compile on two different Ubuntu 22.04 machines. , can you tell me the possible reasons? thanks

the trained log:

2024-11-25 16:21:51,120 - mmdet - INFO - Environment info:
------------------------------------------------------------
sys.platform: linux
Python: 3.10.15 (main, Nov  8 2024, 11:46:29) [GCC 11.4.0]
CUDA available: False
GCC: gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
PyTorch: 2.0.1+cpu
PyTorch compiling details: PyTorch built with:
  - GCC 9.3
  - C++ Version: 201703
  - Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.1, USE_CUDA=0, USE_CUDNN=OFF, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, 

TorchVision: 0.15.2+cpu
OpenCV: 4.10.0
MMCV: 1.4.8
MMCV Compiler: GCC 11.4
MMCV CUDA Compiler: not available
MMDetection: 2.22.0+cb8eba4
------------------------------------------------------------

2024-11-25 16:21:51,794 - mmdet - INFO - Distributed training: False
2024-11-25 16:21:52,467 - mmdet - INFO - Config:
dataset_type = 'CocoDataset'
data_root = '/home/mchi/github/edgeai-tensorlab/edgeai-modelmaker/data/projects/1021_3280x2464/dataset'
data = dict(
    samples_per_gpu=8,
    workers_per_gpu=2,
    train=dict(
        type='MultiImageMixDataset',
        dataset=dict(
            type='ModelMakerDataset',
            ann_file=
            '/home/mchi/github/edgeai-tensorlab/edgeai-modelmaker/data/projects/1021_3280x2464/dataset/annotations/instances_train.json',
            img_prefix=
            '/home/mchi/github/edgeai-tensorlab/edgeai-modelmaker/data/projects/1021_3280x2464/dataset/train',
            pipeline=[
                dict(type='LoadImageFromFile'),
                dict(type='LoadAnnotations', with_bbox=True)
            ],
            filter_empty_gt=False,
            classes=['burr', 'lack', 'split', 'tree', 'vein']),
        pipeline=[
            dict(type='Mosaic', img_scale=(640, 640), pad_val=114.0),
            dict(
                type='RandomAffine',
                scaling_ratio_range=(0.1, 2),
                border=(-320, -320)),
            dict(
                type='MixUp',
                img_scale=(640, 640),
                ratio_range=(0.8, 1.6),
                pad_val=114.0),
            dict(type='YOLOXHSVRandomAug'),
            dict(type='RandomFlip', flip_ratio=0.5),
            dict(type='Resize', img_scale=(640, 640), keep_ratio=True),
            dict(
                type='Pad',
                pad_to_square=True,
                pad_val=dict(img=(114.0, 114.0, 114.0))),
            dict(
                type='FilterAnnotations',
                min_gt_bbox_wh=(1, 1),
                keep_empty=False),
            dict(type='DefaultFormatBundle'),
            dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
        ]),
    val=dict(
        type='ModelMakerDataset',
        ann_file=
        '/home/mchi/github/edgeai-tensorlab/edgeai-modelmaker/data/projects/1021_3280x2464/dataset/annotations/instances_val.json',
        img_prefix=
        '/home/mchi/github/edgeai-tensorlab/edgeai-modelmaker/data/projects/1021_3280x2464/dataset/val',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(640, 640),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Pad',
                        pad_to_square=True,
                        pad_val=dict(img=(114.0, 114.0, 114.0))),
                    dict(type='DefaultFormatBundle'),
                    dict(type='Collect', keys=['img'])
                ])
        ],
        classes=['burr', 'lack', 'split', 'tree', 'vein']),
    test=dict(
        type='CocoDataset',
        ann_file='data/coco/annotations/instances_val2017.json',
        img_prefix='data/coco/val2017/',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(640, 640),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Pad',
                        pad_to_square=True,
                        pad_val=dict(img=(114.0, 114.0, 114.0))),
                    dict(type='DefaultFormatBundle'),
                    dict(type='Collect', keys=['img'])
                ])
        ]),
    persistent_workers=True)
evaluation = dict(interval=1, metric='bbox')
cudnn_benchmark = True
resize_with_scale_factor = True
max_epochs = 300
num_last_epochs = 15
interval = 10
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = './data/downloads/pretrained/yolox_s_lite/yolox_s_lite_640x640_20220221_checkpoint.pth'
resume_from = None
workflow = [('train', 1)]
print_model_complexity = True
optimizer = dict(
    type='SGD',
    lr=0.001,
    momentum=0.9,
    weight_decay=0.0005,
    nesterov=True,
    paramwise_cfg=dict(norm_decay_mult=0.0, bias_decay_mult=0.0))
optimizer_config = dict(grad_clip=None)
lr_config = dict(
    policy='YOLOX',
    warmup='exp',
    by_epoch=False,
    warmup_by_epoch=True,
    warmup_ratio=1,
    warmup_iters=1,
    num_last_epochs=5,
    min_lr_ratio=0.05)
runner = dict(type='EpochBasedRunner', max_epochs=60)
custom_hooks = [
    dict(type='YOLOXModeSwitchHook', num_last_epochs=15, priority=48),
    dict(type='SyncNormHook', num_last_epochs=15, interval=10, priority=48),
    dict(
        type='ExpMomentumEMAHook',
        resume_from=None,
        momentum=0.0001,
        priority=49)
]
checkpoint_config = dict(interval=10)
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
img_scale = (640, 640)
input_size = (640, 640)
samples_per_gpu = 16
num_classes_dict = dict(
    CocoDataset=80, VOCDataset=20, CityscapesDataset=8, WIDERFaceDataset=1)
dataset_root_dict = dict(
    CocoDataset='data/coco/',
    VOCDataset='data/VOCdevkit/',
    CityscapesDataset='data/cityscapes/',
    WIDERFaceDataset='data/WIDERFace/')
num_classes = 80
img_norm_cfg = dict(mean=[0.0, 0.0, 0.0], std=[1.0, 1.0, 1.0], to_rgb=False)
convert_to_lite_model = dict(group_size_dw=None)
quantize = False
initial_learning_rate = 0.01
model = dict(
    type='YOLOX',
    input_size=(640, 640),
    random_size_range=(15, 25),
    random_size_interval=10,
    backbone=dict(type='CSPDarknet', deepen_factor=0.33, widen_factor=0.5),
    neck=dict(
        type='YOLOXPAFPN',
        in_channels=[128, 256, 512],
        out_channels=128,
        num_csp_blocks=1),
    bbox_head=dict(
        type='YOLOXHead', num_classes=5, in_channels=128, feat_channels=128),
    train_cfg=dict(assigner=dict(type='SimOTAAssigner', center_radius=2.5)),
    test_cfg=dict(score_thr=0.01, nms=dict(type='nms', iou_threshold=0.65)))
train_pipeline = [
    dict(type='Mosaic', img_scale=(640, 640), pad_val=114.0),
    dict(
        type='RandomAffine', scaling_ratio_range=(0.1, 2),
        border=(-320, -320)),
    dict(
        type='MixUp',
        img_scale=(640, 640),
        ratio_range=(0.8, 1.6),
        pad_val=114.0),
    dict(type='YOLOXHSVRandomAug'),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Resize', img_scale=(640, 640), keep_ratio=True),
    dict(
        type='Pad',
        pad_to_square=True,
        pad_val=dict(img=(114.0, 114.0, 114.0))),
    dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(640, 640),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(
                type='Pad',
                pad_to_square=True,
                pad_val=dict(img=(114.0, 114.0, 114.0))),
            dict(type='DefaultFormatBundle'),
            dict(type='Collect', keys=['img'])
        ])
]
work_dir = '/home/mchi/github/edgeai-tensorlab/edgeai-modelmaker/data/projects/1021_3280x2464/run/20241125-162141/yolox_s_lite/training'
total_epochs = 60
export_model = True
auto_resume = False
gpu_ids = [0]

2024-11-25 16:21:52,467 - mmdet - INFO - Set random seed to 51281273, deterministic: False
2024-11-25 16:21:52,656 - mmdet - INFO - initialize CSPDarknet with init_cfg {'type': 'Kaiming', 'layer': 'Conv2d', 'a': 2.23606797749979, 'distribution': 'uniform', 'mode': 'fan_in', 'nonlinearity': 'leaky_relu'}
2024-11-25 16:21:52,686 - mmdet - INFO - initialize YOLOXPAFPN with init_cfg {'type': 'Kaiming', 'layer': 'Conv2d', 'a': 2.23606797749979, 'distribution': 'uniform', 'mode': 'fan_in', 'nonlinearity': 'leaky_relu'}
2024-11-25 16:21:52,716 - mmdet - INFO - initialize YOLOXHead with init_cfg {'type': 'Kaiming', 'layer': 'Conv2d', 'a': 2.23606797749979, 'distribution': 'uniform', 'mode': 'fan_in', 'nonlinearity': 'leaky_relu'}
Name of parameter - Initialization information

backbone.stem.conv.conv.weight - torch.Size([32, 12, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stem.conv.bn.weight - torch.Size([32]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stem.conv.bn.bias - torch.Size([32]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.0.conv.weight - torch.Size([64, 32, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage1.0.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.0.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.1.main_conv.conv.weight - torch.Size([32, 64, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage1.1.main_conv.bn.weight - torch.Size([32]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.1.main_conv.bn.bias - torch.Size([32]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.1.short_conv.conv.weight - torch.Size([32, 64, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage1.1.short_conv.bn.weight - torch.Size([32]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.1.short_conv.bn.bias - torch.Size([32]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.1.final_conv.conv.weight - torch.Size([64, 64, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage1.1.final_conv.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.1.final_conv.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.1.blocks.0.conv1.conv.weight - torch.Size([32, 32, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage1.1.blocks.0.conv1.bn.weight - torch.Size([32]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.1.blocks.0.conv1.bn.bias - torch.Size([32]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.1.blocks.0.conv2.conv.weight - torch.Size([32, 32, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage1.1.blocks.0.conv2.bn.weight - torch.Size([32]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.1.blocks.0.conv2.bn.bias - torch.Size([32]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.0.conv.weight - torch.Size([128, 64, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage2.0.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.0.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.main_conv.conv.weight - torch.Size([64, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage2.1.main_conv.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.main_conv.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.short_conv.conv.weight - torch.Size([64, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage2.1.short_conv.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.short_conv.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.final_conv.conv.weight - torch.Size([128, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage2.1.final_conv.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.final_conv.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.0.conv1.conv.weight - torch.Size([64, 64, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage2.1.blocks.0.conv1.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.0.conv1.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.0.conv2.conv.weight - torch.Size([64, 64, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage2.1.blocks.0.conv2.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.0.conv2.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.1.conv1.conv.weight - torch.Size([64, 64, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage2.1.blocks.1.conv1.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.1.conv1.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.1.conv2.conv.weight - torch.Size([64, 64, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage2.1.blocks.1.conv2.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.1.conv2.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.2.conv1.conv.weight - torch.Size([64, 64, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage2.1.blocks.2.conv1.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.2.conv1.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.2.conv2.conv.weight - torch.Size([64, 64, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage2.1.blocks.2.conv2.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.2.conv2.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.0.conv.weight - torch.Size([256, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage3.0.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.0.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.main_conv.conv.weight - torch.Size([128, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage3.1.main_conv.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.main_conv.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.short_conv.conv.weight - torch.Size([128, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage3.1.short_conv.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.short_conv.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.final_conv.conv.weight - torch.Size([256, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage3.1.final_conv.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.final_conv.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.0.conv1.conv.weight - torch.Size([128, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage3.1.blocks.0.conv1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.0.conv1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.0.conv2.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage3.1.blocks.0.conv2.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.0.conv2.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.1.conv1.conv.weight - torch.Size([128, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage3.1.blocks.1.conv1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.1.conv1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.1.conv2.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage3.1.blocks.1.conv2.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.1.conv2.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.2.conv1.conv.weight - torch.Size([128, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage3.1.blocks.2.conv1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.2.conv1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.2.conv2.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage3.1.blocks.2.conv2.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.2.conv2.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.0.conv.weight - torch.Size([512, 256, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage4.0.bn.weight - torch.Size([512]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.0.bn.bias - torch.Size([512]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.1.conv1.conv.weight - torch.Size([256, 512, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage4.1.conv1.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.1.conv1.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.1.conv2.conv.weight - torch.Size([512, 1024, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage4.1.conv2.bn.weight - torch.Size([512]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.1.conv2.bn.bias - torch.Size([512]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.2.main_conv.conv.weight - torch.Size([256, 512, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage4.2.main_conv.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.2.main_conv.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.2.short_conv.conv.weight - torch.Size([256, 512, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage4.2.short_conv.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.2.short_conv.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.2.final_conv.conv.weight - torch.Size([512, 512, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage4.2.final_conv.bn.weight - torch.Size([512]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.2.final_conv.bn.bias - torch.Size([512]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.2.blocks.0.conv1.conv.weight - torch.Size([256, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage4.2.blocks.0.conv1.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.2.blocks.0.conv1.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.2.blocks.0.conv2.conv.weight - torch.Size([256, 256, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage4.2.blocks.0.conv2.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.2.blocks.0.conv2.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.reduce_layers.0.conv.weight - torch.Size([256, 512, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.reduce_layers.0.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.reduce_layers.0.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.reduce_layers.1.conv.weight - torch.Size([128, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.reduce_layers.1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.reduce_layers.1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.0.main_conv.conv.weight - torch.Size([128, 512, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.top_down_blocks.0.main_conv.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.0.main_conv.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.0.short_conv.conv.weight - torch.Size([128, 512, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.top_down_blocks.0.short_conv.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.0.short_conv.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.0.final_conv.conv.weight - torch.Size([256, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.top_down_blocks.0.final_conv.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.0.final_conv.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.0.blocks.0.conv1.conv.weight - torch.Size([128, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.top_down_blocks.0.blocks.0.conv1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.0.blocks.0.conv1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.0.blocks.0.conv2.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.top_down_blocks.0.blocks.0.conv2.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.0.blocks.0.conv2.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.1.main_conv.conv.weight - torch.Size([64, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.top_down_blocks.1.main_conv.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.1.main_conv.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.1.short_conv.conv.weight - torch.Size([64, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.top_down_blocks.1.short_conv.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.1.short_conv.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.1.final_conv.conv.weight - torch.Size([128, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.top_down_blocks.1.final_conv.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.1.final_conv.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.1.blocks.0.conv1.conv.weight - torch.Size([64, 64, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.top_down_blocks.1.blocks.0.conv1.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.1.blocks.0.conv1.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.1.blocks.0.conv2.conv.weight - torch.Size([64, 64, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.top_down_blocks.1.blocks.0.conv2.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.1.blocks.0.conv2.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.downsamples.0.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.downsamples.0.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.downsamples.0.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.downsamples.1.conv.weight - torch.Size([256, 256, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.downsamples.1.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.downsamples.1.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.0.main_conv.conv.weight - torch.Size([128, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.bottom_up_blocks.0.main_conv.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.0.main_conv.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.0.short_conv.conv.weight - torch.Size([128, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.bottom_up_blocks.0.short_conv.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.0.short_conv.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.0.final_conv.conv.weight - torch.Size([256, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.bottom_up_blocks.0.final_conv.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.0.final_conv.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.0.blocks.0.conv1.conv.weight - torch.Size([128, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.bottom_up_blocks.0.blocks.0.conv1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.0.blocks.0.conv1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.0.blocks.0.conv2.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.bottom_up_blocks.0.blocks.0.conv2.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.0.blocks.0.conv2.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.1.main_conv.conv.weight - torch.Size([256, 512, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.bottom_up_blocks.1.main_conv.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.1.main_conv.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.1.short_conv.conv.weight - torch.Size([256, 512, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.bottom_up_blocks.1.short_conv.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.1.short_conv.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.1.final_conv.conv.weight - torch.Size([512, 512, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.bottom_up_blocks.1.final_conv.bn.weight - torch.Size([512]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.1.final_conv.bn.bias - torch.Size([512]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.1.blocks.0.conv1.conv.weight - torch.Size([256, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.bottom_up_blocks.1.blocks.0.conv1.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.1.blocks.0.conv1.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.1.blocks.0.conv2.conv.weight - torch.Size([256, 256, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.bottom_up_blocks.1.blocks.0.conv2.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.1.blocks.0.conv2.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.out_convs.0.conv.weight - torch.Size([128, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.out_convs.0.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.out_convs.0.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.out_convs.1.conv.weight - torch.Size([128, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.out_convs.1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.out_convs.1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.out_convs.2.conv.weight - torch.Size([128, 512, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.out_convs.2.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.out_convs.2.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.0.0.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_cls_convs.0.0.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.0.0.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.0.1.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_cls_convs.0.1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.0.1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.1.0.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_cls_convs.1.0.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.1.0.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.1.1.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_cls_convs.1.1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.1.1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.2.0.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_cls_convs.2.0.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.2.0.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.2.1.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_cls_convs.2.1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.2.1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.0.0.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_reg_convs.0.0.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.0.0.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.0.1.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_reg_convs.0.1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.0.1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.1.0.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_reg_convs.1.0.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.1.0.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.1.1.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_reg_convs.1.1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.1.1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.2.0.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_reg_convs.2.0.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.2.0.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.2.1.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_reg_convs.2.1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.2.1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_conv_cls.0.weight - torch.Size([5, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_cls.0.bias - torch.Size([5]): 
Initialized by user-defined `init_weights` in YOLOXHead  

