PROCESSOR-SDK-AM68A: edgeai-modelmaker

Part Number: PROCESSOR-SDK-AM68A
Other Parts Discussed in Thread: 4430

Tool/software:

i followed this guide https://github.com/TexasInstruments/edgeai-tensorlab/tree/main/edgeai-modelmaker
and used branch r9.1
The model can be trained and compiled normally and no errors are found. However, when I deploy it to a target board, it sometimes does not work. That is, if I use the same datasets, compile it multiple times, and deploy it to the target board, the model compiled at a certain time will not work and will not recognize the object detection at all. This happens when I compile on two different Ubuntu 22.04 machines. , can you tell me the possible reasons? thanks

the trained log:

2024-11-25 16:21:51,120 - mmdet - INFO - Environment info:
------------------------------------------------------------
sys.platform: linux
Python: 3.10.15 (main, Nov  8 2024, 11:46:29) [GCC 11.4.0]
CUDA available: False
GCC: gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
PyTorch: 2.0.1+cpu
PyTorch compiling details: PyTorch built with:
  - GCC 9.3
  - C++ Version: 201703
  - Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.1, USE_CUDA=0, USE_CUDNN=OFF, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, 

TorchVision: 0.15.2+cpu
OpenCV: 4.10.0
MMCV: 1.4.8
MMCV Compiler: GCC 11.4
MMCV CUDA Compiler: not available
MMDetection: 2.22.0+cb8eba4
------------------------------------------------------------

2024-11-25 16:21:51,794 - mmdet - INFO - Distributed training: False
2024-11-25 16:21:52,467 - mmdet - INFO - Config:
dataset_type = 'CocoDataset'
data_root = '/home/mchi/github/edgeai-tensorlab/edgeai-modelmaker/data/projects/1021_3280x2464/dataset'
data = dict(
    samples_per_gpu=8,
    workers_per_gpu=2,
    train=dict(
        type='MultiImageMixDataset',
        dataset=dict(
            type='ModelMakerDataset',
            ann_file=
            '/home/mchi/github/edgeai-tensorlab/edgeai-modelmaker/data/projects/1021_3280x2464/dataset/annotations/instances_train.json',
            img_prefix=
            '/home/mchi/github/edgeai-tensorlab/edgeai-modelmaker/data/projects/1021_3280x2464/dataset/train',
            pipeline=[
                dict(type='LoadImageFromFile'),
                dict(type='LoadAnnotations', with_bbox=True)
            ],
            filter_empty_gt=False,
            classes=['burr', 'lack', 'split', 'tree', 'vein']),
        pipeline=[
            dict(type='Mosaic', img_scale=(640, 640), pad_val=114.0),
            dict(
                type='RandomAffine',
                scaling_ratio_range=(0.1, 2),
                border=(-320, -320)),
            dict(
                type='MixUp',
                img_scale=(640, 640),
                ratio_range=(0.8, 1.6),
                pad_val=114.0),
            dict(type='YOLOXHSVRandomAug'),
            dict(type='RandomFlip', flip_ratio=0.5),
            dict(type='Resize', img_scale=(640, 640), keep_ratio=True),
            dict(
                type='Pad',
                pad_to_square=True,
                pad_val=dict(img=(114.0, 114.0, 114.0))),
            dict(
                type='FilterAnnotations',
                min_gt_bbox_wh=(1, 1),
                keep_empty=False),
            dict(type='DefaultFormatBundle'),
            dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
        ]),
    val=dict(
        type='ModelMakerDataset',
        ann_file=
        '/home/mchi/github/edgeai-tensorlab/edgeai-modelmaker/data/projects/1021_3280x2464/dataset/annotations/instances_val.json',
        img_prefix=
        '/home/mchi/github/edgeai-tensorlab/edgeai-modelmaker/data/projects/1021_3280x2464/dataset/val',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(640, 640),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Pad',
                        pad_to_square=True,
                        pad_val=dict(img=(114.0, 114.0, 114.0))),
                    dict(type='DefaultFormatBundle'),
                    dict(type='Collect', keys=['img'])
                ])
        ],
        classes=['burr', 'lack', 'split', 'tree', 'vein']),
    test=dict(
        type='CocoDataset',
        ann_file='data/coco/annotations/instances_val2017.json',
        img_prefix='data/coco/val2017/',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(640, 640),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Pad',
                        pad_to_square=True,
                        pad_val=dict(img=(114.0, 114.0, 114.0))),
                    dict(type='DefaultFormatBundle'),
                    dict(type='Collect', keys=['img'])
                ])
        ]),
    persistent_workers=True)
evaluation = dict(interval=1, metric='bbox')
cudnn_benchmark = True
resize_with_scale_factor = True
max_epochs = 300
num_last_epochs = 15
interval = 10
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = './data/downloads/pretrained/yolox_s_lite/yolox_s_lite_640x640_20220221_checkpoint.pth'
resume_from = None
workflow = [('train', 1)]
print_model_complexity = True
optimizer = dict(
    type='SGD',
    lr=0.001,
    momentum=0.9,
    weight_decay=0.0005,
    nesterov=True,
    paramwise_cfg=dict(norm_decay_mult=0.0, bias_decay_mult=0.0))
optimizer_config = dict(grad_clip=None)
lr_config = dict(
    policy='YOLOX',
    warmup='exp',
    by_epoch=False,
    warmup_by_epoch=True,
    warmup_ratio=1,
    warmup_iters=1,
    num_last_epochs=5,
    min_lr_ratio=0.05)
runner = dict(type='EpochBasedRunner', max_epochs=60)
custom_hooks = [
    dict(type='YOLOXModeSwitchHook', num_last_epochs=15, priority=48),
    dict(type='SyncNormHook', num_last_epochs=15, interval=10, priority=48),
    dict(
        type='ExpMomentumEMAHook',
        resume_from=None,
        momentum=0.0001,
        priority=49)
]
checkpoint_config = dict(interval=10)
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
img_scale = (640, 640)
input_size = (640, 640)
samples_per_gpu = 16
num_classes_dict = dict(
    CocoDataset=80, VOCDataset=20, CityscapesDataset=8, WIDERFaceDataset=1)
dataset_root_dict = dict(
    CocoDataset='data/coco/',
    VOCDataset='data/VOCdevkit/',
    CityscapesDataset='data/cityscapes/',
    WIDERFaceDataset='data/WIDERFace/')
num_classes = 80
img_norm_cfg = dict(mean=[0.0, 0.0, 0.0], std=[1.0, 1.0, 1.0], to_rgb=False)
convert_to_lite_model = dict(group_size_dw=None)
quantize = False
initial_learning_rate = 0.01
model = dict(
    type='YOLOX',
    input_size=(640, 640),
    random_size_range=(15, 25),
    random_size_interval=10,
    backbone=dict(type='CSPDarknet', deepen_factor=0.33, widen_factor=0.5),
    neck=dict(
        type='YOLOXPAFPN',
        in_channels=[128, 256, 512],
        out_channels=128,
        num_csp_blocks=1),
    bbox_head=dict(
        type='YOLOXHead', num_classes=5, in_channels=128, feat_channels=128),
    train_cfg=dict(assigner=dict(type='SimOTAAssigner', center_radius=2.5)),
    test_cfg=dict(score_thr=0.01, nms=dict(type='nms', iou_threshold=0.65)))
train_pipeline = [
    dict(type='Mosaic', img_scale=(640, 640), pad_val=114.0),
    dict(
        type='RandomAffine', scaling_ratio_range=(0.1, 2),
        border=(-320, -320)),
    dict(
        type='MixUp',
        img_scale=(640, 640),
        ratio_range=(0.8, 1.6),
        pad_val=114.0),
    dict(type='YOLOXHSVRandomAug'),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Resize', img_scale=(640, 640), keep_ratio=True),
    dict(
        type='Pad',
        pad_to_square=True,
        pad_val=dict(img=(114.0, 114.0, 114.0))),
    dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(640, 640),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(
                type='Pad',
                pad_to_square=True,
                pad_val=dict(img=(114.0, 114.0, 114.0))),
            dict(type='DefaultFormatBundle'),
            dict(type='Collect', keys=['img'])
        ])
]
work_dir = '/home/mchi/github/edgeai-tensorlab/edgeai-modelmaker/data/projects/1021_3280x2464/run/20241125-162141/yolox_s_lite/training'
total_epochs = 60
export_model = True
auto_resume = False
gpu_ids = [0]