bbox_head.multi_level_conv_cls.1.weight - torch.Size([5, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_cls.1.bias - torch.Size([5]): 
Initialized by user-defined `init_weights` in YOLOXHead  

bbox_head.multi_level_conv_cls.2.weight - torch.Size([5, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_cls.2.bias - torch.Size([5]): 
Initialized by user-defined `init_weights` in YOLOXHead  

bbox_head.multi_level_conv_reg.0.weight - torch.Size([4, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_reg.0.bias - torch.Size([4]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_reg.1.weight - torch.Size([4, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_reg.1.bias - torch.Size([4]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_reg.2.weight - torch.Size([4, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_reg.2.bias - torch.Size([4]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_obj.0.weight - torch.Size([1, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_obj.0.bias - torch.Size([1]): 
Initialized by user-defined `init_weights` in YOLOXHead  

bbox_head.multi_level_conv_obj.1.weight - torch.Size([1, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_obj.1.bias - torch.Size([1]): 
Initialized by user-defined `init_weights` in YOLOXHead  

bbox_head.multi_level_conv_obj.2.weight - torch.Size([1, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_obj.2.bias - torch.Size([1]): 
Initialized by user-defined `init_weights` in YOLOXHead  
2024-11-25 16:21:53,414 - mmdet - INFO - =========================================================================================================
Layer (type:depth-idx)                                  Output Shape              Param #
=========================================================================================================
YOLOX                                                   [1, 5, 80, 80]            --
├─CSPDarknet: 1-1                                       [1, 128, 80, 80]          --
│    └─FocusLite: 2-1                                   [1, 32, 320, 320]         --
│    │    └─ConvModule: 3-1                             [1, 12, 320, 320]         --
│    │    │    └─Conv2d: 4-1                            [1, 12, 320, 320]         324
│    │    │    └─BatchNorm2d: 4-2                       [1, 12, 320, 320]         24
│    │    └─ConvModule: 3-2                             [1, 32, 320, 320]         --
│    │    │    └─Conv2d: 4-3                            [1, 32, 320, 320]         3,456
│    │    │    └─BatchNorm2d: 4-4                       [1, 32, 320, 320]         64
│    │    │    └─ReLU: 4-5                              [1, 32, 320, 320]         --
│    └─Sequential: 2-2                                  [1, 64, 160, 160]         --
│    │    └─ConvModule: 3-3                             [1, 64, 160, 160]         --
│    │    │    └─Conv2d: 4-6                            [1, 64, 160, 160]         18,432
│    │    │    └─BatchNorm2d: 4-7                       [1, 64, 160, 160]         128
│    │    │    └─ReLU: 4-8                              [1, 64, 160, 160]         --
│    │    └─CSPLayer: 3-4                               [1, 64, 160, 160]         --
│    │    │    └─ConvModule: 4-9                        [1, 32, 160, 160]         --
│    │    │    │    └─Conv2d: 5-1                       [1, 32, 160, 160]         2,048
│    │    │    │    └─BatchNorm2d: 5-2                  [1, 32, 160, 160]         64
│    │    │    │    └─ReLU: 5-3                         [1, 32, 160, 160]         --
│    │    │    └─ConvModule: 4-10                       [1, 32, 160, 160]         --
│    │    │    │    └─Conv2d: 5-4                       [1, 32, 160, 160]         2,048
│    │    │    │    └─BatchNorm2d: 5-5                  [1, 32, 160, 160]         64
│    │    │    │    └─ReLU: 5-6                         [1, 32, 160, 160]         --
│    │    │    └─Sequential: 4-11                       [1, 32, 160, 160]         --
│    │    │    │    └─DarknetBottleneck: 5-7            [1, 32, 160, 160]         --
│    │    │    │    │    └─ConvModule: 6-1              [1, 32, 160, 160]         --
│    │    │    │    │    │    └─Conv2d: 7-1             [1, 32, 160, 160]         1,024
│    │    │    │    │    │    └─BatchNorm2d: 7-2        [1, 32, 160, 160]         64
│    │    │    │    │    │    └─ReLU: 7-3               [1, 32, 160, 160]         --
│    │    │    │    │    └─ConvModule: 6-2              [1, 32, 160, 160]         --
│    │    │    │    │    │    └─Conv2d: 7-4             [1, 32, 160, 160]         9,216
│    │    │    │    │    │    └─BatchNorm2d: 7-5        [1, 32, 160, 160]         64
│    │    │    │    │    │    └─ReLU: 7-6               [1, 32, 160, 160]         --
│    │    │    └─ConvModule: 4-12                       [1, 64, 160, 160]         --
│    │    │    │    └─Conv2d: 5-8                       [1, 64, 160, 160]         4,096
│    │    │    │    └─BatchNorm2d: 5-9                  [1, 64, 160, 160]         128
│    │    │    │    └─ReLU: 5-10                        [1, 64, 160, 160]         --
│    └─Sequential: 2-3                                  [1, 128, 80, 80]          --
│    │    └─ConvModule: 3-5                             [1, 128, 80, 80]          --
│    │    │    └─Conv2d: 4-13                           [1, 128, 80, 80]          73,728
│    │    │    └─BatchNorm2d: 4-14                      [1, 128, 80, 80]          256
│    │    │    └─ReLU: 4-15                             [1, 128, 80, 80]          --
│    │    └─CSPLayer: 3-6                               [1, 128, 80, 80]          --
│    │    │    └─ConvModule: 4-16                       [1, 64, 80, 80]           --
│    │    │    │    └─Conv2d: 5-11                      [1, 64, 80, 80]           8,192
│    │    │    │    └─BatchNorm2d: 5-12                 [1, 64, 80, 80]           128
│    │    │    │    └─ReLU: 5-13                        [1, 64, 80, 80]           --
│    │    │    └─ConvModule: 4-17                       [1, 64, 80, 80]           --
│    │    │    │    └─Conv2d: 5-14                      [1, 64, 80, 80]           8,192
│    │    │    │    └─BatchNorm2d: 5-15                 [1, 64, 80, 80]           128
│    │    │    │    └─ReLU: 5-16                        [1, 64, 80, 80]           --
│    │    │    └─Sequential: 4-18                       [1, 64, 80, 80]           --
│    │    │    │    └─DarknetBottleneck: 5-17           [1, 64, 80, 80]           --
│    │    │    │    │    └─ConvModule: 6-3              [1, 64, 80, 80]           --
│    │    │    │    │    │    └─Conv2d: 7-7             [1, 64, 80, 80]           4,096
│    │    │    │    │    │    └─BatchNorm2d: 7-8        [1, 64, 80, 80]           128
│    │    │    │    │    │    └─ReLU: 7-9               [1, 64, 80, 80]           --
│    │    │    │    │    └─ConvModule: 6-4              [1, 64, 80, 80]           --
│    │    │    │    │    │    └─Conv2d: 7-10            [1, 64, 80, 80]           36,864
│    │    │    │    │    │    └─BatchNorm2d: 7-11       [1, 64, 80, 80]           128
│    │    │    │    │    │    └─ReLU: 7-12              [1, 64, 80, 80]           --
│    │    │    │    └─DarknetBottleneck: 5-18           [1, 64, 80, 80]           --
│    │    │    │    │    └─ConvModule: 6-5              [1, 64, 80, 80]           --
│    │    │    │    │    │    └─Conv2d: 7-13            [1, 64, 80, 80]           4,096
│    │    │    │    │    │    └─BatchNorm2d: 7-14       [1, 64, 80, 80]           128
│    │    │    │    │    │    └─ReLU: 7-15              [1, 64, 80, 80]           --
│    │    │    │    │    └─ConvModule: 6-6              [1, 64, 80, 80]           --
│    │    │    │    │    │    └─Conv2d: 7-16            [1, 64, 80, 80]           36,864
│    │    │    │    │    │    └─BatchNorm2d: 7-17       [1, 64, 80, 80]           128
│    │    │    │    │    │    └─ReLU: 7-18              [1, 64, 80, 80]           --
│    │    │    │    └─DarknetBottleneck: 5-19           [1, 64, 80, 80]           --
│    │    │    │    │    └─ConvModule: 6-7              [1, 64, 80, 80]           --
│    │    │    │    │    │    └─Conv2d: 7-19            [1, 64, 80, 80]           4,096
│    │    │    │    │    │    └─BatchNorm2d: 7-20       [1, 64, 80, 80]           128
│    │    │    │    │    │    └─ReLU: 7-21              [1, 64, 80, 80]           --
│    │    │    │    │    └─ConvModule: 6-8              [1, 64, 80, 80]           --
│    │    │    │    │    │    └─Conv2d: 7-22            [1, 64, 80, 80]           36,864
│    │    │    │    │    │    └─BatchNorm2d: 7-23       [1, 64, 80, 80]           128
│    │    │    │    │    │    └─ReLU: 7-24              [1, 64, 80, 80]           --
│    │    │    └─ConvModule: 4-19                       [1, 128, 80, 80]          --
│    │    │    │    └─Conv2d: 5-20                      [1, 128, 80, 80]          16,384
│    │    │    │    └─BatchNorm2d: 5-21                 [1, 128, 80, 80]          256
│    │    │    │    └─ReLU: 5-22                        [1, 128, 80, 80]          --
│    └─Sequential: 2-4                                  [1, 256, 40, 40]          --
│    │    └─ConvModule: 3-7                             [1, 256, 40, 40]          --
│    │    │    └─Conv2d: 4-20                           [1, 256, 40, 40]          294,912
│    │    │    └─BatchNorm2d: 4-21                      [1, 256, 40, 40]          512
│    │    │    └─ReLU: 4-22                             [1, 256, 40, 40]          --
│    │    └─CSPLayer: 3-8                               [1, 256, 40, 40]          --
│    │    │    └─ConvModule: 4-23                       [1, 128, 40, 40]          --
│    │    │    │    └─Conv2d: 5-23                      [1, 128, 40, 40]          32,768
│    │    │    │    └─BatchNorm2d: 5-24                 [1, 128, 40, 40]          256
│    │    │    │    └─ReLU: 5-25                        [1, 128, 40, 40]          --
│    │    │    └─ConvModule: 4-24                       [1, 128, 40, 40]          --
│    │    │    │    └─Conv2d: 5-26                      [1, 128, 40, 40]          32,768
│    │    │    │    └─BatchNorm2d: 5-27                 [1, 128, 40, 40]          256
│    │    │    │    └─ReLU: 5-28                        [1, 128, 40, 40]          --
│    │    │    └─Sequential: 4-25                       [1, 128, 40, 40]          --
│    │    │    │    └─DarknetBottleneck: 5-29           [1, 128, 40, 40]          --
│    │    │    │    │    └─ConvModule: 6-9              [1, 128, 40, 40]          --
│    │    │    │    │    │    └─Conv2d: 7-25            [1, 128, 40, 40]          16,384
│    │    │    │    │    │    └─BatchNorm2d: 7-26       [1, 128, 40, 40]          256
│    │    │    │    │    │    └─ReLU: 7-27              [1, 128, 40, 40]          --
│    │    │    │    │    └─ConvModule: 6-10             [1, 128, 40, 40]          --
│    │    │    │    │    │    └─Conv2d: 7-28            [1, 128, 40, 40]          147,456
│    │    │    │    │    │    └─BatchNorm2d: 7-29       [1, 128, 40, 40]          256
│    │    │    │    │    │    └─ReLU: 7-30              [1, 128, 40, 40]          --
│    │    │    │    └─DarknetBottleneck: 5-30           [1, 128, 40, 40]          --
│    │    │    │    │    └─ConvModule: 6-11             [1, 128, 40, 40]          --
│    │    │    │    │    │    └─Conv2d: 7-31            [1, 128, 40, 40]          16,384
│    │    │    │    │    │    └─BatchNorm2d: 7-32       [1, 128, 40, 40]          256
│    │    │    │    │    │    └─ReLU: 7-33              [1, 128, 40, 40]          --
│    │    │    │    │    └─ConvModule: 6-12             [1, 128, 40, 40]          --
│    │    │    │    │    │    └─Conv2d: 7-34            [1, 128, 40, 40]          147,456
│    │    │    │    │    │    └─BatchNorm2d: 7-35       [1, 128, 40, 40]          256
│    │    │    │    │    │    └─ReLU: 7-36              [1, 128, 40, 40]          --
│    │    │    │    └─DarknetBottleneck: 5-31           [1, 128, 40, 40]          --
│    │    │    │    │    └─ConvModule: 6-13             [1, 128, 40, 40]          --
│    │    │    │    │    │    └─Conv2d: 7-37            [1, 128, 40, 40]          16,384
│    │    │    │    │    │    └─BatchNorm2d: 7-38       [1, 128, 40, 40]          256
│    │    │    │    │    │    └─ReLU: 7-39              [1, 128, 40, 40]          --
│    │    │    │    │    └─ConvModule: 6-14             [1, 128, 40, 40]          --
│    │    │    │    │    │    └─Conv2d: 7-40            [1, 128, 40, 40]          147,456
│    │    │    │    │    │    └─BatchNorm2d: 7-41       [1, 128, 40, 40]          256
│    │    │    │    │    │    └─ReLU: 7-42              [1, 128, 40, 40]          --
│    │    │    └─ConvModule: 4-26                       [1, 256, 40, 40]          --
│    │    │    │    └─Conv2d: 5-32                      [1, 256, 40, 40]          65,536
│    │    │    │    └─BatchNorm2d: 5-33                 [1, 256, 40, 40]          512
│    │    │    │    └─ReLU: 5-34                        [1, 256, 40, 40]          --
│    └─Sequential: 2-5                                  [1, 512, 20, 20]          --
│    │    └─ConvModule: 3-9                             [1, 512, 20, 20]          --
│    │    │    └─Conv2d: 4-27                           [1, 512, 20, 20]          1,179,648
│    │    │    └─BatchNorm2d: 4-28                      [1, 512, 20, 20]          1,024
│    │    │    └─ReLU: 4-29                             [1, 512, 20, 20]          --
│    │    └─SPPBottleneck: 3-10                         [1, 512, 20, 20]          --
│    │    │    └─ConvModule: 4-30                       [1, 256, 20, 20]          --
│    │    │    │    └─Conv2d: 5-35                      [1, 256, 20, 20]          131,072
│    │    │    │    └─BatchNorm2d: 5-36                 [1, 256, 20, 20]          512
│    │    │    │    └─ReLU: 5-37                        [1, 256, 20, 20]          --
│    │    │    └─ModuleList: 4-31                       --                        --
│    │    │    │    └─SequentialMaxPool2d: 5-38         [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-15              [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-16              [1, 256, 20, 20]          --
│    │    │    │    └─SequentialMaxPool2d: 5-39         [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-17              [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-18              [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-19              [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-20              [1, 256, 20, 20]          --
│    │    │    │    └─SequentialMaxPool2d: 5-40         [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-21              [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-22              [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-23              [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-24              [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-25              [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-26              [1, 256, 20, 20]          --
│    │    │    └─ConvModule: 4-32                       [1, 512, 20, 20]          --
│    │    │    │    └─Conv2d: 5-41                      [1, 512, 20, 20]          524,288
│    │    │    │    └─BatchNorm2d: 5-42                 [1, 512, 20, 20]          1,024
│    │    │    │    └─ReLU: 5-43                        [1, 512, 20, 20]          --
│    │    └─CSPLayer: 3-11                              [1, 512, 20, 20]          --
│    │    │    └─ConvModule: 4-33                       [1, 256, 20, 20]          --
│    │    │    │    └─Conv2d: 5-44                      [1, 256, 20, 20]          131,072
│    │    │    │    └─BatchNorm2d: 5-45                 [1, 256, 20, 20]          512
│    │    │    │    └─ReLU: 5-46                        [1, 256, 20, 20]          --
│    │    │    └─ConvModule: 4-34                       [1, 256, 20, 20]          --
│    │    │    │    └─Conv2d: 5-47                      [1, 256, 20, 20]          131,072
│    │    │    │    └─BatchNorm2d: 5-48                 [1, 256, 20, 20]          512
│    │    │    │    └─ReLU: 5-49                        [1, 256, 20, 20]          --
│    │    │    └─Sequential: 4-35                       [1, 256, 20, 20]          --
│    │    │    │    └─DarknetBottleneck: 5-50           [1, 256, 20, 20]          --
│    │    │    │    │    └─ConvModule: 6-27             [1, 256, 20, 20]          --
│    │    │    │    │    │    └─Conv2d: 7-43            [1, 256, 20, 20]          65,536
│    │    │    │    │    │    └─BatchNorm2d: 7-44       [1, 256, 20, 20]          512
│    │    │    │    │    │    └─ReLU: 7-45              [1, 256, 20, 20]          --
│    │    │    │    │    └─ConvModule: 6-28             [1, 256, 20, 20]          --
│    │    │    │    │    │    └─Conv2d: 7-46            [1, 256, 20, 20]          589,824
│    │    │    │    │    │    └─BatchNorm2d: 7-47       [1, 256, 20, 20]          512
│    │    │    │    │    │    └─ReLU: 7-48              [1, 256, 20, 20]          --
│    │    │    └─ConvModule: 4-36                       [1, 512, 20, 20]          --
│    │    │    │    └─Conv2d: 5-51                      [1, 512, 20, 20]          262,144
│    │    │    │    └─BatchNorm2d: 5-52                 [1, 512, 20, 20]          1,024
│    │    │    │    └─ReLU: 5-53                        [1, 512, 20, 20]          --
├─YOLOXPAFPN: 1-2                                       [1, 128, 80, 80]          --
│    └─ModuleList: 2-9                                  --                        (recursive)
│    │    └─ConvModule: 3-12                            [1, 256, 20, 20]          --
│    │    │    └─Conv2d: 4-37                           [1, 256, 20, 20]          131,072
│    │    │    └─BatchNorm2d: 4-38                      [1, 256, 20, 20]          512
│    │    │    └─ReLU: 4-39                             [1, 256, 20, 20]          --
│    └─Upsample: 2-7                                    [1, 256, 40, 40]          --
│    └─ModuleList: 2-11                                 --                        (recursive)
│    │    └─CSPLayer: 3-13                              [1, 256, 40, 40]          --
│    │    │    └─ConvModule: 4-40                       [1, 128, 40, 40]          --
│    │    │    │    └─Conv2d: 5-54                      [1, 128, 40, 40]          65,536
│    │    │    │    └─BatchNorm2d: 5-55                 [1, 128, 40, 40]          256
│    │    │    │    └─ReLU: 5-56                        [1, 128, 40, 40]          --
│    │    │    └─ConvModule: 4-41                       [1, 128, 40, 40]          --
│    │    │    │    └─Conv2d: 5-57                      [1, 128, 40, 40]          65,536
│    │    │    │    └─BatchNorm2d: 5-58                 [1, 128, 40, 40]          256
│    │    │    │    └─ReLU: 5-59                        [1, 128, 40, 40]          --
│    │    │    └─Sequential: 4-42                       [1, 128, 40, 40]          --
│    │    │    │    └─DarknetBottleneck: 5-60           [1, 128, 40, 40]          --
│    │    │    │    │    └─ConvModule: 6-29             [1, 128, 40, 40]          --
│    │    │    │    │    │    └─Conv2d: 7-49            [1, 128, 40, 40]          16,384
│    │    │    │    │    │    └─BatchNorm2d: 7-50       [1, 128, 40, 40]          256
│    │    │    │    │    │    └─ReLU: 7-51              [1, 128, 40, 40]          --
│    │    │    │    │    └─ConvModule: 6-30             [1, 128, 40, 40]          --
│    │    │    │    │    │    └─Conv2d: 7-52            [1, 128, 40, 40]          147,456
│    │    │    │    │    │    └─BatchNorm2d: 7-53       [1, 128, 40, 40]          256
│    │    │    │    │    │    └─ReLU: 7-54              [1, 128, 40, 40]          --
│    │    │    └─ConvModule: 4-43                       [1, 256, 40, 40]          --
│    │    │    │    └─Conv2d: 5-61                      [1, 256, 40, 40]          65,536
│    │    │    │    └─BatchNorm2d: 5-62                 [1, 256, 40, 40]          512
│    │    │    │    └─ReLU: 5-63                        [1, 256, 40, 40]          --
│    └─ModuleList: 2-9                                  --                        (recursive)
│    │    └─ConvModule: 3-14                            [1, 128, 40, 40]          --
│    │    │    └─Conv2d: 4-44                           [1, 128, 40, 40]          32,768
│    │    │    └─BatchNorm2d: 4-45                      [1, 128, 40, 40]          256
│    │    │    └─ReLU: 4-46                             [1, 128, 40, 40]          --
│    └─Upsample: 2-10                                   [1, 128, 80, 80]          --
│    └─ModuleList: 2-11                                 --                        (recursive)
│    │    └─CSPLayer: 3-15                              [1, 128, 80, 80]          --
│    │    │    └─ConvModule: 4-47                       [1, 64, 80, 80]           --
│    │    │    │    └─Conv2d: 5-64                      [1, 64, 80, 80]           16,384
│    │    │    │    └─BatchNorm2d: 5-65                 [1, 64, 80, 80]           128
│    │    │    │    └─ReLU: 5-66                        [1, 64, 80, 80]           --
│    │    │    └─ConvModule: 4-48                       [1, 64, 80, 80]           --
│    │    │    │    └─Conv2d: 5-67                      [1, 64, 80, 80]           16,384
│    │    │    │    └─BatchNorm2d: 5-68                 [1, 64, 80, 80]           128
│    │    │    │    └─ReLU: 5-69                        [1, 64, 80, 80]           --
│    │    │    └─Sequential: 4-49                       [1, 64, 80, 80]           --
│    │    │    │    └─DarknetBottleneck: 5-70           [1, 64, 80, 80]           --
│    │    │    │    │    └─ConvModule: 6-31             [1, 64, 80, 80]           --
│    │    │    │    │    │    └─Conv2d: 7-55            [1, 64, 80, 80]           4,096
│    │    │    │    │    │    └─BatchNorm2d: 7-56       [1, 64, 80, 80]           128
│    │    │    │    │    │    └─ReLU: 7-57              [1, 64, 80, 80]           --
│    │    │    │    │    └─ConvModule: 6-32             [1, 64, 80, 80]           --
│    │    │    │    │    │    └─Conv2d: 7-58            [1, 64, 80, 80]           36,864
│    │    │    │    │    │    └─BatchNorm2d: 7-59       [1, 64, 80, 80]           128
│    │    │    │    │    │    └─ReLU: 7-60              [1, 64, 80, 80]           --
│    │    │    └─ConvModule: 4-50                       [1, 128, 80, 80]          --
│    │    │    │    └─Conv2d: 5-71                      [1, 128, 80, 80]          16,384
│    │    │    │    └─BatchNorm2d: 5-72                 [1, 128, 80, 80]          256
│    │    │    │    └─ReLU: 5-73                        [1, 128, 80, 80]          --
│    └─ModuleList: 2-14                                 --                        (recursive)
│    │    └─ConvModule: 3-16                            [1, 128, 40, 40]          --
│    │    │    └─Conv2d: 4-51                           [1, 128, 40, 40]          147,456
│    │    │    └─BatchNorm2d: 4-52                      [1, 128, 40, 40]          256
│    │    │    └─ReLU: 4-53                             [1, 128, 40, 40]          --
│    └─ModuleList: 2-15                                 --                        (recursive)
│    │    └─CSPLayer: 3-17                              [1, 256, 40, 40]          --
│    │    │    └─ConvModule: 4-54                       [1, 128, 40, 40]          --
│    │    │    │    └─Conv2d: 5-74                      [1, 128, 40, 40]          32,768
│    │    │    │    └─BatchNorm2d: 5-75                 [1, 128, 40, 40]          256
│    │    │    │    └─ReLU: 5-76                        [1, 128, 40, 40]          --
│    │    │    └─ConvModule: 4-55                       [1, 128, 40, 40]          --
│    │    │    │    └─Conv2d: 5-77                      [1, 128, 40, 40]          32,768
│    │    │    │    └─BatchNorm2d: 5-78                 [1, 128, 40, 40]          256
│    │    │    │    └─ReLU: 5-79                        [1, 128, 40, 40]          --
│    │    │    └─Sequential: 4-56                       [1, 128, 40, 40]          --
│    │    │    │    └─DarknetBottleneck: 5-80           [1, 128, 40, 40]          --
│    │    │    │    │    └─ConvModule: 6-33             [1, 128, 40, 40]          --
│    │    │    │    │    │    └─Conv2d: 7-61            [1, 128, 40, 40]          16,384
│    │    │    │    │    │    └─BatchNorm2d: 7-62       [1, 128, 40, 40]          256
│    │    │    │    │    │    └─ReLU: 7-63              [1, 128, 40, 40]          --
│    │    │    │    │    └─ConvModule: 6-34             [1, 128, 40, 40]          --
│    │    │    │    │    │    └─Conv2d: 7-64            [1, 128, 40, 40]          147,456
│    │    │    │    │    │    └─BatchNorm2d: 7-65       [1, 128, 40, 40]          256
│    │    │    │    │    │    └─ReLU: 7-66              [1, 128, 40, 40]          --
│    │    │    └─ConvModule: 4-57                       [1, 256, 40, 40]          --
│    │    │    │    └─Conv2d: 5-81                      [1, 256, 40, 40]          65,536
│    │    │    │    └─BatchNorm2d: 5-82                 [1, 256, 40, 40]          512
│    │    │    │    └─ReLU: 5-83                        [1, 256, 40, 40]          --
│    └─ModuleList: 2-14                                 --                        (recursive)
│    │    └─ConvModule: 3-18                            [1, 256, 20, 20]          --
│    │    │    └─Conv2d: 4-58                           [1, 256, 20, 20]          589,824
│    │    │    └─BatchNorm2d: 4-59                      [1, 256, 20, 20]          512
│    │    │    └─ReLU: 4-60                             [1, 256, 20, 20]          --
│    └─ModuleList: 2-15                                 --                        (recursive)
│    │    └─CSPLayer: 3-19                              [1, 512, 20, 20]          --
│    │    │    └─ConvModule: 4-61                       [1, 256, 20, 20]          --
│    │    │    │    └─Conv2d: 5-84                      [1, 256, 20, 20]          131,072
│    │    │    │    └─BatchNorm2d: 5-85                 [1, 256, 20, 20]          512
│    │    │    │    └─ReLU: 5-86                        [1, 256, 20, 20]          --
│    │    │    └─ConvModule: 4-62                       [1, 256, 20, 20]          --
│    │    │    │    └─Conv2d: 5-87                      [1, 256, 20, 20]          131,072
│    │    │    │    └─BatchNorm2d: 5-88                 [1, 256, 20, 20]          512
│    │    │    │    └─ReLU: 5-89                        [1, 256, 20, 20]          --
│    │    │    └─Sequential: 4-63                       [1, 256, 20, 20]          --
│    │    │    │    └─DarknetBottleneck: 5-90           [1, 256, 20, 20]          --
│    │    │    │    │    └─ConvModule: 6-35             [1, 256, 20, 20]          --
│    │    │    │    │    │    └─Conv2d: 7-67            [1, 256, 20, 20]          65,536
│    │    │    │    │    │    └─BatchNorm2d: 7-68       [1, 256, 20, 20]          512
│    │    │    │    │    │    └─ReLU: 7-69              [1, 256, 20, 20]          --
│    │    │    │    │    └─ConvModule: 6-36             [1, 256, 20, 20]          --
│    │    │    │    │    │    └─Conv2d: 7-70            [1, 256, 20, 20]          589,824
│    │    │    │    │    │    └─BatchNorm2d: 7-71       [1, 256, 20, 20]          512
│    │    │    │    │    │    └─ReLU: 7-72              [1, 256, 20, 20]          --
│    │    │    └─ConvModule: 4-64                       [1, 512, 20, 20]          --
│    │    │    │    └─Conv2d: 5-91                      [1, 512, 20, 20]          262,144
│    │    │    │    └─BatchNorm2d: 5-92                 [1, 512, 20, 20]          1,024
│    │    │    │    └─ReLU: 5-93                        [1, 512, 20, 20]          --
│    └─ModuleList: 2-16                                 --                        --
│    │    └─ConvModule: 3-20                            [1, 128, 80, 80]          --
│    │    │    └─Conv2d: 4-65                           [1, 128, 80, 80]          16,384
│    │    │    └─BatchNorm2d: 4-66                      [1, 128, 80, 80]          256
│    │    │    └─ReLU: 4-67                             [1, 128, 80, 80]          --
│    │    └─ConvModule: 3-21                            [1, 128, 40, 40]          --
│    │    │    └─Conv2d: 4-68                           [1, 128, 40, 40]          32,768
│    │    │    └─BatchNorm2d: 4-69                      [1, 128, 40, 40]          256
│    │    │    └─ReLU: 4-70                             [1, 128, 40, 40]          --
│    │    └─ConvModule: 3-22                            [1, 128, 20, 20]          --
│    │    │    └─Conv2d: 4-71                           [1, 128, 20, 20]          65,536
│    │    │    └─BatchNorm2d: 4-72                      [1, 128, 20, 20]          256
│    │    │    └─ReLU: 4-73                             [1, 128, 20, 20]          --
├─YOLOXHead: 1-3                                        [1, 5, 80, 80]            --
│    └─ModuleList: 2-27                                 --                        (recursive)
│    │    └─Sequential: 3-23                            [1, 128, 80, 80]          --
│    │    │    └─ConvModule: 4-74                       [1, 128, 80, 80]          --
│    │    │    │    └─Conv2d: 5-94                      [1, 128, 80, 80]          147,456
│    │    │    │    └─BatchNorm2d: 5-95                 [1, 128, 80, 80]          256
│    │    │    │    └─ReLU: 5-96                        [1, 128, 80, 80]          --
│    │    │    └─ConvModule: 4-75                       [1, 128, 80, 80]          --
│    │    │    │    └─Conv2d: 5-97                      [1, 128, 80, 80]          147,456
│    │    │    │    └─BatchNorm2d: 5-98                 [1, 128, 80, 80]          256
│    │    │    │    └─ReLU: 5-99                        [1, 128, 80, 80]          --
│    └─ModuleList: 2-28                                 --                        (recursive)
│    │    └─Sequential: 3-24                            [1, 128, 80, 80]          --
│    │    │    └─ConvModule: 4-76                       [1, 128, 80, 80]          --
│    │    │    │    └─Conv2d: 5-100                     [1, 128, 80, 80]          147,456
│    │    │    │    └─BatchNorm2d: 5-101                [1, 128, 80, 80]          256
│    │    │    │    └─ReLU: 5-102                       [1, 128, 80, 80]          --
│    │    │    └─ConvModule: 4-77                       [1, 128, 80, 80]          --
│    │    │    │    └─Conv2d: 5-103                     [1, 128, 80, 80]          147,456
│    │    │    │    └─BatchNorm2d: 5-104                [1, 128, 80, 80]          256
│    │    │    │    └─ReLU: 5-105                       [1, 128, 80, 80]          --
│    └─ModuleList: 2-29                                 --                        (recursive)
│    │    └─Conv2d: 3-25                                [1, 5, 80, 80]            645
│    └─ModuleList: 2-30                                 --                        (recursive)
│    │    └─Conv2d: 3-26                                [1, 4, 80, 80]            516
│    └─ModuleList: 2-31                                 --                        (recursive)
│    │    └─Conv2d: 3-27                                [1, 1, 80, 80]            129
│    └─ModuleList: 2-27                                 --                        (recursive)
│    │    └─Sequential: 3-28                            [1, 128, 40, 40]          --
│    │    │    └─ConvModule: 4-78                       [1, 128, 40, 40]          --
│    │    │    │    └─Conv2d: 5-106                     [1, 128, 40, 40]          147,456
│    │    │    │    └─BatchNorm2d: 5-107                [1, 128, 40, 40]          256
│    │    │    │    └─ReLU: 5-108                       [1, 128, 40, 40]          --
│    │    │    └─ConvModule: 4-79                       [1, 128, 40, 40]          --
│    │    │    │    └─Conv2d: 5-109                     [1, 128, 40, 40]          147,456
│    │    │    │    └─BatchNorm2d: 5-110                [1, 128, 40, 40]          256
│    │    │    │    └─ReLU: 5-111                       [1, 128, 40, 40]          --
│    └─ModuleList: 2-28                                 --                        (recursive)
│    │    └─Sequential: 3-29                            [1, 128, 40, 40]          --
│    │    │    └─ConvModule: 4-80                       [1, 128, 40, 40]          --
│    │    │    │    └─Conv2d: 5-112                     [1, 128, 40, 40]          147,456
│    │    │    │    └─BatchNorm2d: 5-113                [1, 128, 40, 40]          256
│    │    │    │    └─ReLU: 5-114                       [1, 128, 40, 40]          --
│    │    │    └─ConvModule: 4-81                       [1, 128, 40, 40]          --
│    │    │    │    └─Conv2d: 5-115                     [1, 128, 40, 40]          147,456
│    │    │    │    └─BatchNorm2d: 5-116                [1, 128, 40, 40]          256
│    │    │    │    └─ReLU: 5-117                       [1, 128, 40, 40]          --
│    └─ModuleList: 2-29                                 --                        (recursive)
│    │    └─Conv2d: 3-30                                [1, 5, 40, 40]            645
│    └─ModuleList: 2-30                                 --                        (recursive)
│    │    └─Conv2d: 3-31                                [1, 4, 40, 40]            516
│    └─ModuleList: 2-31                                 --                        (recursive)
│    │    └─Conv2d: 3-32                                [1, 1, 40, 40]            129
│    └─ModuleList: 2-27                                 --                        (recursive)
│    │    └─Sequential: 3-33                            [1, 128, 20, 20]          --
│    │    │    └─ConvModule: 4-82                       [1, 128, 20, 20]          --
│    │    │    │    └─Conv2d: 5-118                     [1, 128, 20, 20]          147,456
│    │    │    │    └─BatchNorm2d: 5-119                [1, 128, 20, 20]          256
│    │    │    │    └─ReLU: 5-120                       [1, 128, 20, 20]          --
│    │    │    └─ConvModule: 4-83                       [1, 128, 20, 20]          --
│    │    │    │    └─Conv2d: 5-121                     [1, 128, 20, 20]          147,456
│    │    │    │    └─BatchNorm2d: 5-122                [1, 128, 20, 20]          256
│    │    │    │    └─ReLU: 5-123                       [1, 128, 20, 20]          --
│    └─ModuleList: 2-28                                 --                        (recursive)
│    │    └─Sequential: 3-34                            [1, 128, 20, 20]          --
│    │    │    └─ConvModule: 4-84                       [1, 128, 20, 20]          --
│    │    │    │    └─Conv2d: 5-124                     [1, 128, 20, 20]          147,456
│    │    │    │    └─BatchNorm2d: 5-125                [1, 128, 20, 20]          256
│    │    │    │    └─ReLU: 5-126                       [1, 128, 20, 20]          --
│    │    │    └─ConvModule: 4-85                       [1, 128, 20, 20]          --
│    │    │    │    └─Conv2d: 5-127                     [1, 128, 20, 20]          147,456
│    │    │    │    └─BatchNorm2d: 5-128                [1, 128, 20, 20]          256
│    │    │    │    └─ReLU: 5-129                       [1, 128, 20, 20]          --
│    └─ModuleList: 2-29                                 --                        (recursive)
│    │    └─Conv2d: 3-35                                [1, 5, 20, 20]            645
│    └─ModuleList: 2-30                                 --                        (recursive)
│    │    └─Conv2d: 3-36                                [1, 4, 20, 20]            516
│    └─ModuleList: 2-31                                 --                        (recursive)
│    │    └─Conv2d: 3-37                                [1, 1, 20, 20]            129
=========================================================================================================
Total params: 8,939,578
Trainable params: 8,939,578
Non-trainable params: 0
Total mult-adds (G): 13.30
=========================================================================================================
Input size (MB): 4.92
Forward/backward pass size (MB): 497.93
Params size (MB): 35.76
Estimated Total Size (MB): 538.60
=========================================================================================================
2024-11-25 16:21:53,415 - mmdet - INFO - 