2024-11-25 16:21:52,467 - mmdet - INFO - Set random seed to 51281273, deterministic: False
2024-11-25 16:21:52,656 - mmdet - INFO - initialize CSPDarknet with init_cfg {'type': 'Kaiming', 'layer': 'Conv2d', 'a': 2.23606797749979, 'distribution': 'uniform', 'mode': 'fan_in', 'nonlinearity': 'leaky_relu'}
2024-11-25 16:21:52,686 - mmdet - INFO - initialize YOLOXPAFPN with init_cfg {'type': 'Kaiming', 'layer': 'Conv2d', 'a': 2.23606797749979, 'distribution': 'uniform', 'mode': 'fan_in', 'nonlinearity': 'leaky_relu'}
2024-11-25 16:21:52,716 - mmdet - INFO - initialize YOLOXHead with init_cfg {'type': 'Kaiming', 'layer': 'Conv2d', 'a': 2.23606797749979, 'distribution': 'uniform', 'mode': 'fan_in', 'nonlinearity': 'leaky_relu'}
Name of parameter - Initialization information

backbone.stem.conv.conv.weight - torch.Size([32, 12, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stem.conv.bn.weight - torch.Size([32]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stem.conv.bn.bias - torch.Size([32]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.0.conv.weight - torch.Size([64, 32, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage1.0.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.0.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.1.main_conv.conv.weight - torch.Size([32, 64, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage1.1.main_conv.bn.weight - torch.Size([32]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.1.main_conv.bn.bias - torch.Size([32]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.1.short_conv.conv.weight - torch.Size([32, 64, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage1.1.short_conv.bn.weight - torch.Size([32]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.1.short_conv.bn.bias - torch.Size([32]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.1.final_conv.conv.weight - torch.Size([64, 64, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage1.1.final_conv.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.1.final_conv.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.1.blocks.0.conv1.conv.weight - torch.Size([32, 32, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage1.1.blocks.0.conv1.bn.weight - torch.Size([32]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.1.blocks.0.conv1.bn.bias - torch.Size([32]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.1.blocks.0.conv2.conv.weight - torch.Size([32, 32, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage1.1.blocks.0.conv2.bn.weight - torch.Size([32]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage1.1.blocks.0.conv2.bn.bias - torch.Size([32]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.0.conv.weight - torch.Size([128, 64, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage2.0.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.0.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.main_conv.conv.weight - torch.Size([64, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage2.1.main_conv.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.main_conv.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.short_conv.conv.weight - torch.Size([64, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage2.1.short_conv.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.short_conv.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.final_conv.conv.weight - torch.Size([128, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage2.1.final_conv.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.final_conv.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.0.conv1.conv.weight - torch.Size([64, 64, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage2.1.blocks.0.conv1.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.0.conv1.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.0.conv2.conv.weight - torch.Size([64, 64, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage2.1.blocks.0.conv2.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.0.conv2.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.1.conv1.conv.weight - torch.Size([64, 64, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage2.1.blocks.1.conv1.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.1.conv1.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.1.conv2.conv.weight - torch.Size([64, 64, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage2.1.blocks.1.conv2.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.1.conv2.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.2.conv1.conv.weight - torch.Size([64, 64, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage2.1.blocks.2.conv1.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.2.conv1.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.2.conv2.conv.weight - torch.Size([64, 64, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage2.1.blocks.2.conv2.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage2.1.blocks.2.conv2.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.0.conv.weight - torch.Size([256, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage3.0.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.0.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.main_conv.conv.weight - torch.Size([128, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage3.1.main_conv.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.main_conv.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.short_conv.conv.weight - torch.Size([128, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage3.1.short_conv.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.short_conv.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.final_conv.conv.weight - torch.Size([256, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage3.1.final_conv.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.final_conv.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.0.conv1.conv.weight - torch.Size([128, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage3.1.blocks.0.conv1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.0.conv1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.0.conv2.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage3.1.blocks.0.conv2.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.0.conv2.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.1.conv1.conv.weight - torch.Size([128, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage3.1.blocks.1.conv1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.1.conv1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.1.conv2.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage3.1.blocks.1.conv2.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.1.conv2.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.2.conv1.conv.weight - torch.Size([128, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage3.1.blocks.2.conv1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.2.conv1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.2.conv2.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage3.1.blocks.2.conv2.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage3.1.blocks.2.conv2.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.0.conv.weight - torch.Size([512, 256, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage4.0.bn.weight - torch.Size([512]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.0.bn.bias - torch.Size([512]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.1.conv1.conv.weight - torch.Size([256, 512, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage4.1.conv1.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.1.conv1.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.1.conv2.conv.weight - torch.Size([512, 1024, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage4.1.conv2.bn.weight - torch.Size([512]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.1.conv2.bn.bias - torch.Size([512]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.2.main_conv.conv.weight - torch.Size([256, 512, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage4.2.main_conv.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.2.main_conv.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.2.short_conv.conv.weight - torch.Size([256, 512, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage4.2.short_conv.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.2.short_conv.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.2.final_conv.conv.weight - torch.Size([512, 512, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage4.2.final_conv.bn.weight - torch.Size([512]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.2.final_conv.bn.bias - torch.Size([512]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.2.blocks.0.conv1.conv.weight - torch.Size([256, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage4.2.blocks.0.conv1.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.2.blocks.0.conv1.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.2.blocks.0.conv2.conv.weight - torch.Size([256, 256, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