2024-11-25 16:21:53,445 - mmdet - INFO - load checkpoint from local path: ./data/downloads/pretrained/yolox_s_lite/yolox_s_lite_640x640_20220221_checkpoint.pth
2024-11-25 16:21:56,097 - mmdet - WARNING - The model and loaded state dict do not match exactly

size mismatch for bbox_head.multi_level_conv_cls.0.weight: copying a param with shape torch.Size([80, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([5, 128, 1, 1]).
size mismatch for bbox_head.multi_level_conv_cls.0.bias: copying a param with shape torch.Size([80]) from checkpoint, the shape in current model is torch.Size([5]).
size mismatch for bbox_head.multi_level_conv_cls.1.weight: copying a param with shape torch.Size([80, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([5, 128, 1, 1]).
size mismatch for bbox_head.multi_level_conv_cls.1.bias: copying a param with shape torch.Size([80]) from checkpoint, the shape in current model is torch.Size([5]).
size mismatch for bbox_head.multi_level_conv_cls.2.weight: copying a param with shape torch.Size([80, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([5, 128, 1, 1]).
size mismatch for bbox_head.multi_level_conv_cls.2.bias: copying a param with shape torch.Size([80]) from checkpoint, the shape in current model is torch.Size([5]).
unexpected key in source state_dict: ema_backbone_stem_conv_in_conv_weight, ema_backbone_stem_conv_in_bn_weight, ema_backbone_stem_conv_in_bn_bias, ema_backbone_stem_conv_in_bn_running_mean, ema_backbone_stem_conv_in_bn_running_var, ema_backbone_stem_conv_in_bn_num_batches_tracked, ema_backbone_stem_conv_conv_weight, ema_backbone_stem_conv_bn_weight, ema_backbone_stem_conv_bn_bias, ema_backbone_stem_conv_bn_running_mean, ema_backbone_stem_conv_bn_running_var, ema_backbone_stem_conv_bn_num_batches_tracked, ema_backbone_stage1_0_conv_weight, ema_backbone_stage1_0_bn_weight, ema_backbone_stage1_0_bn_bias, ema_backbone_stage1_0_bn_running_mean, ema_backbone_stage1_0_bn_running_var, ema_backbone_stage1_0_bn_num_batches_tracked, ema_backbone_stage1_1_main_conv_conv_weight, ema_backbone_stage1_1_main_conv_bn_weight, ema_backbone_stage1_1_main_conv_bn_bias, ema_backbone_stage1_1_main_conv_bn_running_mean, ema_backbone_stage1_1_main_conv_bn_running_var, ema_backbone_stage1_1_main_conv_bn_num_batches_tracked, ema_backbone_stage1_1_short_conv_conv_weight, ema_backbone_stage1_1_short_conv_bn_weight, ema_backbone_stage1_1_short_conv_bn_bias, ema_backbone_stage1_1_short_conv_bn_running_mean, ema_backbone_stage1_1_short_conv_bn_running_var, ema_backbone_stage1_1_short_conv_bn_num_batches_tracked, ema_backbone_stage1_1_final_conv_conv_weight, ema_backbone_stage1_1_final_conv_bn_weight, ema_backbone_stage1_1_final_conv_bn_bias, ema_backbone_stage1_1_final_conv_bn_running_mean, ema_backbone_stage1_1_final_conv_bn_running_var, ema_backbone_stage1_1_final_conv_bn_num_batches_tracked, ema_backbone_stage1_1_blocks_0_conv1_conv_weight, ema_backbone_stage1_1_blocks_0_conv1_bn_weight, ema_backbone_stage1_1_blocks_0_conv1_bn_bias, ema_backbone_stage1_1_blocks_0_conv1_bn_running_mean, ema_backbone_stage1_1_blocks_0_conv1_bn_running_var, ema_backbone_stage1_1_blocks_0_conv1_bn_num_batches_tracked, ema_backbone_stage1_1_blocks_0_conv2_conv_weight, ema_backbone_stage1_1_blocks_0_conv2_bn_weight, ema_backbone_stage1_1_blocks_0_conv2_bn_bias, ema_backbone_stage1_1_blocks_0_conv2_bn_running_mean, ema_backbone_stage1_1_blocks_0_conv2_bn_running_var, ema_backbone_stage1_1_blocks_0_conv2_bn_num_batches_tracked, ema_backbone_stage2_0_conv_weight, ema_backbone_stage2_0_bn_weight, ema_backbone_stage2_0_bn_bias, ema_backbone_stage2_0_bn_running_mean, ema_backbone_stage2_0_bn_running_var, ema_backbone_stage2_0_bn_num_batches_tracked, ema_backbone_stage2_1_main_conv_conv_weight, ema_backbone_stage2_1_main_conv_bn_weight, ema_backbone_stage2_1_main_conv_bn_bias, ema_backbone_stage2_1_main_conv_bn_running_mean, ema_backbone_stage2_1_main_conv_bn_running_var, ema_backbone_stage2_1_main_conv_bn_num_batches_tracked, ema_backbone_stage2_1_short_conv_conv_weight, ema_backbone_stage2_1_short_conv_bn_weight, ema_backbone_stage2_1_short_conv_bn_bias, ema_backbone_stage2_1_short_conv_bn_running_mean, ema_backbone_stage2_1_short_conv_bn_running_var, ema_backbone_stage2_1_short_conv_bn_num_batches_tracked, ema_backbone_stage2_1_final_conv_conv_weight, ema_backbone_stage2_1_final_conv_bn_weight, ema_backbone_stage2_1_final_conv_bn_bias, ema_backbone_stage2_1_final_conv_bn_running_mean, ema_backbone_stage2_1_final_conv_bn_running_var, ema_backbone_stage2_1_final_conv_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_0_conv1_conv_weight, ema_backbone_stage2_1_blocks_0_conv1_bn_weight, ema_backbone_stage2_1_blocks_0_conv1_bn_bias, ema_backbone_stage2_1_blocks_0_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_0_conv1_bn_running_var, ema_backbone_stage2_1_blocks_0_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_0_conv2_conv_weight, ema_backbone_stage2_1_blocks_0_conv2_bn_weight, ema_backbone_stage2_1_blocks_0_conv2_bn_bias, ema_backbone_stage2_1_blocks_0_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_0_conv2_bn_running_var, ema_backbone_stage2_1_blocks_0_conv2_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_1_conv1_conv_weight, ema_backbone_stage2_1_blocks_1_conv1_bn_weight, ema_backbone_stage2_1_blocks_1_conv1_bn_bias, ema_backbone_stage2_1_blocks_1_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_1_conv1_bn_running_var, ema_backbone_stage2_1_blocks_1_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_1_conv2_conv_weight, ema_backbone_stage2_1_blocks_1_conv2_bn_weight, ema_backbone_stage2_1_blocks_1_conv2_bn_bias, ema_backbone_stage2_1_blocks_1_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_1_conv2_bn_running_var, ema_backbone_stage2_1_blocks_1_conv2_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_2_conv1_conv_weight, ema_backbone_stage2_1_blocks_2_conv1_bn_weight, ema_backbone_stage2_1_blocks_2_conv1_bn_bias, ema_backbone_stage2_1_blocks_2_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_2_conv1_bn_running_var, ema_backbone_stage2_1_blocks_2_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_2_conv2_conv_weight, ema_backbone_stage2_1_blocks_2_conv2_bn_weight, ema_backbone_stage2_1_blocks_2_conv2_bn_bias, ema_backbone_stage2_1_blocks_2_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_2_conv2_bn_running_var, ema_backbone_stage2_1_blocks_2_conv2_bn_num_batches_tracked, ema_backbone_stage3_0_conv_weight, ema_backbone_stage3_0_bn_weight, ema_backbone_stage3_0_bn_bias, ema_backbone_stage3_0_bn_running_mean, ema_backbone_stage3_0_bn_running_var, ema_backbone_stage3_0_bn_num_batches_tracked, ema_backbone_stage3_1_main_conv_conv_weight, ema_backbone_stage3_1_main_conv_bn_weight, ema_backbone_stage3_1_main_conv_bn_bias, ema_backbone_stage3_1_main_conv_bn_running_mean, ema_backbone_stage3_1_main_conv_bn_running_var, ema_backbone_stage3_1_main_conv_bn_num_batches_tracked, ema_backbone_stage3_1_short_conv_conv_weight, ema_backbone_stage3_1_short_conv_bn_weight, ema_backbone_stage3_1_short_conv_bn_bias, ema_backbone_stage3_1_short_conv_bn_running_mean, ema_backbone_stage3_1_short_conv_bn_running_var, ema_backbone_stage3_1_short_conv_bn_num_batches_tracked, ema_backbone_stage3_1_final_conv_conv_weight, ema_backbone_stage3_1_final_conv_bn_weight, ema_backbone_stage3_1_final_conv_bn_bias, ema_backbone_stage3_1_final_conv_bn_running_mean, ema_backbone_stage3_1_final_conv_bn_running_var, ema_backbone_stage3_1_final_conv_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_0_conv1_conv_weight, ema_backbone_stage3_1_blocks_0_conv1_bn_weight, ema_backbone_stage3_1_blocks_0_conv1_bn_bias, ema_backbone_stage3_1_blocks_0_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_0_conv1_bn_running_var, ema_backbone_stage3_1_blocks_0_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_0_conv2_conv_weight, ema_backbone_stage3_1_blocks_0_conv2_bn_weight, ema_backbone_stage3_1_blocks_0_conv2_bn_bias, ema_backbone_stage3_1_blocks_0_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_0_conv2_bn_running_var, ema_backbone_stage3_1_blocks_0_conv2_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_1_conv1_conv_weight, ema_backbone_stage3_1_blocks_1_conv1_bn_weight, ema_backbone_stage3_1_blocks_1_conv1_bn_bias, ema_backbone_stage3_1_blocks_1_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_1_conv1_bn_running_var, ema_backbone_stage3_1_blocks_1_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_1_conv2_conv_weight, ema_backbone_stage3_1_blocks_1_conv2_bn_weight, ema_backbone_stage3_1_blocks_1_conv2_bn_bias, ema_backbone_stage3_1_blocks_1_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_1_conv2_bn_running_var, ema_backbone_stage3_1_blocks_1_conv2_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_2_conv1_conv_weight, ema_backbone_stage3_1_blocks_2_conv1_bn_weight, ema_backbone_stage3_1_blocks_2_conv1_bn_bias, ema_backbone_stage3_1_blocks_2_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_2_conv1_bn_running_var, ema_backbone_stage3_1_blocks_2_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_2_conv2_conv_weight, ema_backbone_stage3_1_blocks_2_conv2_bn_weight, ema_backbone_stage3_1_blocks_2_conv2_bn_bias, ema_backbone_stage3_1_blocks_2_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_2_conv2_bn_running_var, ema_backbone_stage3_1_blocks_2_conv2_bn_num_batches_tracked, ema_backbone_stage4_0_conv_weight, ema_backbone_stage4_0_bn_weight, ema_backbone_stage4_0_bn_bias, ema_backbone_stage4_0_bn_running_mean, ema_backbone_stage4_0_bn_running_var, ema_backbone_stage4_0_bn_num_batches_tracked, ema_backbone_stage4_1_conv1_conv_weight, ema_backbone_stage4_1_conv1_bn_weight, ema_backbone_stage4_1_conv1_bn_bias, ema_backbone_stage4_1_conv1_bn_running_mean, ema_backbone_stage4_1_conv1_bn_running_var, ema_backbone_stage4_1_conv1_bn_num_batches_tracked, ema_backbone_stage4_1_conv2_conv_weight, ema_backbone_stage4_1_conv2_bn_weight, ema_backbone_stage4_1_conv2_bn_bias, ema_backbone_stage4_1_conv2_bn_running_mean, ema_backbone_stage4_1_conv2_bn_running_var, ema_backbone_stage4_1_conv2_bn_num_batches_tracked, ema_backbone_stage4_2_main_conv_conv_weight, ema_backbone_stage4_2_main_conv_bn_weight, ema_backbone_stage4_2_main_conv_bn_bias, ema_backbone_stage4_2_main_conv_bn_running_mean, ema_backbone_stage4_2_main_conv_bn_running_var, ema_backbone_stage4_2_main_conv_bn_num_batches_tracked, ema_backbone_stage4_2_short_conv_conv_weight, ema_backbone_stage4_2_short_conv_bn_weight, ema_backbone_stage4_2_short_conv_bn_bias, ema_backbone_stage4_2_short_conv_bn_running_mean, ema_backbone_stage4_2_short_conv_bn_running_var, ema_backbone_stage4_2_short_conv_bn_num_batches_tracked, ema_backbone_stage4_2_final_conv_conv_weight, ema_backbone_stage4_2_final_conv_bn_weight, ema_backbone_stage4_2_final_conv_bn_bias, ema_backbone_stage4_2_final_conv_bn_running_mean, ema_backbone_stage4_2_final_conv_bn_running_var, ema_backbone_stage4_2_final_conv_bn_num_batches_tracked, ema_backbone_stage4_2_blocks_0_conv1_conv_weight, ema_backbone_stage4_2_blocks_0_conv1_bn_weight, ema_backbone_stage4_2_blocks_0_conv1_bn_bias, ema_backbone_stage4_2_blocks_0_conv1_bn_running_mean, ema_backbone_stage4_2_blocks_0_conv1_bn_running_var, ema_backbone_stage4_2_blocks_0_conv1_bn_num_batches_tracked, ema_backbone_stage4_2_blocks_0_conv2_conv_weight, ema_backbone_stage4_2_blocks_0_conv2_bn_weight, ema_backbone_stage4_2_blocks_0_conv2_bn_bias, ema_backbone_stage4_2_blocks_0_conv2_bn_running_mean, ema_backbone_stage4_2_blocks_0_conv2_bn_running_var, ema_backbone_stage4_2_blocks_0_conv2_bn_num_batches_tracked, ema_neck_reduce_layers_0_conv_weight, ema_neck_reduce_layers_0_bn_weight, ema_neck_reduce_layers_0_bn_bias, ema_neck_reduce_layers_0_bn_running_mean, ema_neck_reduce_layers_0_bn_running_var, ema_neck_reduce_layers_0_bn_num_batches_tracked, ema_neck_reduce_layers_1_conv_weight, ema_neck_reduce_layers_1_bn_weight, ema_neck_reduce_layers_1_bn_bias, ema_neck_reduce_layers_1_bn_running_mean, ema_neck_reduce_layers_1_bn_running_var, ema_neck_reduce_layers_1_bn_num_batches_tracked, ema_neck_top_down_blocks_0_main_conv_conv_weight, ema_neck_top_down_blocks_0_main_conv_bn_weight, ema_neck_top_down_blocks_0_main_conv_bn_bias, ema_neck_top_down_blocks_0_main_conv_bn_running_mean, ema_neck