backbone.stage4.2.blocks.0.conv2.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

backbone.stage4.2.blocks.0.conv2.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.reduce_layers.0.conv.weight - torch.Size([256, 512, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.reduce_layers.0.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.reduce_layers.0.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.reduce_layers.1.conv.weight - torch.Size([128, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.reduce_layers.1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.reduce_layers.1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.0.main_conv.conv.weight - torch.Size([128, 512, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.top_down_blocks.0.main_conv.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.0.main_conv.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.0.short_conv.conv.weight - torch.Size([128, 512, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.top_down_blocks.0.short_conv.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.0.short_conv.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.0.final_conv.conv.weight - torch.Size([256, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.top_down_blocks.0.final_conv.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.0.final_conv.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.0.blocks.0.conv1.conv.weight - torch.Size([128, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.top_down_blocks.0.blocks.0.conv1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.0.blocks.0.conv1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.0.blocks.0.conv2.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.top_down_blocks.0.blocks.0.conv2.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.0.blocks.0.conv2.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.1.main_conv.conv.weight - torch.Size([64, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.top_down_blocks.1.main_conv.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.1.main_conv.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.1.short_conv.conv.weight - torch.Size([64, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.top_down_blocks.1.short_conv.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.1.short_conv.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.1.final_conv.conv.weight - torch.Size([128, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.top_down_blocks.1.final_conv.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.1.final_conv.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.1.blocks.0.conv1.conv.weight - torch.Size([64, 64, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.top_down_blocks.1.blocks.0.conv1.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.1.blocks.0.conv1.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.1.blocks.0.conv2.conv.weight - torch.Size([64, 64, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.top_down_blocks.1.blocks.0.conv2.bn.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.top_down_blocks.1.blocks.0.conv2.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.downsamples.0.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.downsamples.0.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.downsamples.0.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.downsamples.1.conv.weight - torch.Size([256, 256, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.downsamples.1.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.downsamples.1.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.0.main_conv.conv.weight - torch.Size([128, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.bottom_up_blocks.0.main_conv.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.0.main_conv.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.0.short_conv.conv.weight - torch.Size([128, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.bottom_up_blocks.0.short_conv.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.0.short_conv.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.0.final_conv.conv.weight - torch.Size([256, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.bottom_up_blocks.0.final_conv.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.0.final_conv.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.0.blocks.0.conv1.conv.weight - torch.Size([128, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.bottom_up_blocks.0.blocks.0.conv1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.0.blocks.0.conv1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.0.blocks.0.conv2.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.bottom_up_blocks.0.blocks.0.conv2.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.0.blocks.0.conv2.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.1.main_conv.conv.weight - torch.Size([256, 512, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.bottom_up_blocks.1.main_conv.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.1.main_conv.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.1.short_conv.conv.weight - torch.Size([256, 512, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.bottom_up_blocks.1.short_conv.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.1.short_conv.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.1.final_conv.conv.weight - torch.Size([512, 512, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.bottom_up_blocks.1.final_conv.bn.weight - torch.Size([512]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.1.final_conv.bn.bias - torch.Size([512]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.1.blocks.0.conv1.conv.weight - torch.Size([256, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.bottom_up_blocks.1.blocks.0.conv1.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.1.blocks.0.conv1.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.1.blocks.0.conv2.conv.weight - torch.Size([256, 256, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.bottom_up_blocks.1.blocks.0.conv2.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.bottom_up_blocks.1.blocks.0.conv2.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.out_convs.0.conv.weight - torch.Size([128, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.out_convs.0.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.out_convs.0.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.out_convs.1.conv.weight - torch.Size([128, 256, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.out_convs.1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.out_convs.1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.out_convs.2.conv.weight - torch.Size([128, 512, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

neck.out_convs.2.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

neck.out_convs.2.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.0.0.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_cls_convs.0.0.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.0.0.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.0.1.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_cls_convs.0.1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.0.1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.1.0.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_cls_convs.1.0.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.1.0.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.1.1.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_cls_convs.1.1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.1.1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.2.0.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_cls_convs.2.0.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.2.0.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.2.1.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_cls_convs.2.1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_cls_convs.2.1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.0.0.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_reg_convs.0.0.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.0.0.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.0.1.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_reg_convs.0.1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.0.1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.1.0.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_reg_convs.1.0.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.1.0.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.1.1.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_reg_convs.1.1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.1.1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.2.0.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_reg_convs.2.0.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.2.0.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.2.1.conv.weight - torch.Size([128, 128, 3, 3]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_reg_convs.2.1.bn.weight - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_reg_convs.2.1.bn.bias - torch.Size([128]): 
The value is the same before and after calling `init_weights` of YOLOX  

bbox_head.multi_level_conv_cls.0.weight - torch.Size([5, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_cls.0.bias - torch.Size([5]): 
Initialized by user-defined `init_weights` in YOLOXHead  

bbox_head.multi_level_conv_cls.1.weight - torch.Size([5, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_cls.1.bias - torch.Size([5]): 
Initialized by user-defined `init_weights` in YOLOXHead  

bbox_head.multi_level_conv_cls.2.weight - torch.Size([5, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_cls.2.bias - torch.Size([5]): 
Initialized by user-defined `init_weights` in YOLOXHead  

bbox_head.multi_level_conv_reg.0.weight - torch.Size([4, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_reg.0.bias - torch.Size([4]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_reg.1.weight - torch.Size([4, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_reg.1.bias - torch.Size([4]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_reg.2.weight - torch.Size([4, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_reg.2.bias - torch.Size([4]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_obj.0.weight - torch.Size([1, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_obj.0.bias - torch.Size([1]): 
Initialized by user-defined `init_weights` in YOLOXHead  

bbox_head.multi_level_conv_obj.1.weight - torch.Size([1, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_obj.1.bias - torch.Size([1]): 
Initialized by user-defined `init_weights` in YOLOXHead  

bbox_head.multi_level_conv_obj.2.weight - torch.Size([1, 128, 1, 1]): 
KaimingInit: a=2.23606797749979, mode=fan_in, nonlinearity=leaky_relu, distribution =uniform, bias=0 