_top_down_blocks_0_main_conv_bn_running_var, ema_neck_top_down_blocks_0_main_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_0_short_conv_conv_weight, ema_neck_top_down_blocks_0_short_conv_bn_weight, ema_neck_top_down_blocks_0_short_conv_bn_bias, ema_neck_top_down_blocks_0_short_conv_bn_running_mean, ema_neck_top_down_blocks_0_short_conv_bn_running_var, ema_neck_top_down_blocks_0_short_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_0_final_conv_conv_weight, ema_neck_top_down_blocks_0_final_conv_bn_weight, ema_neck_top_down_blocks_0_final_conv_bn_bias, ema_neck_top_down_blocks_0_final_conv_bn_running_mean, ema_neck_top_down_blocks_0_final_conv_bn_running_var, ema_neck_top_down_blocks_0_final_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_0_blocks_0_conv1_conv_weight, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_weight, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_bias, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_running_mean, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_running_var, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_num_batches_tracked, ema_neck_top_down_blocks_0_blocks_0_conv2_conv_weight, ema_neck_top_down_blocks_0_blocks_0_conv2_bn_weight, ema_neck_top_down_blocks_0_blocks_0_conv2_bn_bias, ema_neck_top_down_blocks_0_blocks_0_conv2_bn_running_mean, ema_neck_top_down_blocks_0_blocks_0_conv2_bn_running_var, ema_neck_top_down_blocks_0_blocks_0_conv2_bn_num_batches_tracked, ema_neck_top_down_blocks_1_main_conv_conv_weight, ema_neck_top_down_blocks_1_main_conv_bn_weight, ema_neck_top_down_blocks_1_main_conv_bn_bias, ema_neck_top_down_blocks_1_main_conv_bn_running_mean, ema_neck_top_down_blocks_1_main_conv_bn_running_var, ema_neck_top_down_blocks_1_main_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_1_short_conv_conv_weight, ema_neck_top_down_blocks_1_short_conv_bn_weight, ema_neck_top_down_blocks_1_short_conv_bn_bias, ema_neck_top_down_blocks_1_short_conv_bn_running_mean, ema_neck_top_down_blocks_1_short_conv_bn_running_var, ema_neck_top_down_blocks_1_short_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_1_final_conv_conv_weight, ema_neck_top_down_blocks_1_final_conv_bn_weight, ema_neck_top_down_blocks_1_final_conv_bn_bias, ema_neck_top_down_blocks_1_final_conv_bn_running_mean, ema_neck_top_down_blocks_1_final_conv_bn_running_var, ema_neck_top_down_blocks_1_final_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_1_blocks_0_conv1_conv_weight, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_weight, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_bias, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_running_mean, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_running_var, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_num_batches_tracked, ema_neck_top_down_blocks_1_blocks_0_conv2_conv_weight, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_weight, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_bias, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_running_mean, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_running_var, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_num_batches_tracked, ema_neck_downsamples_0_conv_weight, ema_neck_downsamples_0_bn_weight, ema_neck_downsamples_0_bn_bias, ema_neck_downsamples_0_bn_running_mean, ema_neck_downsamples_0_bn_running_var, ema_neck_downsamples_0_bn_num_batches_tracked, ema_neck_downsamples_1_conv_weight, ema_neck_downsamples_1_bn_weight, ema_neck_downsamples_1_bn_bias, ema_neck_downsamples_1_bn_running_mean, ema_neck_downsamples_1_bn_running_var, ema_neck_downsamples_1_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_main_conv_conv_weight, ema_neck_bottom_up_blocks_0_main_conv_bn_weight, ema_neck_bottom_up_blocks_0_main_conv_bn_bias, ema_neck_bottom_up_blocks_0_main_conv_bn_running_mean, ema_neck_bottom_up_blocks_0_main_conv_bn_running_var, ema_neck_bottom_up_blocks_0_main_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_short_conv_conv_weight, ema_neck_bottom_up_blocks_0_short_conv_bn_weight, ema_neck_bottom_up_blocks_0_short_conv_bn_bias, ema_neck_bottom_up_blocks_0_short_conv_bn_running_mean, ema_neck_bottom_up_blocks_0_short_conv_bn_running_var, ema_neck_bottom_up_blocks_0_short_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_final_conv_conv_weight, ema_neck_bottom_up_blocks_0_final_conv_bn_weight, ema_neck_bottom_up_blocks_0_final_conv_bn_bias, ema_neck_bottom_up_blocks_0_final_conv_bn_running_mean, ema_neck_bottom_up_blocks_0_final_conv_bn_running_var, ema_neck_bottom_up_blocks_0_final_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_blocks_0_conv1_conv_weight, ema_neck_bottom_up_blocks_0_blocks_0_conv1_bn_weight, ema_neck_bottom_up_blocks_0_blocks_0_conv1_bn_bias, ema_neck_bottom_up_blocks_0_blocks_0_conv1_bn_running_mean, ema_neck_bottom_up_blocks_0_blocks_0_conv1_bn_running_var, ema_neck_bottom_up_blocks_0_blocks_0_conv1_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_blocks_0_conv2_conv_weight, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_weight, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_bias, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_running_mean, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_running_var, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_main_conv_conv_weight, ema_neck_bottom_up_blocks_1_main_conv_bn_weight, ema_neck_bottom_up_blocks_1_main_conv_bn_bias, ema_neck_bottom_up_blocks_1_main_conv_bn_running_mean, ema_neck_bottom_up_blocks_1_main_conv_bn_running_var, ema_neck_bottom_up_blocks_1_main_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_short_conv_conv_weight, ema_neck_bottom_up_blocks_1_short_conv_bn_weight, ema_neck_bottom_up_blocks_1_short_conv_bn_bias, ema_neck_bottom_up_blocks_1_short_conv_bn_running_mean, ema_neck_bottom_up_blocks_1_short_conv_bn_running_var, ema_neck_bottom_up_blocks_1_short_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_final_conv_conv_weight, ema_neck_bottom_up_blocks_1_final_conv_bn_weight, ema_neck_bottom_up_blocks_1_final_conv_bn_bias, ema_neck_bottom_up_blocks_1_final_conv_bn_running_mean, ema_neck_bottom_up_blocks_1_final_conv_bn_running_var, ema_neck_bottom_up_blocks_1_final_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_blocks_0_conv1_conv_weight, ema_neck_bottom_up_blocks_1_blocks_0_conv1_bn_weight, ema_neck_bottom_up_blocks_1_blocks_0_conv1_bn_bias, ema_neck_bottom_up_blocks_1_blocks_0_conv1_bn_running_mean, ema_neck_bottom_up_blocks_1_blocks_0_conv1_bn_running_var, ema_neck_bottom_up_blocks_1_blocks_0_conv1_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_blocks_0_conv2_conv_weight, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_weight, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_bias, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_running_mean, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_running_var, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_num_batches_tracked, ema_neck_out_convs_0_conv_weight, ema_neck_out_convs_0_bn_weight, ema_neck_out_convs_0_bn_bias, ema_neck_out_convs_0_bn_running_mean, ema_neck_out_convs_0_bn_running_var, ema_neck_out_convs_0_bn_num_batches_tracked, ema_neck_out_convs_1_conv_weight, ema_neck_out_convs_1_bn_weight, ema_neck_out_convs_1_bn_bias, ema_neck_out_convs_1_bn_running_mean, ema_neck_out_convs_1_bn_running_var, ema_neck_out_convs_1_bn_num_batches_tracked, ema_neck_out_convs_2_conv_weight, ema_neck_out_convs_2_bn_weight, ema_neck_out_convs_2_bn_bias, ema_neck_out_convs_2_bn_running_mean, ema_neck_out_convs_2_bn_running_var, ema_neck_out_convs_2_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_0_0_conv_weight, ema_bbox_head_multi_level_cls_convs_0_0_bn_weight, ema_bbox_head_multi_level_cls_convs_0_0_bn_bias, ema_bbox_head_multi_level_cls_convs_0_0_bn_running_mean, ema_bbox_head_multi_level_cls_convs_0_0_bn_running_var, ema_bbox_head_multi_level_cls_convs_0_0_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_0_1_conv_weight, ema_bbox_head_multi_level_cls_convs_0_1_bn_weight, ema_bbox_head_multi_level_cls_convs_0_1_bn_bias, ema_bbox_head_multi_level_cls_convs_0_1_bn_running_mean, ema_bbox_head_multi_level_cls_convs_0_1_bn_running_var, ema_bbox_head_multi_level_cls_convs_0_1_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_1_0_conv_weight, ema_bbox_head_multi_level_cls_convs_1_0_bn_weight, ema_bbox_head_multi_level_cls_convs_1_0_bn_bias, ema_bbox_head_multi_level_cls_convs_1_0_bn_running_mean, ema_bbox_head_multi_level_cls_convs_1_0_bn_running_var, ema_bbox_head_multi_level_cls_convs_1_0_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_1_1_conv_weight, ema_bbox_head_multi_level_cls_convs_1_1_bn_weight, ema_bbox_head_multi_level_cls_convs_1_1_bn_bias, ema_bbox_head_multi_level_cls_convs_1_1_bn_running_mean, ema_bbox_head_multi_level_cls_convs_1_1_bn_running_var, ema_bbox_head_multi_level_cls_convs_1_1_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_2_0_conv_weight, ema_bbox_head_multi_level_cls_convs_2_0_bn_weight, ema_bbox_head_multi_level_cls_convs_2_0_bn_bias, ema_bbox_head_multi_level_cls_convs_2_0_bn_running_mean, ema_bbox_head_multi_level_cls_convs_2_0_bn_running_var, ema_bbox_head_multi_level_cls_convs_2_0_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_2_1_conv_weight, ema_bbox_head_multi_level_cls_convs_2_1_bn_weight, ema_bbox_head_multi_level_cls_convs_2_1_bn_bias, ema_bbox_head_multi_level_cls_convs_2_1_bn_running_mean, ema_bbox_head_multi_level_cls_convs_2_1_bn_running_var, ema_bbox_head_multi_level_cls_convs_2_1_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_0_0_conv_weight, ema_bbox_head_multi_level_reg_convs_0_0_bn_weight, ema_bbox_head_multi_level_reg_convs_0_0_bn_bias, ema_bbox_head_multi_level_reg_convs_0_0_bn_running_mean, ema_bbox_head_multi_level_reg_convs_0_0_bn_running_var, ema_bbox_head_multi_level_reg_convs_0_0_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_0_1_conv_weight, ema_bbox_head_multi_level_reg_convs_0_1_bn_weight, ema_bbox_head_multi_level_reg_convs_0_1_bn_bias, ema_bbox_head_multi_level_reg_convs_0_1_bn_running_mean, ema_bbox_head_multi_level_reg_convs_0_1_bn_running_var, ema_bbox_head_multi_level_reg_convs_0_1_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_1_0_conv_weight, ema_bbox_head_multi_level_reg_convs_1_0_bn_weight, ema_bbox_head_multi_level_reg_convs_1_0_bn_bias, ema_bbox_head_multi_level_reg_convs_1_0_bn_running_mean, ema_bbox_head_multi_level_reg_convs_1_0_bn_running_var, ema_bbox_head_multi_level_reg_convs_1_0_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_1_1_conv_weight, ema_bbox_head_multi_level_reg_convs_1_1_bn_weight, ema_bbox_head_multi_level_reg_convs_1_1_bn_bias, ema_bbox_head_multi_level_reg_convs_1_1_bn_running_mean, ema_bbox_head_multi_level_reg_convs_1_1_bn_running_var, ema_bbox_head_multi_level_reg_convs_1_1_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_2_0_conv_weight, ema_bbox_head_multi_level_reg_convs_2_0_bn_weight, ema_bbox_head_multi_level_reg_convs_2_0_bn_bias, ema_bbox_head_multi_level_reg_convs_2_0_bn_running_mean, ema_bbox_head_multi_level_reg_convs_2_0_bn_running_var, ema_bbox_head_multi_level_reg_convs_2_0_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_2_1_conv_weight, ema_bbox_head_multi_level_reg_convs_2_1_bn_weight, ema_bbox_head_multi_level_reg_convs_2_1_bn_bias, ema_bbox_head_multi_level_reg_convs_2_1_bn_running_mean, ema_bbox_head_multi_level_reg_convs_2_1_bn_running_var, ema_bbox_head_multi_level_reg_convs_2_1_bn_num_batches_tracked, ema_bbox_head_multi_level_conv_cls_0_weight, ema_bbox_head_multi_level_conv_cls_0_bias, ema_bbox_head_multi_level_conv_cls_1_weight, ema_bbox_head_multi_level_conv_cls_1_bias, ema_bbox_head_multi_level_conv_cls_2_weight, ema_bbox_head_multi_level_conv_cls_2_bias, ema_bbox_head_multi_level_conv_reg_0_weight, ema_bbox_head_multi_level_conv_reg_0_bias, ema_bbox_head_multi_level_conv_reg_1_weight, ema_bbox_head_multi_level_conv_reg_1_bias, ema_bbox_head_multi_level_conv_reg_2_weight, ema_bbox_head_multi_level_conv_reg_2_bias, ema_bbox_head_multi_level_conv_obj_0_weight, ema_bbox_head_multi_level_conv_obj_0_bias, ema_bbox_head_multi_level_conv_obj_1_weight, ema_bbox_head_multi_level_conv_obj_1_bias, ema_bbox_head_multi_level_conv_obj_2_weight, ema_bbox_head_multi_level_conv_obj_2_bias