bbox_head.multi_level_conv_obj.2.bias - torch.Size([1]): 
Initialized by user-defined `init_weights` in YOLOXHead  
2024-11-25 16:21:53,414 - mmdet - INFO - =========================================================================================================
Layer (type:depth-idx)                                  Output Shape              Param #
=========================================================================================================
YOLOX                                                   [1, 5, 80, 80]            --
├─CSPDarknet: 1-1                                       [1, 128, 80, 80]          --
│    └─FocusLite: 2-1                                   [1, 32, 320, 320]         --
│    │    └─ConvModule: 3-1                             [1, 12, 320, 320]         --
│    │    │    └─Conv2d: 4-1                            [1, 12, 320, 320]         324
│    │    │    └─BatchNorm2d: 4-2                       [1, 12, 320, 320]         24
│    │    └─ConvModule: 3-2                             [1, 32, 320, 320]         --
│    │    │    └─Conv2d: 4-3                            [1, 32, 320, 320]         3,456
│    │    │    └─BatchNorm2d: 4-4                       [1, 32, 320, 320]         64
│    │    │    └─ReLU: 4-5                              [1, 32, 320, 320]         --
│    └─Sequential: 2-2                                  [1, 64, 160, 160]         --
│    │    └─ConvModule: 3-3                             [1, 64, 160, 160]         --
│    │    │    └─Conv2d: 4-6                            [1, 64, 160, 160]         18,432
│    │    │    └─BatchNorm2d: 4-7                       [1, 64, 160, 160]         128
│    │    │    └─ReLU: 4-8                              [1, 64, 160, 160]         --
│    │    └─CSPLayer: 3-4                               [1, 64, 160, 160]         --
│    │    │    └─ConvModule: 4-9                        [1, 32, 160, 160]         --
│    │    │    │    └─Conv2d: 5-1                       [1, 32, 160, 160]         2,048
│    │    │    │    └─BatchNorm2d: 5-2                  [1, 32, 160, 160]         64
│    │    │    │    └─ReLU: 5-3                         [1, 32, 160, 160]         --
│    │    │    └─ConvModule: 4-10                       [1, 32, 160, 160]         --
│    │    │    │    └─Conv2d: 5-4                       [1, 32, 160, 160]         2,048
│    │    │    │    └─BatchNorm2d: 5-5                  [1, 32, 160, 160]         64
│    │    │    │    └─ReLU: 5-6                         [1, 32, 160, 160]         --
│    │    │    └─Sequential: 4-11                       [1, 32, 160, 160]         --
│    │    │    │    └─DarknetBottleneck: 5-7            [1, 32, 160, 160]         --
│    │    │    │    │    └─ConvModule: 6-1              [1, 32, 160, 160]         --
│    │    │    │    │    │    └─Conv2d: 7-1             [1, 32, 160, 160]         1,024
│    │    │    │    │    │    └─BatchNorm2d: 7-2        [1, 32, 160, 160]         64
│    │    │    │    │    │    └─ReLU: 7-3               [1, 32, 160, 160]         --
│    │    │    │    │    └─ConvModule: 6-2              [1, 32, 160, 160]         --
│    │    │    │    │    │    └─Conv2d: 7-4             [1, 32, 160, 160]         9,216
│    │    │    │    │    │    └─BatchNorm2d: 7-5        [1, 32, 160, 160]         64
│    │    │    │    │    │    └─ReLU: 7-6               [1, 32, 160, 160]         --
│    │    │    └─ConvModule: 4-12                       [1, 64, 160, 160]         --
│    │    │    │    └─Conv2d: 5-8                       [1, 64, 160, 160]         4,096
│    │    │    │    └─BatchNorm2d: 5-9                  [1, 64, 160, 160]         128
│    │    │    │    └─ReLU: 5-10                        [1, 64, 160, 160]         --
│    └─Sequential: 2-3                                  [1, 128, 80, 80]          --
│    │    └─ConvModule: 3-5                             [1, 128, 80, 80]          --
│    │    │    └─Conv2d: 4-13                           [1, 128, 80, 80]          73,728
│    │    │    └─BatchNorm2d: 4-14                      [1, 128, 80, 80]          256
│    │    │    └─ReLU: 4-15                             [1, 128, 80, 80]          --
│    │    └─CSPLayer: 3-6                               [1, 128, 80, 80]          --
│    │    │    └─ConvModule: 4-16                       [1, 64, 80, 80]           --
│    │    │    │    └─Conv2d: 5-11                      [1, 64, 80, 80]           8,192
│    │    │    │    └─BatchNorm2d: 5-12                 [1, 64, 80, 80]           128
│    │    │    │    └─ReLU: 5-13                        [1, 64, 80, 80]           --
│    │    │    └─ConvModule: 4-17                       [1, 64, 80, 80]           --
│    │    │    │    └─Conv2d: 5-14                      [1, 64, 80, 80]           8,192
│    │    │    │    └─BatchNorm2d: 5-15                 [1, 64, 80, 80]           128
│    │    │    │    └─ReLU: 5-16                        [1, 64, 80, 80]           --
│    │    │    └─Sequential: 4-18                       [1, 64, 80, 80]           --
│    │    │    │    └─DarknetBottleneck: 5-17           [1, 64, 80, 80]           --
│    │    │    │    │    └─ConvModule: 6-3              [1, 64, 80, 80]           --
│    │    │    │    │    │    └─Conv2d: 7-7             [1, 64, 80, 80]           4,096
│    │    │    │    │    │    └─BatchNorm2d: 7-8        [1, 64, 80, 80]           128
│    │    │    │    │    │    └─ReLU: 7-9               [1, 64, 80, 80]           --
│    │    │    │    │    └─ConvModule: 6-4              [1, 64, 80, 80]           --
│    │    │    │    │    │    └─Conv2d: 7-10            [1, 64, 80, 80]           36,864
│    │    │    │    │    │    └─BatchNorm2d: 7-11       [1, 64, 80, 80]           128
│    │    │    │    │    │    └─ReLU: 7-12              [1, 64, 80, 80]           --
│    │    │    │    └─DarknetBottleneck: 5-18           [1, 64, 80, 80]           --
│    │    │    │    │    └─ConvModule: 6-5              [1, 64, 80, 80]           --
│    │    │    │    │    │    └─Conv2d: 7-13            [1, 64, 80, 80]           4,096
│    │    │    │    │    │    └─BatchNorm2d: 7-14       [1, 64, 80, 80]           128
│    │    │    │    │    │    └─ReLU: 7-15              [1, 64, 80, 80]           --
│    │    │    │    │    └─ConvModule: 6-6              [1, 64, 80, 80]           --
│    │    │    │    │    │    └─Conv2d: 7-16            [1, 64, 80, 80]           36,864
│    │    │    │    │    │    └─BatchNorm2d: 7-17       [1, 64, 80, 80]           128
│    │    │    │    │    │    └─ReLU: 7-18              [1, 64, 80, 80]           --
│    │    │    │    └─DarknetBottleneck: 5-19           [1, 64, 80, 80]           --
│    │    │    │    │    └─ConvModule: 6-7              [1, 64, 80, 80]           --
│    │    │    │    │    │    └─Conv2d: 7-19            [1, 64, 80, 80]           4,096
│    │    │    │    │    │    └─BatchNorm2d: 7-20       [1, 64, 80, 80]           128
│    │    │    │    │    │    └─ReLU: 7-21              [1, 64, 80, 80]           --
│    │    │    │    │    └─ConvModule: 6-8              [1, 64, 80, 80]           --
│    │    │    │    │    │    └─Conv2d: 7-22            [1, 64, 80, 80]           36,864
│    │    │    │    │    │    └─BatchNorm2d: 7-23       [1, 64, 80, 80]           128
│    │    │    │    │    │    └─ReLU: 7-24              [1, 64, 80, 80]           --
│    │    │    └─ConvModule: 4-19                       [1, 128, 80, 80]          --
│    │    │    │    └─Conv2d: 5-20                      [1, 128, 80, 80]          16,384
│    │    │    │    └─BatchNorm2d: 5-21                 [1, 128, 80, 80]          256
│    │    │    │    └─ReLU: 5-22                        [1, 128, 80, 80]          --
│    └─Sequential: 2-4                                  [1, 256, 40, 40]          --
│    │    └─ConvModule: 3-7                             [1, 256, 40, 40]          --
│    │    │    └─Conv2d: 4-20                           [1, 256, 40, 40]          294,912
│    │    │    └─BatchNorm2d: 4-21                      [1, 256, 40, 40]          512
│    │    │    └─ReLU: 4-22                             [1, 256, 40, 40]          --
│    │    └─CSPLayer: 3-8                               [1, 256, 40, 40]          --
│    │    │    └─ConvModule: 4-23                       [1, 128, 40, 40]          --
│    │    │    │    └─Conv2d: 5-23                      [1, 128, 40, 40]          32,768
│    │    │    │    └─BatchNorm2d: 5-24                 [1, 128, 40, 40]          256
│    │    │    │    └─ReLU: 5-25                        [1, 128, 40, 40]          --
│    │    │    └─ConvModule: 4-24                       [1, 128, 40, 40]          --
│    │    │    │    └─Conv2d: 5-26                      [1, 128, 40, 40]          32,768
│    │    │    │    └─BatchNorm2d: 5-27                 [1, 128, 40, 40]          256
│    │    │    │    └─ReLU: 5-28                        [1, 128, 40, 40]          --
│    │    │    └─Sequential: 4-25                       [1, 128, 40, 40]          --
│    │    │    │    └─DarknetBottleneck: 5-29           [1, 128, 40, 40]          --
│    │    │    │    │    └─ConvModule: 6-9              [1, 128, 40, 40]          --
│    │    │    │    │    │    └─Conv2d: 7-25            [1, 128, 40, 40]          16,384
│    │    │    │    │    │    └─BatchNorm2d: 7-26       [1, 128, 40, 40]          256
│    │    │    │    │    │    └─ReLU: 7-27              [1, 128, 40, 40]          --
│    │    │    │    │    └─ConvModule: 6-10             [1, 128, 40, 40]          --
│    │    │    │    │    │    └─Conv2d: 7-28            [1, 128, 40, 40]          147,456
│    │    │    │    │    │    └─BatchNorm2d: 7-29       [1, 128, 40, 40]          256
│    │    │    │    │    │    └─ReLU: 7-30              [1, 128, 40, 40]          --
│    │    │    │    └─DarknetBottleneck: 5-30           [1, 128, 40, 40]          --
│    │    │    │    │    └─ConvModule: 6-11             [1, 128, 40, 40]          --
│    │    │    │    │    │    └─Conv2d: 7-31            [1, 128, 40, 40]          16,384
│    │    │    │    │    │    └─BatchNorm2d: 7-32       [1, 128, 40, 40]          256
│    │    │    │    │    │    └─ReLU: 7-33              [1, 128, 40, 40]          --
│    │    │    │    │    └─ConvModule: 6-12             [1, 128, 40, 40]          --
│    │    │    │    │    │    └─Conv2d: 7-34            [1, 128, 40, 40]          147,456
│    │    │    │    │    │    └─BatchNorm2d: 7-35       [1, 128, 40, 40]          256
│    │    │    │    │    │    └─ReLU: 7-36              [1, 128, 40, 40]          --
│    │    │    │    └─DarknetBottleneck: 5-31           [1, 128, 40, 40]          --
│    │    │    │    │    └─ConvModule: 6-13             [1, 128, 40, 40]          --
│    │    │    │    │    │    └─Conv2d: 7-37            [1, 128, 40, 40]          16,384
│    │    │    │    │    │    └─BatchNorm2d: 7-38       [1, 128, 40, 40]          256
│    │    │    │    │    │    └─ReLU: 7-39              [1, 128, 40, 40]          --
│    │    │    │    │    └─ConvModule: 6-14             [1, 128, 40, 40]          --
│    │    │    │    │    │    └─Conv2d: 7-40            [1, 128, 40, 40]          147,456
│    │    │    │    │    │    └─BatchNorm2d: 7-41       [1, 128, 40, 40]          256
│    │    │    │    │    │    └─ReLU: 7-42              [1, 128, 40, 40]          --
│    │    │    └─ConvModule: 4-26                       [1, 256, 40, 40]          --
│    │    │    │    └─Conv2d: 5-32                      [1, 256, 40, 40]          65,536
│    │    │    │    └─BatchNorm2d: 5-33                 [1, 256, 40, 40]          512
│    │    │    │    └─ReLU: 5-34                        [1, 256, 40, 40]          --
│    └─Sequential: 2-5                                  [1, 512, 20, 20]          --
│    │    └─ConvModule: 3-9                             [1, 512, 20, 20]          --
│    │    │    └─Conv2d: 4-27                           [1, 512, 20, 20]          1,179,648
│    │    │    └─BatchNorm2d: 4-28                      [1, 512, 20, 20]          1,024
│    │    │    └─ReLU: 4-29                             [1, 512, 20, 20]          --
│    │    └─SPPBottleneck: 3-10                         [1, 512, 20, 20]          --
│    │    │    └─ConvModule: 4-30                       [1, 256, 20, 20]          --
│    │    │    │    └─Conv2d: 5-35                      [1, 256, 20, 20]          131,072
│    │    │    │    └─BatchNorm2d: 5-36                 [1, 256, 20, 20]          512
│    │    │    │    └─ReLU: 5-37                        [1, 256, 20, 20]          --
│    │    │    └─ModuleList: 4-31                       --                        --
│    │    │    │    └─SequentialMaxPool2d: 5-38         [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-15              [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-16              [1, 256, 20, 20]          --
│    │    │    │    └─SequentialMaxPool2d: 5-39         [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-17              [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-18              [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-19              [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-20              [1, 256, 20, 20]          --
│    │    │    │    └─SequentialMaxPool2d: 5-40         [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-21              [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-22              [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-23              [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-24              [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-25              [1, 256, 20, 20]          --
│    │    │    │    │    └─MaxPool2d: 6-26              [1, 256, 20, 20]          --
│    │    │    └─ConvModule: 4-32                       [1, 512, 20, 20]          --
│    │    │    │    └─Conv2d: 5-41                      [1, 512, 20, 20]          524,288
│    │    │    │    └─BatchNorm2d: 5-42                 [1, 512, 20, 20]          1,024
│    │    │    │    └─ReLU: 5-43                        [1, 512, 20, 20]          --