2024-11-25 16:21:56,102 - mmdet - INFO - Start running, host: mchi@ubuntu22, work_dir: /home/mchi/github/edgeai-tensorlab/edgeai-modelmaker/data/projects/1021_3280x2464/run/20241125-162141/yolox_s_lite/training
2024-11-25 16:21:56,102 - mmdet - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH   ) YOLOXLrUpdaterHook                 
(49          ) ExpMomentumEMAHook                 
(NORMAL      ) CheckpointHook                     
(LOW         ) EvalHook                           
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
before_train_epoch:
(VERY_HIGH   ) YOLOXLrUpdaterHook                 
(48          ) YOLOXModeSwitchHook                
(48          ) SyncNormHook                       
(49          ) ExpMomentumEMAHook                 
(LOW         ) IterTimerHook                      
(LOW         ) EvalHook                           
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
before_train_iter:
(VERY_HIGH   ) YOLOXLrUpdaterHook                 
(LOW         ) IterTimerHook                      
(LOW         ) EvalHook                           
 -------------------- 
after_train_iter:
(ABOVE_NORMAL) OptimizerHook                      
(49          ) ExpMomentumEMAHook                 
(NORMAL      ) CheckpointHook                     
(LOW         ) IterTimerHook                      
(LOW         ) EvalHook                           
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
after_train_epoch:
(48          ) SyncNormHook                       
(49          ) ExpMomentumEMAHook                 
(NORMAL      ) CheckpointHook                     
(LOW         ) EvalHook                           
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
before_val_epoch:
(LOW         ) IterTimerHook                      
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
before_val_iter:
(LOW         ) IterTimerHook                      
 -------------------- 
after_val_iter:
(LOW         ) IterTimerHook                      
 -------------------- 
after_val_epoch:
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
after_run:
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
2024-11-25 16:21:56,103 - mmdet - INFO - workflow: [('train', 1)], max: 60 epochs
2024-11-25 16:21:56,120 - mmdet - INFO - Checkpoints will be saved to /home/mchi/github/edgeai-tensorlab/edgeai-modelmaker/data/projects/1021_3280x2464/run/20241125-162141/yolox_s_lite/training by HardDiskBackend.
2024-11-25 16:22:19,129 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:22:19,174 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.001
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.008
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.008
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.008
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.011

2024-11-25 16:22:19,174 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:22:19,174 - mmdet - INFO - Epoch(val) [1][12]	bbox_mAP: 0.0000, bbox_mAP_50: 0.0010, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0000, bbox_mAP_copypaste: 0.000 0.001 0.000 0.000 0.000 0.000
2024-11-25 16:22:44,614 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:22:44,668 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.000

2024-11-25 16:22:44,669 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:22:44,669 - mmdet - INFO - Epoch(val) [2][12]	bbox_mAP: 0.0000, bbox_mAP_50: 0.0000, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0000, bbox_mAP_copypaste: 0.000 0.000 0.000 0.000 0.000 0.000
2024-11-25 16:23:06,317 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:23:06,491 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.002
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.006
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.001
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.003
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.051
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.054
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.054
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.078

2024-11-25 16:23:06,492 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:23:06,492 - mmdet - INFO - Epoch(val) [3][12]	bbox_mAP: 0.0020, bbox_mAP_50: 0.0060, bbox_mAP_75: 0.0010, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0030, bbox_mAP_copypaste: 0.002 0.006 0.001 0.000 0.000 0.003
2024-11-25 16:23:23,938 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:23:24,183 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.002
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.008
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.002
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.069
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.077
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.077
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.111

2024-11-25 16:23:24,185 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:23:24,185 - mmdet - INFO - Epoch(val) [4][12]	bbox_mAP: 0.0020, bbox_mAP_50: 0.0080, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0020, bbox_mAP_copypaste: 0.002 0.008 0.000 0.000 0.000 0.002
2024-11-25 16:23:39,517 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:23:39,667 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.010
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.049
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.014
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.100
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.108
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.108
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.156

2024-11-25 16:23:39,668 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:23:39,668 - mmdet - INFO - Epoch(val) [5][12]	bbox_mAP: 0.0100, bbox_mAP_50: 0.0490, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0140, bbox_mAP_copypaste: 0.010 0.049 0.000 0.000 0.000 0.014
2024-11-25 16:24:13,703 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:24:14,454 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.003
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.022
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.004
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.067
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.069
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.069
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.100

2024-11-25 16:24:14,458 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:24:14,458 - mmdet - INFO - Epoch(val) [6][12]	bbox_mAP: 0.0030, bbox_mAP_50: 0.0220, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0040, bbox_mAP_copypaste: 0.003 0.022 0.000 0.000 0.000 0.004
2024-11-25 16:24:46,333 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:24:46,645 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.008
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.063
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.011
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.085
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.092
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.095
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.137

2024-11-25 16:24:46,647 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:24:46,647 - mmdet - INFO - Epoch(val) [7][12]	bbox_mAP: 0.0080, bbox_mAP_50: 0.0630, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0110, bbox_mAP_copypaste: 0.008 0.063 0.000 0.000 0.000 0.011
2024-11-25 16:25:15,324 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:25:15,705 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.010
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.071
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.013
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.079
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.082
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.082
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.119

2024-11-25 16:25:15,708 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:25:15,708 - mmdet - INFO - Epoch(val) [8][12]	bbox_mAP: 0.0100, bbox_mAP_50: 0.0710, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0130, bbox_mAP_copypaste: 0.010 0.071 0.000 0.000 0.000 0.013
2024-11-25 16:25:42,918 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:25:43,362 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.003
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.022
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.005
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.118
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.164
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.164
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.237

2024-11-25 16:25:43,364 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:25:43,364 - mmdet - INFO - Epoch(val) [9][12]	bbox_mAP: 0.0030, bbox_mAP_50: 0.0220, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0050, bbox_mAP_copypaste: 0.003 0.022 0.000 0.000 0.000 0.005
2024-11-25 16:26:07,550 - mmdet - INFO - Saving checkpoint at 10 epochs
2024-11-25 16:26:09,462 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:26:09,701 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.007
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.039
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.001
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.001
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.011
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.154
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.213
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.213
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.055
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.285

2024-11-25 16:26:09,703 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:26:09,703 - mmdet - INFO - Epoch(val) [10][12]	bbox_mAP: 0.0070, bbox_mAP_50: 0.0390, bbox_mAP_75: 0.0010, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0010, bbox_mAP_l: 0.0110, bbox_mAP_copypaste: 0.007 0.039 0.001 0.000 0.001 0.011
2024-11-25 16:26:41,620 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:26:41,823 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.026
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.133
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.004
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.003
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.038
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.203
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.064
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.311

2024-11-25 16:26:41,825 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:26:41,825 - mmdet - INFO - Epoch(val) [11][12]	bbox_mAP: 0.0260, bbox_mAP_50: 0.1330, bbox_mAP_75: 0.0040, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0030, bbox_mAP_l: 0.0380, bbox_mAP_copypaste: 0.026 0.133 0.004 0.000 0.003 0.038
2024-11-25 16:27:08,445 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:27:08,683 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.011
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.054
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.001
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.017
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.138
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.177
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.179
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.055
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.237

2024-11-25 16:27:08,685 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:27:08,685 - mmdet - INFO - Epoch(val) [12][12]	bbox_mAP: 0.0110, bbox_mAP_50: 0.0540, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0010, bbox_mAP_l: 0.0170, bbox_mAP_copypaste: 0.011 0.054 0.000 0.000 0.001 0.017
2024-11-25 16:27:23,572 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:27:23,847 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.006
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.034
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.002
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.010
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.156
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.192
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.192
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.064
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.252

2024-11-25 16:27:23,849 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:27:23,849 - mmdet - INFO - Epoch(val) [13][12]	bbox_mAP: 0.0060, bbox_mAP_50: 0.0340, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0020, bbox_mAP_l: 0.0100, bbox_mAP_copypaste: 0.006 0.034 0.000 0.000 0.002 0.010
2024-11-25 16:27:47,913 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:27:47,961 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.048
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.200
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.005
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.017
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.065
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.267
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.267
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.267
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.055
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.363

2024-11-25 16:27:47,962 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:27:47,962 - mmdet - INFO - Epoch(val) [14][12]	bbox_mAP: 0.0480, bbox_mAP_50: 0.2000, bbox_mAP_75: 0.0050, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0170, bbox_mAP_l: 0.0650, bbox_mAP_copypaste: 0.048 0.200 0.005 0.000 0.017 0.065
2024-11-25 16:28:16,299 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:28:16,383 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.039
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.187
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.002
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.023
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.055
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.208
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.208
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.208
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.045
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.281

2024-11-25 16:28:16,384 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:28:16,384 - mmdet - INFO - Epoch(val) [15][12]	bbox_mAP: 0.0390, bbox_mAP_50: 0.1870, bbox_mAP_75: 0.0020, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0230, bbox_mAP_l: 0.0550, bbox_mAP_copypaste: 0.039 0.187 0.002 0.000 0.023 0.055
2024-11-25 16:28:49,252 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:28:49,316 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.024
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.140
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.012
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.033
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.185
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.185
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.185
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.064
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.241

2024-11-25 16:28:49,317 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:28:49,317 - mmdet - INFO - Epoch(val) [16][12]	bbox_mAP: 0.0240, bbox_mAP_50: 0.1400, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0120, bbox_mAP_l: 0.0330, bbox_mAP_copypaste: 0.024 0.140 0.000 0.000 0.012 0.033
2024-11-25 16:29:19,318 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:29:19,449 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.043
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.219
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.001
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.013
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.068
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.251
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.264
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.264
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.118
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.333

2024-11-25 16:29:19,450 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:29:19,451 - mmdet - INFO - Epoch(val) [17][12]	bbox_mAP: 0.0430, bbox_mAP_50: 0.2190, bbox_mAP_75: 0.0010, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0130, bbox_mAP_l: 0.0680, bbox_mAP_copypaste: 0.043 0.219 0.001 0.000 0.013 0.068
2024-11-25 16:29:44,961 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:29:45,089 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.072
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.266
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.003
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.007
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.102
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.264
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.272
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.272
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.055
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.370

2024-11-25 16:29:45,090 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:29:45,090 - mmdet - INFO - Epoch(val) [18][12]	bbox_mAP: 0.0720, bbox_mAP_50: 0.2660, bbox_mAP_75: 0.0030, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0070, bbox_mAP_l: 0.1020, bbox_mAP_copypaste: 0.072 0.266 0.003 0.000 0.007 0.102
2024-11-25 16:30:04,811 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:30:05,049 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.022
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.093
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.003
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.006
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.035
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.259
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.287
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.287
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.045
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.396

2024-11-25 16:30:05,051 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:30:05,051 - mmdet - INFO - Epoch(val) [19][12]	bbox_mAP: 0.0220, bbox_mAP_50: 0.0930, bbox_mAP_75: 0.0030, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0060, bbox_mAP_l: 0.0350, bbox_mAP_copypaste: 0.022 0.093 0.003 0.000 0.006 0.035
2024-11-25 16:30:20,493 - mmdet - INFO - Saving checkpoint at 20 epochs
2024-11-25 16:30:22,277 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:30:22,472 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.015
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.061
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.001
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.011
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.024
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.226
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.277
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.279
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.073
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.374

2024-11-25 16:30:22,473 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:30:22,473 - mmdet - INFO - Epoch(val) [20][12]	bbox_mAP: 0.0150, bbox_mAP_50: 0.0610, bbox_mAP_75: 0.0010, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0110, bbox_mAP_l: 0.0240, bbox_mAP_copypaste: 0.015 0.061 0.001 0.000 0.011 0.024
2024-11-25 16:30:42,988 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:30:43,096 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.042
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.197
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.002
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.011
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.065
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.272
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.274
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.274
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.109
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.352

2024-11-25 16:30:43,096 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:30:43,097 - mmdet - INFO - Epoch(val) [21][12]	bbox_mAP: 0.0420, bbox_mAP_50: 0.1970, bbox_mAP_75: 0.0020, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0110, bbox_mAP_l: 0.0650, bbox_mAP_copypaste: 0.042 0.197 0.002 0.000 0.011 0.065
2024-11-25 16:31:02,508 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:31:02,712 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.025
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.129
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.001
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.037
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.164
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.190
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.190
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.009
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.270

2024-11-25 16:31:02,713 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:31:02,713 - mmdet - INFO - Epoch(val) [22][12]	bbox_mAP: 0.0250, bbox_mAP_50: 0.1290, bbox_mAP_75: 0.0010, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0370, bbox_mAP_copypaste: 0.025 0.129 0.001 0.000 0.000 0.037
2024-11-25 16:31:20,233 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:31:20,365 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.061
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.218
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.023
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.022
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.088
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.241
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.254
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.254
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.109
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.322

2024-11-25 16:31:20,366 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:31:20,366 - mmdet - INFO - Epoch(val) [23][12]	bbox_mAP: 0.0610, bbox_mAP_50: 0.2180, bbox_mAP_75: 0.0230, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0220, bbox_mAP_l: 0.0880, bbox_mAP_copypaste: 0.061 0.218 0.023 0.000 0.022 0.088
2024-11-25 16:31:41,916 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:31:42,048 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.112
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.359
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.042
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.041
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.147
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.285
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.297
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.297
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.064
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.404

2024-11-25 16:31:42,049 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:31:42,049 - mmdet - INFO - Epoch(val) [24][12]	bbox_mAP: 0.1120, bbox_mAP_50: 0.3590, bbox_mAP_75: 0.0420, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0410, bbox_mAP_l: 0.1470, bbox_mAP_copypaste: 0.112 0.359 0.042 0.000 0.041 0.147
2024-11-25 16:32:04,155 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:32:04,278 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.097
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.273
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.041
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.028
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.131
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.055
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.315

2024-11-25 16:32:04,279 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:32:04,280 - mmdet - INFO - Epoch(val) [25][12]	bbox_mAP: 0.0970, bbox_mAP_50: 0.2730, bbox_mAP_75: 0.0410, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0280, bbox_mAP_l: 0.1310, bbox_mAP_copypaste: 0.097 0.273 0.041 0.000 0.028 0.131
2024-11-25 16:32:21,399 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:32:21,622 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.072
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.298
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.003
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.047
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.090
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.259
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.262
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.262
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.109
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.333

2024-11-25 16:32:21,623 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:32:21,624 - mmdet - INFO - Epoch(val) [26][12]	bbox_mAP: 0.0720, bbox_mAP_50: 0.2980, bbox_mAP_75: 0.0030, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0470, bbox_mAP_l: 0.0900, bbox_mAP_copypaste: 0.072 0.298 0.003 0.000 0.047 0.090
2024-11-25 16:32:42,458 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:32:42,575 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.071
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.323
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.006
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.035
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.099
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.277
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.287
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.287
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.173
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.344

2024-11-25 16:32:42,576 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:32:42,576 - mmdet - INFO - Epoch(val) [27][12]	bbox_mAP: 0.0710, bbox_mAP_50: 0.3230, bbox_mAP_75: 0.0060, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0350, bbox_mAP_l: 0.0990, bbox_mAP_copypaste: 0.071 0.323 0.006 0.000 0.035 0.099
2024-11-25 16:33:21,450 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:33:21,520 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.071
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.307
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.009
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.027
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.096
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.045
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.319

2024-11-25 16:33:21,521 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:33:21,521 - mmdet - INFO - Epoch(val) [28][12]	bbox_mAP: 0.0710, bbox_mAP_50: 0.3070, bbox_mAP_75: 0.0090, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0270, bbox_mAP_l: 0.0960, bbox_mAP_copypaste: 0.071 0.307 0.009 0.000 0.027 0.096
2024-11-25 16:33:43,761 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:33:43,872 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.095
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.400
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.030
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.034
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.128
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.264
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.264
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.264
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.045
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.363

2024-11-25 16:33:43,873 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:33:43,873 - mmdet - INFO - Epoch(val) [29][12]	bbox_mAP: 0.0950, bbox_mAP_50: 0.4000, bbox_mAP_75: 0.0300, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0340, bbox_mAP_l: 0.1280, bbox_mAP_copypaste: 0.095 0.400 0.030 0.000 0.034 0.128
2024-11-25 16:33:59,760 - mmdet - INFO - Saving checkpoint at 30 epochs
2024-11-25 16:34:01,698 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:34:01,842 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.098
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.360
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.025
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.053
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.152
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.295
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.300
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.300
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.145
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.374

2024-11-25 16:34:01,844 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:34:01,844 - mmdet - INFO - Epoch(val) [30][12]	bbox_mAP: 0.0980, bbox_mAP_50: 0.3600, bbox_mAP_75: 0.0250, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0530, bbox_mAP_l: 0.1520, bbox_mAP_copypaste: 0.098 0.360 0.025 0.000 0.053 0.152
2024-11-25 16:34:21,024 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:34:21,256 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.078
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.352
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.004
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.031
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.129
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.310
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.315
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.315
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.173
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.385

2024-11-25 16:34:21,258 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:34:21,258 - mmdet - INFO - Epoch(val) [31][12]	bbox_mAP: 0.0780, bbox_mAP_50: 0.3520, bbox_mAP_75: 0.0040, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0310, bbox_mAP_l: 0.1290, bbox_mAP_copypaste: 0.078 0.352 0.004 0.000 0.031 0.129
2024-11-25 16:34:46,245 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:34:46,354 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.061
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.234
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.004
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.034
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.098
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.292
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.305
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.305
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.200
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.359

2024-11-25 16:34:46,355 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:34:46,355 - mmdet - INFO - Epoch(val) [32][12]	bbox_mAP: 0.0610, bbox_mAP_50: 0.2340, bbox_mAP_75: 0.0040, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0340, bbox_mAP_l: 0.0980, bbox_mAP_copypaste: 0.061 0.234 0.004 0.000 0.034 0.098
2024-11-25 16:35:03,893 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:35:03,988 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.083
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.384
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.007
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.022
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.148
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.269
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.282
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.282
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.118
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.359

2024-11-25 16:35:03,989 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:35:03,989 - mmdet - INFO - Epoch(val) [33][12]	bbox_mAP: 0.0830, bbox_mAP_50: 0.3840, bbox_mAP_75: 0.0070, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0220, bbox_mAP_l: 0.1480, bbox_mAP_copypaste: 0.083 0.384 0.007 0.000 0.022 0.148
2024-11-25 16:35:30,271 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:35:30,312 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.096
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.326
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.007
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.016
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.159
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.313
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.313
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.313
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.136
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.396

2024-11-25 16:35:30,312 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:35:30,312 - mmdet - INFO - Epoch(val) [34][12]	bbox_mAP: 0.0960, bbox_mAP_50: 0.3260, bbox_mAP_75: 0.0070, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0160, bbox_mAP_l: 0.1590, bbox_mAP_copypaste: 0.096 0.326 0.007 0.000 0.016 0.159
2024-11-25 16:36:00,513 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:36:00,553 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.082
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.397
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.005
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.024
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.114
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.267
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.267
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.267
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.100
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.344

2024-11-25 16:36:00,553 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:36:00,553 - mmdet - INFO - Epoch(val) [35][12]	bbox_mAP: 0.0820, bbox_mAP_50: 0.3970, bbox_mAP_75: 0.0050, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0240, bbox_mAP_l: 0.1140, bbox_mAP_copypaste: 0.082 0.397 0.005 0.000 0.024 0.114
2024-11-25 16:36:26,753 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:36:26,834 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.069
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.324
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.018
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.096
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.205
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.205
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.205
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.045
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.278

2024-11-25 16:36:26,835 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:36:26,835 - mmdet - INFO - Epoch(val) [36][12]	bbox_mAP: 0.0690, bbox_mAP_50: 0.3240, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0180, bbox_mAP_l: 0.0960, bbox_mAP_copypaste: 0.069 0.324 0.000 0.000 0.018 0.096
2024-11-25 16:36:56,195 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:36:56,273 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.122
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.500
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.005
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.028
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.170
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.267
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.267
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.267
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.073
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.356

2024-11-25 16:36:56,274 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:36:56,274 - mmdet - INFO - Epoch(val) [37][12]	bbox_mAP: 0.1220, bbox_mAP_50: 0.5000, bbox_mAP_75: 0.0050, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0280, bbox_mAP_l: 0.1700, bbox_mAP_copypaste: 0.122 0.500 0.005 0.000 0.028 0.170
2024-11-25 16:37:31,155 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:37:31,215 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.116
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.403
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.039
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.018
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.164
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.262
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.262
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.262
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.073
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.348

2024-11-25 16:37:31,216 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:37:31,216 - mmdet - INFO - Epoch(val) [38][12]	bbox_mAP: 0.1160, bbox_mAP_50: 0.4030, bbox_mAP_75: 0.0390, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0180, bbox_mAP_l: 0.1640, bbox_mAP_copypaste: 0.116 0.403 0.039 0.000 0.018 0.164
2024-11-25 16:38:03,173 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:38:03,260 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.097
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.457
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.022
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.040
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.132
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.313
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.313
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.313
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.145
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.393

2024-11-25 16:38:03,261 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:38:03,261 - mmdet - INFO - Epoch(val) [39][12]	bbox_mAP: 0.0970, bbox_mAP_50: 0.4570, bbox_mAP_75: 0.0220, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0400, bbox_mAP_l: 0.1320, bbox_mAP_copypaste: 0.097 0.457 0.022 0.000 0.040 0.132
2024-11-25 16:38:32,880 - mmdet - INFO - Saving checkpoint at 40 epochs
2024-11-25 16:38:34,743 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:38:34,836 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.115
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.443
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.009
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.011
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.173
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.285
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.285
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.285
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.073
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.381

2024-11-25 16:38:34,837 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:38:34,837 - mmdet - INFO - Epoch(val) [40][12]	bbox_mAP: 0.1150, bbox_mAP_50: 0.4430, bbox_mAP_75: 0.0090, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0110, bbox_mAP_l: 0.1730, bbox_mAP_copypaste: 0.115 0.443 0.009 0.000 0.011 0.173
2024-11-25 16:39:05,323 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:39:05,415 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.117
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.432
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.002
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.024
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.166
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.282
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.282
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.282
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.100
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.367

2024-11-25 16:39:05,415 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:39:05,416 - mmdet - INFO - Epoch(val) [41][12]	bbox_mAP: 0.1170, bbox_mAP_50: 0.4320, bbox_mAP_75: 0.0020, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0240, bbox_mAP_l: 0.1660, bbox_mAP_copypaste: 0.117 0.432 0.002 0.000 0.024 0.166
2024-11-25 16:39:35,404 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:39:35,509 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.115
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.467
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.013
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.021
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.165
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.246
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.246
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.246
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.027
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.344

2024-11-25 16:39:35,510 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:39:35,510 - mmdet - INFO - Epoch(val) [42][12]	bbox_mAP: 0.1150, bbox_mAP_50: 0.4670, bbox_mAP_75: 0.0130, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0210, bbox_mAP_l: 0.1650, bbox_mAP_copypaste: 0.115 0.467 0.013 0.000 0.021 0.165
2024-11-25 16:40:08,153 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:40:08,250 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.097
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.414
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.004
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.021
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.144
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.256
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.259
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.259
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.036
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.359

2024-11-25 16:40:08,251 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:40:08,251 - mmdet - INFO - Epoch(val) [43][12]	bbox_mAP: 0.0970, bbox_mAP_50: 0.4140, bbox_mAP_75: 0.0040, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0210, bbox_mAP_l: 0.1440, bbox_mAP_copypaste: 0.097 0.414 0.004 0.000 0.021 0.144
2024-11-25 16:40:35,325 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:40:35,420 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.097
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.391
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.013
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.004
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.147
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.259
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.264
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.264
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.073
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.352

2024-11-25 16:40:35,421 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:40:35,421 - mmdet - INFO - Epoch(val) [44][12]	bbox_mAP: 0.0970, bbox_mAP_50: 0.3910, bbox_mAP_75: 0.0130, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0040, bbox_mAP_l: 0.1470, bbox_mAP_copypaste: 0.097 0.391 0.013 0.000 0.004 0.147
2024-11-25 16:40:35,427 - mmdet - INFO - No mosaic and mixup aug now!
2024-11-25 16:40:35,446 - mmdet - INFO - Add additional L1 loss now!
2024-11-25 16:41:00,250 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:41:00,303 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.125
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.496
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.010
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.037
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.191
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.321
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.321
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.321
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.155
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.400

2024-11-25 16:41:00,303 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:41:00,303 - mmdet - INFO - Epoch(val) [45][12]	bbox_mAP: 0.1250, bbox_mAP_50: 0.4960, bbox_mAP_75: 0.0100, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0370, bbox_mAP_l: 0.1910, bbox_mAP_copypaste: 0.125 0.496 0.010 0.000 0.037 0.191
2024-11-25 16:41:15,804 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:41:15,849 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.151
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.450
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.070
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.095
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.207
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.433
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.433
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.433
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.336
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.489

2024-11-25 16:41:15,850 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:41:15,850 - mmdet - INFO - Epoch(val) [46][12]	bbox_mAP: 0.1510, bbox_mAP_50: 0.4500, bbox_mAP_75: 0.0700, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0950, bbox_mAP_l: 0.2070, bbox_mAP_copypaste: 0.151 0.450 0.070 0.000 0.095 0.207
2024-11-25 16:41:34,399 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:41:34,437 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.158
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.475
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.076
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.085
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.214
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.415
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.415
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.415
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.318
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.470

2024-11-25 16:41:34,437 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:41:34,437 - mmdet - INFO - Epoch(val) [47][12]	bbox_mAP: 0.1580, bbox_mAP_50: 0.4750, bbox_mAP_75: 0.0760, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0850, bbox_mAP_l: 0.2140, bbox_mAP_copypaste: 0.158 0.475 0.076 0.000 0.085 0.214
2024-11-25 16:41:59,647 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:41:59,678 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.205
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.589
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.108
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.082
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.284
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.423
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.423
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.423
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.282
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.496

2024-11-25 16:41:59,679 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:41:59,679 - mmdet - INFO - Epoch(val) [48][12]	bbox_mAP: 0.2050, bbox_mAP_50: 0.5890, bbox_mAP_75: 0.1080, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0820, bbox_mAP_l: 0.2840, bbox_mAP_copypaste: 0.205 0.589 0.108 0.000 0.082 0.284
2024-11-25 16:42:22,000 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:42:22,030 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.200
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.646
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.099
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.075
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.274
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.382
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.382
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.382
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.227
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.459

2024-11-25 16:42:22,031 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:42:22,031 - mmdet - INFO - Epoch(val) [49][12]	bbox_mAP: 0.2000, bbox_mAP_50: 0.6460, bbox_mAP_75: 0.0990, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0750, bbox_mAP_l: 0.2740, bbox_mAP_copypaste: 0.200 0.646 0.099 0.000 0.075 0.274
2024-11-25 16:42:40,298 - mmdet - INFO - Saving checkpoint at 50 epochs
2024-11-25 16:42:42,145 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:42:42,175 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.204
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.585
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.099
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.076
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.278
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.403
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.403
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.403
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.255
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.478

2024-11-25 16:42:42,176 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:42:42,176 - mmdet - INFO - Epoch(val) [50][12]	bbox_mAP: 0.2040, bbox_mAP_50: 0.5850, bbox_mAP_75: 0.0990, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0760, bbox_mAP_l: 0.2780, bbox_mAP_copypaste: 0.204 0.585 0.099 0.000 0.076 0.278
2024-11-25 16:42:59,862 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:42:59,889 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.235
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.640
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.132
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.083
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.318
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.423
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.423
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.423
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.264
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.504

2024-11-25 16:42:59,890 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:42:59,890 - mmdet - INFO - Epoch(val) [51][12]	bbox_mAP: 0.2350, bbox_mAP_50: 0.6400, bbox_mAP_75: 0.1320, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0830, bbox_mAP_l: 0.3180, bbox_mAP_copypaste: 0.235 0.640 0.132 0.000 0.083 0.318
2024-11-25 16:43:19,825 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:43:19,850 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.216
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.567
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.111
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.074
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.294
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.413
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.413
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.413
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.273
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.485

2024-11-25 16:43:19,851 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:43:19,851 - mmdet - INFO - Epoch(val) [52][12]	bbox_mAP: 0.2160, bbox_mAP_50: 0.5670, bbox_mAP_75: 0.1110, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0740, bbox_mAP_l: 0.2940, bbox_mAP_copypaste: 0.216 0.567 0.111 0.000 0.074 0.294
2024-11-25 16:43:45,711 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:43:45,735 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.232
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.653
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.136
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.081
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.318
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.405
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.405
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.405
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.191
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.507