│    │    └─CSPLayer: 3-11                              [1, 512, 20, 20]          --
│    │    │    └─ConvModule: 4-33                       [1, 256, 20, 20]          --
│    │    │    │    └─Conv2d: 5-44                      [1, 256, 20, 20]          131,072
│    │    │    │    └─BatchNorm2d: 5-45                 [1, 256, 20, 20]          512
│    │    │    │    └─ReLU: 5-46                        [1, 256, 20, 20]          --
│    │    │    └─ConvModule: 4-34                       [1, 256, 20, 20]          --
│    │    │    │    └─Conv2d: 5-47                      [1, 256, 20, 20]          131,072
│    │    │    │    └─BatchNorm2d: 5-48                 [1, 256, 20, 20]          512
│    │    │    │    └─ReLU: 5-49                        [1, 256, 20, 20]          --
│    │    │    └─Sequential: 4-35                       [1, 256, 20, 20]          --
│    │    │    │    └─DarknetBottleneck: 5-50           [1, 256, 20, 20]          --
│    │    │    │    │    └─ConvModule: 6-27             [1, 256, 20, 20]          --
│    │    │    │    │    │    └─Conv2d: 7-43            [1, 256, 20, 20]          65,536
│    │    │    │    │    │    └─BatchNorm2d: 7-44       [1, 256, 20, 20]          512
│    │    │    │    │    │    └─ReLU: 7-45              [1, 256, 20, 20]          --
│    │    │    │    │    └─ConvModule: 6-28             [1, 256, 20, 20]          --
│    │    │    │    │    │    └─Conv2d: 7-46            [1, 256, 20, 20]          589,824
│    │    │    │    │    │    └─BatchNorm2d: 7-47       [1, 256, 20, 20]          512
│    │    │    │    │    │    └─ReLU: 7-48              [1, 256, 20, 20]          --
│    │    │    └─ConvModule: 4-36                       [1, 512, 20, 20]          --
│    │    │    │    └─Conv2d: 5-51                      [1, 512, 20, 20]          262,144
│    │    │    │    └─BatchNorm2d: 5-52                 [1, 512, 20, 20]          1,024
│    │    │    │    └─ReLU: 5-53                        [1, 512, 20, 20]          --
├─YOLOXPAFPN: 1-2                                       [1, 128, 80, 80]          --
│    └─ModuleList: 2-9                                  --                        (recursive)
│    │    └─ConvModule: 3-12                            [1, 256, 20, 20]          --
│    │    │    └─Conv2d: 4-37                           [1, 256, 20, 20]          131,072
│    │    │    └─BatchNorm2d: 4-38                      [1, 256, 20, 20]          512
│    │    │    └─ReLU: 4-39                             [1, 256, 20, 20]          --
│    └─Upsample: 2-7                                    [1, 256, 40, 40]          --
│    └─ModuleList: 2-11                                 --                        (recursive)
│    │    └─CSPLayer: 3-13                              [1, 256, 40, 40]          --
│    │    │    └─ConvModule: 4-40                       [1, 128, 40, 40]          --
│    │    │    │    └─Conv2d: 5-54                      [1, 128, 40, 40]          65,536
│    │    │    │    └─BatchNorm2d: 5-55                 [1, 128, 40, 40]          256
│    │    │    │    └─ReLU: 5-56                        [1, 128, 40, 40]          --
│    │    │    └─ConvModule: 4-41                       [1, 128, 40, 40]          --
│    │    │    │    └─Conv2d: 5-57                      [1, 128, 40, 40]          65,536
│    │    │    │    └─BatchNorm2d: 5-58                 [1, 128, 40, 40]          256
│    │    │    │    └─ReLU: 5-59                        [1, 128, 40, 40]          --
│    │    │    └─Sequential: 4-42                       [1, 128, 40, 40]          --
│    │    │    │    └─DarknetBottleneck: 5-60           [1, 128, 40, 40]          --
│    │    │    │    │    └─ConvModule: 6-29             [1, 128, 40, 40]          --
│    │    │    │    │    │    └─Conv2d: 7-49            [1, 128, 40, 40]          16,384
│    │    │    │    │    │    └─BatchNorm2d: 7-50       [1, 128, 40, 40]          256
│    │    │    │    │    │    └─ReLU: 7-51              [1, 128, 40, 40]          --
│    │    │    │    │    └─ConvModule: 6-30             [1, 128, 40, 40]          --
│    │    │    │    │    │    └─Conv2d: 7-52            [1, 128, 40, 40]          147,456
│    │    │    │    │    │    └─BatchNorm2d: 7-53       [1, 128, 40, 40]          256
│    │    │    │    │    │    └─ReLU: 7-54              [1, 128, 40, 40]          --
│    │    │    └─ConvModule: 4-43                       [1, 256, 40, 40]          --
│    │    │    │    └─Conv2d: 5-61                      [1, 256, 40, 40]          65,536
│    │    │    │    └─BatchNorm2d: 5-62                 [1, 256, 40, 40]          512
│    │    │    │    └─ReLU: 5-63                        [1, 256, 40, 40]          --
│    └─ModuleList: 2-9                                  --                        (recursive)
│    │    └─ConvModule: 3-14                            [1, 128, 40, 40]          --
│    │    │    └─Conv2d: 4-44                           [1, 128, 40, 40]          32,768
│    │    │    └─BatchNorm2d: 4-45                      [1, 128, 40, 40]          256
│    │    │    └─ReLU: 4-46                             [1, 128, 40, 40]          --
│    └─Upsample: 2-10                                   [1, 128, 80, 80]          --
│    └─ModuleList: 2-11                                 --                        (recursive)
│    │    └─CSPLayer: 3-15                              [1, 128, 80, 80]          --
│    │    │    └─ConvModule: 4-47                       [1, 64, 80, 80]           --
│    │    │    │    └─Conv2d: 5-64                      [1, 64, 80, 80]           16,384
│    │    │    │    └─BatchNorm2d: 5-65                 [1, 64, 80, 80]           128
│    │    │    │    └─ReLU: 5-66                        [1, 64, 80, 80]           --
│    │    │    └─ConvModule: 4-48                       [1, 64, 80, 80]           --
│    │    │    │    └─Conv2d: 5-67                      [1, 64, 80, 80]           16,384
│    │    │    │    └─BatchNorm2d: 5-68                 [1, 64, 80, 80]           128
│    │    │    │    └─ReLU: 5-69                        [1, 64, 80, 80]           --
│    │    │    └─Sequential: 4-49                       [1, 64, 80, 80]           --
│    │    │    │    └─DarknetBottleneck: 5-70           [1, 64, 80, 80]           --
│    │    │    │    │    └─ConvModule: 6-31             [1, 64, 80, 80]           --
│    │    │    │    │    │    └─Conv2d: 7-55            [1, 64, 80, 80]           4,096
│    │    │    │    │    │    └─BatchNorm2d: 7-56       [1, 64, 80, 80]           128
│    │    │    │    │    │    └─ReLU: 7-57              [1, 64, 80, 80]           --
│    │    │    │    │    └─ConvModule: 6-32             [1, 64, 80, 80]           --
│    │    │    │    │    │    └─Conv2d: 7-58            [1, 64, 80, 80]           36,864
│    │    │    │    │    │    └─BatchNorm2d: 7-59       [1, 64, 80, 80]           128
│    │    │    │    │    │    └─ReLU: 7-60              [1, 64, 80, 80]           --
│    │    │    └─ConvModule: 4-50                       [1, 128, 80, 80]          --