2024-11-25 16:43:45,736 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:43:45,736 - mmdet - INFO - Epoch(val) [53][12]	bbox_mAP: 0.2320, bbox_mAP_50: 0.6530, bbox_mAP_75: 0.1360, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0810, bbox_mAP_l: 0.3180, bbox_mAP_copypaste: 0.232 0.653 0.136 0.000 0.081 0.318
2024-11-25 16:44:12,978 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:44:13,001 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.222
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.655
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.108
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.088
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.298
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.392
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.392
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.392
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.218
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.478

2024-11-25 16:44:13,001 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:44:13,001 - mmdet - INFO - Epoch(val) [54][12]	bbox_mAP: 0.2220, bbox_mAP_50: 0.6550, bbox_mAP_75: 0.1080, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0880, bbox_mAP_l: 0.2980, bbox_mAP_copypaste: 0.222 0.655 0.108 0.000 0.088 0.298
2024-11-25 16:44:40,354 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:44:40,383 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.225
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.650
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.104
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.079
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.303
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.392
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.392
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.392
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.200
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.485

2024-11-25 16:44:40,383 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:44:40,383 - mmdet - INFO - Epoch(val) [55][12]	bbox_mAP: 0.2250, bbox_mAP_50: 0.6500, bbox_mAP_75: 0.1040, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0790, bbox_mAP_l: 0.3030, bbox_mAP_copypaste: 0.225 0.650 0.104 0.000 0.079 0.303
2024-11-25 16:44:59,186 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:44:59,211 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.216
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.646
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.115
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.080
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.291
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.377
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.377
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.377
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.218
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.456

2024-11-25 16:44:59,212 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:44:59,212 - mmdet - INFO - Epoch(val) [56][12]	bbox_mAP: 0.2160, bbox_mAP_50: 0.6460, bbox_mAP_75: 0.1150, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0800, bbox_mAP_l: 0.2910, bbox_mAP_copypaste: 0.216 0.646 0.115 0.000 0.080 0.291
2024-11-25 16:45:20,408 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:45:20,439 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.219
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.669
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.075
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.092
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.294
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.379
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.379
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.379
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.245
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.448

2024-11-25 16:45:20,440 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:45:20,440 - mmdet - INFO - Epoch(val) [57][12]	bbox_mAP: 0.2190, bbox_mAP_50: 0.6690, bbox_mAP_75: 0.0750, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0920, bbox_mAP_l: 0.2940, bbox_mAP_copypaste: 0.219 0.669 0.075 0.000 0.092 0.294
2024-11-25 16:45:48,193 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:45:48,218 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.234
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.668
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.098
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.071
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.326
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.369
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.369
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.369
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.218
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.444

2024-11-25 16:45:48,219 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:45:48,219 - mmdet - INFO - Epoch(val) [58][12]	bbox_mAP: 0.2340, bbox_mAP_50: 0.6680, bbox_mAP_75: 0.0980, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0710, bbox_mAP_l: 0.3260, bbox_mAP_copypaste: 0.234 0.668 0.098 0.000 0.071 0.326
2024-11-25 16:46:14,833 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:46:14,858 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.238
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.696
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.092
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.080
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.330
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.382
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.382
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.382
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.236
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.456

2024-11-25 16:46:14,859 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:46:14,859 - mmdet - INFO - Epoch(val) [59][12]	bbox_mAP: 0.2380, bbox_mAP_50: 0.6960, bbox_mAP_75: 0.0920, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0800, bbox_mAP_l: 0.3300, bbox_mAP_copypaste: 0.238 0.696 0.092 0.000 0.080 0.330
2024-11-25 16:46:39,681 - mmdet - INFO - Saving checkpoint at 60 epochs
2024-11-25 16:46:41,406 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:46:41,431 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.217
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.682
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.091
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.075
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.297
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.379
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.379
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.379
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.236
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.452

2024-11-25 16:46:41,432 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:46:41,432 - mmdet - INFO - Epoch(val) [60][12]	bbox_mAP: 0.2170, bbox_mAP_50: 0.6820, bbox_mAP_75: 0.0910, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0750, bbox_mAP_l: 0.2970, bbox_mAP_copypaste: 0.217 0.682 0.091 0.000 0.075 0.297

SUCCESS: ModelMaker - Training completed.

  • Hi,

    The expert assigned to this on vacation this week. Kindly expect delay in response.

    Best Regards,
    Sudheer

  • could you help check the log:
    I don’t understand why the compiled models are trained with the same data set. Some models do not work and the following error log appears.

    root@am68a-sk:~/edgeai-gst-apps/apps_cpp/bin/Release# ./app_edgeai ~/fork_detection.yaml -l 3
    libtidl_onnxrt_EP loaded 0x2451ecc0 
    Final number of subgraphs created are : 1, - Offloaded Nodes - 283, Total Nodes - 283 
    APP: Init ... !!!
    MEM: Init ... !!!
    MEM: Initialized DMA HEAP (fd=5) !!!
    MEM: Init ... Done !!!
    IPC: Init ... !!!
    IPC: Init ... Done !!!
    REMOTE_SERVICE: Init ... !!!
    REMOTE_SERVICE: Init ... Done !!!
       110.952355 s: GTC Frequency = 200 MHz
    APP: Init ... Done !!!
       110.952469 s:  VX_ZONE_INIT:Enabled
       110.952478 s:  VX_ZONE_ERROR:Enabled
       110.952485 s:  VX_ZONE_WARNING:Enabled
       110.953525 s:  VX_ZONE_INIT:[tivxInitLocal:130] Initialization Done !!!
       110.954001 s:  VX_ZONE_INIT:[tivxHostInitLocal:101] Initialization Done for HOST !!!
       110.971130 s:  VX_ZONE_ERROR:[ownContextSendCmd:822] Command ack message returned failure cmd_status: -1
       110.971159 s:  VX_ZONE_ERROR:[ownContextSendCmd:862] tivxEventWait() failed.
       110.971168 s:  VX_ZONE_ERROR:[ownNodeKernelInit:584] Target kernel, TIVX_CMD_NODE_CREATE failed for node TIDLNode
       110.971175 s:  VX_ZONE_ERROR:[ownNodeKernelInit:585] Please be sure the target callbacks have been registered for this core
       110.971181 s:  VX_ZONE_ERROR:[ownNodeKernelInit:586] If the target callbacks have been registered, please ensure no errors are occurring within the create callback of this kernel
       110.971190 s:  VX_ZONE_ERROR:[ownGraphNodeKernelInit:583] kernel init for node 0, kernel com.ti.tidl:1:2 ... failed !!!
       110.971216 s:  VX_ZONE_ERROR:[vxVerifyGraph:2059] Node kernel init failed
       110.971224 s:  VX_ZONE_ERROR:[vxVerifyGraph:2113] Graph verify failed
    TIDL_RT_OVX: ERROR: Verifying TIDL graph ... Failed !!!
    TIDL_RT_OVX: ERROR: Verify OpenVX graph failed
    graph
    ==========[INPUT PIPELINE(S)]==========
    
    [PIPE-0]
    
    v4l2src device=/dev/video-rpi-cam0 io-mode=5 ! queue leaky=2 ! capsfilter caps="video/x-bayer, width=(int)3280, height=(int)2464, format=(string)rggb;" ! tiovxisp dcc-isp-file=/opt/imaging/imx219/linear/dcc_viss.bin sensor-name=SENSOR_SONY_IMX219_RPI ! capsfilter caps="video/x-raw, format=(string)NV12;" ! tiovxmultiscaler name=multiscaler_split_00
    multiscaler_split_00. ! queue ! capsfilter caps="video/x-raw, width=(int)820, height=(int)640;" ! tiovxmultiscaler target=1 ! capsfilter caps="video/x-raw, width=(int)640, height=(int)640;" ! tiovxdlpreproc out-pool-size=4 data-type=3 tensor-format=1 ! capsfilter caps="application/x-tensor-tiovx;" ! appsink max-buffers=2 drop=true name=flow0_pre_proc0
    multiscaler_split_00. ! queue ! capsfilter caps="video/x-raw, width=(int)1120, height=(int)720;" ! tiovxdlcolorconvert out-pool-size=4 ! capsfilter caps="video/x-raw, format=(string)RGB;" ! appsink max-buffers=2 drop=true name=flow0_sensor0
    
    ==========[OUTPUT PIPELINE]==========
    
    appsrc do-timestamp=true format=3 block=true name=flow0_post_proc0 ! tiovxdlcolorconvert ! capsfilter caps="video/x-raw, width=(int)1120, height=(int)720, format=(string)NV12;" ! queue ! mosaic0.sink0
    
    tiovxmosaic target=1 background=/tmp/background0 name=mosaic0 src::pool-size=4
    sink_0::startx="<480>" sink_0::starty="<150>" sink_0::widths="<1120>" sink_0::heights="<720>"
    ! capsfilter caps="video/x-raw, format=(string)NV12, width=(int)1920, height=(int)1080;" ! queue ! tiperfoverlay title=                   Edge Computer ! kmssink sync=false max-lateness=5000000 qos=true processing-deadline=15000000 driver-name=tidss connector-id=40 plane-id=31 force-modesetting=true
    
    [WARNING] This channel is already in use, continuing anyway. Use GPIO::setwarnings(false) to disable warnings.
    [WARNING] This channel is already in use, continuing anyway. Use GPIO::setwarnings(false) to disable warnings.
    [WARNING] This channel is already in use, continuing anyway. Use GPIO::setwarnings(false) to disable warnings.
    [WARNING] This channel is already in use, continuing anyway. Use GPIO::setwarnings(false) to disable warnings.
    [WARNING] This channel is already in use, continuing anyway. Use GPIO::setwarnings(false) to disable warnings.
    IttCtrl_registerHandler: command echo registered at location 0 
    IttCtrl_registerHandler: command iss_read_2a_params registered at location 1 
    IttCtrl_registerHandler: command iss_write_2a_params registered at location 2 
    IttCtrl_registerHandler: command iss_raw_save registered at location 3 
    IttCtrl_registerHandler: command iss_yuv_save registered at location 4 
    IttCtrl_registerHandler: command iss_read_sensor_reg registered at location 5 
    IttCtrl_registerHandler: command iss_write_sensor_reg registered at location 6 
    IttCtrl_registerHandler: command dev_ctrl registered at location 7 
    IttCtrl_registerHandler: command iss_send_dcc_file registered at location 8 
    Error: failed to open i2c bus at /dev/i2c-9
    Warning: Failed to initialize i2c bus. Register read/write will not work !!!
     NETWORK: Opened at IP Addr = 192.168.1.8, socket port=5000!!!
       111.842275 s:  VX_ZONE_ERROR:[ownContextSendCmd:822] Command ack message returned failure cmd_status: -1
       111.842306 s:  VX_ZONE_ERROR:[ownContextSendCmd:862] tivxEventWait() failed.
       111.842315 s:  VX_ZONE_ERROR:[ownNodeKernelInit:584] Target kernel, TIVX_CMD_NODE_CREATE failed for node TIDLNode
       111.842321 s:  VX_ZONE_ERROR:[ownNodeKernelInit:585] Please be sure the target callbacks have been registered for this core
       111.842328 s:  VX_ZONE_ERROR:[ownNodeKernelInit:586] If the target callbacks have been registered, please ensure no errors are occurring within the create callback of this kernel
       111.842336 s:  VX_ZONE_ERROR:[ownGraphNodeKernelInit:583] kernel init for node 0, kernel com.ti.tidl:1:2 ... failed !!!
       111.842351 s:  VX_ZONE_ERROR:[vxVerifyGraph:2059] Node kernel init failed
       111.842357 s:  VX_ZONE_ERROR:[vxVerifyGraph:2113] Graph verify failed
       111.842418 s:  VX_ZONE_ERROR:[ownGraphScheduleGraphWrapper:803] graph is not in a state required to be scheduled
       111.842425 s:  VX_ZONE_ERROR:[vxProcessGraph:738] schedule graph failed
       111.842431 s:  VX_ZONE_ERROR:[vxProcessGraph:743] wait graph failed
    ERROR: Running TIDL graph ... Failed !!!
       111.871616 s:  VX_ZONE_ERROR:[ownContextSendCmd:822] Command ack message returned failure cmd_status: -1
       111.871658 s:  VX_ZONE_ERROR:[ownContextSendCmd:862] tivxEventWait() failed.
       111.871670 s:  VX_ZONE_ERROR:[ownNodeKernelInit:584] Target kernel, TIVX_CMD_NODE_CREATE failed for node TIDLNode
       111.871679 s:  VX_ZONE_ERROR:[ownNodeKernelInit:585] Please be sure the target callbacks have been registered for this core
       111.871687 s:  VX_ZONE_ERROR:[ownNodeKernelInit:586] If the target callbacks have been registered, please ensure no errors are occurring within the create callback of this kernel
       111.871697 s:  VX_ZONE_ERROR:[ownGraphNodeKernelInit:583] kernel init for node 0, kernel com.ti.tidl:1:2 ... failed !!!
       111.871724 s:  VX_ZONE_ERROR:[vxVerifyGraph:2059] Node kernel init failed
       111.871733 s:  VX_ZONE_ERROR:[vxVerifyGraph:2113] Graph verify failed
       111.871812 s:  VX_ZONE_ERROR:[ownGraphScheduleGraphWrapper:803] graph is not in a state required to be scheduled
       111.871825 s:  VX_ZONE_ERROR:[vxProcessGraph:738] schedule graph failed
       111.871833 s:  VX_ZONE_ERROR:[vxProcessGraph:743] wait graph failed
    ERROR: Running TIDL graph ... Failed !!!
       111.902659 s:  VX_ZONE_ERROR:[ownContextSendCmd:822] Command ack message returned failure cmd_status: -1
       111.902704 s:  VX_ZONE_ERROR:[ownContextSendCmd:862] tivxEventWait() failed.
       111.902715 s:  VX_ZONE_ERROR:[ownNodeKernelInit:584] Target kernel, TIVX_CMD_NODE_CREATE failed for node TIDLNode
       111.902724 s:  VX_ZONE_ERROR:[ownNodeKernelInit:585] Please be sure the target callbacks have been registered for this core
       111.902732 s:  VX_ZONE_ERROR:[ownNodeKernelInit:586] If the target callbacks have been registered, please ensure no errors are occurring within the create callback of this kernel
       111.902743 s:  VX_ZONE_ERROR:[ownGraphNodeKernelInit:583] kernel init for node 0, kernel com.ti.tidl:1:2 ... failed !!!
       111.902767 s:  VX_ZONE_ERROR:[vxVerifyGraph:2059] Node kernel init failed
       111.902775 s:  VX_ZONE_ERROR:[vxVerifyGraph:2113] Graph verify failed

  •  I checked the compilation log, It seems that my problem is the same as this post,

    e2e.ti.com/.../sk-am62a-lp-issue-with-the-network-compilation-with-edgeai-tensorlab-tidl_e_dataflow_info_null-network-compiler-returned-with-error

    i have this warning,
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] Network compiler returned with error or didn't executed, this model can only be used on PC/Host emulation mode, it is not expected to work on target/EVM.

    It seems that both SDK9.1 and SDK9.2 have this problem, I want to know what the final solution is if I don’t upgrade to SDK10.0,I am using SDK9.1.
    I tried just replacing tidl-tools to version v10.0. TIDL_E_DATAFLOW_INFO_NULL did not appear, but there were still other problems during deployment. The inference time was very long.
    and tried re-cloning edgeai-tensorlab and trying different machines, but neither worked.
     Because the project is quite urgent, can you help me solve this problem as soon as possible? Thank you.

  • I wonder if any experts can help me check this issue. Thanks.

  • Any updates?

  • Hi,

    Who can help me take a look this problem? Thanks
    and even I compile the out of the box example, There is also this warning,
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] Network compiler returned with error or didn't executed, this model can only be used on PC/Host emulation mode, it is not expected to work on target/EVM.

  • @
    Can you help find someone to look into this problem for me? Thank you.