│    │    │    │    └─Conv2d: 5-71                      [1, 128, 80, 80]          16,384
│    │    │    │    └─BatchNorm2d: 5-72                 [1, 128, 80, 80]          256
│    │    │    │    └─ReLU: 5-73                        [1, 128, 80, 80]          --
│    └─ModuleList: 2-14                                 --                        (recursive)
│    │    └─ConvModule: 3-16                            [1, 128, 40, 40]          --
│    │    │    └─Conv2d: 4-51                           [1, 128, 40, 40]          147,456
│    │    │    └─BatchNorm2d: 4-52                      [1, 128, 40, 40]          256
│    │    │    └─ReLU: 4-53                             [1, 128, 40, 40]          --
│    └─ModuleList: 2-15                                 --                        (recursive)
│    │    └─CSPLayer: 3-17                              [1, 256, 40, 40]          --
│    │    │    └─ConvModule: 4-54                       [1, 128, 40, 40]          --
│    │    │    │    └─Conv2d: 5-74                      [1, 128, 40, 40]          32,768
│    │    │    │    └─BatchNorm2d: 5-75                 [1, 128, 40, 40]          256
│    │    │    │    └─ReLU: 5-76                        [1, 128, 40, 40]          --
│    │    │    └─ConvModule: 4-55                       [1, 128, 40, 40]          --
│    │    │    │    └─Conv2d: 5-77                      [1, 128, 40, 40]          32,768
│    │    │    │    └─BatchNorm2d: 5-78                 [1, 128, 40, 40]          256
│    │    │    │    └─ReLU: 5-79                        [1, 128, 40, 40]          --
│    │    │    └─Sequential: 4-56                       [1, 128, 40, 40]          --
│    │    │    │    └─DarknetBottleneck: 5-80           [1, 128, 40, 40]          --
│    │    │    │    │    └─ConvModule: 6-33             [1, 128, 40, 40]          --
│    │    │    │    │    │    └─Conv2d: 7-61            [1, 128, 40, 40]          16,384
│    │    │    │    │    │    └─BatchNorm2d: 7-62       [1, 128, 40, 40]          256
│    │    │    │    │    │    └─ReLU: 7-63              [1, 128, 40, 40]          --
│    │    │    │    │    └─ConvModule: 6-34             [1, 128, 40, 40]          --
│    │    │    │    │    │    └─Conv2d: 7-64            [1, 128, 40, 40]          147,456
│    │    │    │    │    │    └─BatchNorm2d: 7-65       [1, 128, 40, 40]          256
│    │    │    │    │    │    └─ReLU: 7-66              [1, 128, 40, 40]          --
│    │    │    └─ConvModule: 4-57                       [1, 256, 40, 40]          --
│    │    │    │    └─Conv2d: 5-81                      [1, 256, 40, 40]          65,536
│    │    │    │    └─BatchNorm2d: 5-82                 [1, 256, 40, 40]          512
│    │    │    │    └─ReLU: 5-83                        [1, 256, 40, 40]          --
│    └─ModuleList: 2-14                                 --                        (recursive)
│    │    └─ConvModule: 3-18                            [1, 256, 20, 20]          --
│    │    │    └─Conv2d: 4-58                           [1, 256, 20, 20]          589,824
│    │    │    └─BatchNorm2d: 4-59                      [1, 256, 20, 20]          512
│    │    │    └─ReLU: 4-60                             [1, 256, 20, 20]          --
│    └─ModuleList: 2-15                                 --                        (recursive)
│    │    └─CSPLayer: 3-19                              [1, 512, 20, 20]          --
│    │    │    └─ConvModule: 4-61                       [1, 256, 20, 20]          --
│    │    │    │    └─Conv2d: 5-84                      [1, 256, 20, 20]          131,072
│    │    │    │    └─BatchNorm2d: 5-85                 [1, 256, 20, 20]          512
│    │    │    │    └─ReLU: 5-86                        [1, 256, 20, 20]          --
│    │    │    └─ConvModule: 4-62                       [1, 256, 20, 20]          --
│    │    │    │    └─Conv2d: 5-87                      [1, 256, 20, 20]          131,072
│    │    │    │    └─BatchNorm2d: 5-88                 [1, 256, 20, 20]          512
│    │    │    │    └─ReLU: 5-89                        [1, 256, 20, 20]          --
│    │    │    └─Sequential: 4-63                       [1, 256, 20, 20]          --
│    │    │    │    └─DarknetBottleneck: 5-90           [1, 256, 20, 20]          --
│    │    │    │    │    └─ConvModule: 6-35             [1, 256, 20, 20]          --
│    │    │    │    │    │    └─Conv2d: 7-67            [1, 256, 20, 20]          65,536
│    │    │    │    │    │    └─BatchNorm2d: 7-68       [1, 256, 20, 20]          512
│    │    │    │    │    │    └─ReLU: 7-69              [1, 256, 20, 20]          --
│    │    │    │    │    └─ConvModule: 6-36             [1, 256, 20, 20]          --
│    │    │    │    │    │    └─Conv2d: 7-70            [1, 256, 20, 20]          589,824
│    │    │    │    │    │    └─BatchNorm2d: 7-71       [1, 256, 20, 20]          512
│    │    │    │    │    │    └─ReLU: 7-72              [1, 256, 20, 20]          --
│    │    │    └─ConvModule: 4-64                       [1, 512, 20, 20]          --
│    │    │    │    └─Conv2d: 5-91                      [1, 512, 20, 20]          262,144
│    │    │    │    └─BatchNorm2d: 5-92                 [1, 512, 20, 20]          1,024
│    │    │    │    └─ReLU: 5-93                        [1, 512, 20, 20]          --
│    └─ModuleList: 2-16                                 --                        --
│    │    └─ConvModule: 3-20                            [1, 128, 80, 80]          --
│    │    │    └─Conv2d: 4-65                           [1, 128, 80, 80]          16,384
│    │    │    └─BatchNorm2d: 4-66                      [1, 128, 80, 80]          256
│    │    │    └─ReLU: 4-67                             [1, 128, 80, 80]          --
│    │    └─ConvModule: 3-21                            [1, 128, 40, 40]          --
│    │    │    └─Conv2d: 4-68                           [1, 128, 40, 40]          32,768
│    │    │    └─BatchNorm2d: 4-69                      [1, 128, 40, 40]          256
│    │    │    └─ReLU: 4-70                             [1, 128, 40, 40]          --
│    │    └─ConvModule: 3-22                            [1, 128, 20, 20]          --
│    │    │    └─Conv2d: 4-71                           [1, 128, 20, 20]          65,536
│    │    │    └─BatchNorm2d: 4-72                      [1, 128, 20, 20]          256
│    │    │    └─ReLU: 4-73                             [1, 128, 20, 20]          --
├─YOLOXHead: 1-3                                        [1, 5, 80, 80]            --
│    └─ModuleList: 2-27                                 --                        (recursive)
│    │    └─Sequential: 3-23                            [1, 128, 80, 80]          --
│    │    │    └─ConvModule: 4-74                       [1, 128, 80, 80]          --
│    │    │    │    └─Conv2d: 5-94                      [1, 128, 80, 80]          147,456
│    │    │    │    └─BatchNorm2d: 5-95                 [1, 128, 80, 80]          256
│    │    │    │    └─ReLU: 5-96                        [1, 128, 80, 80]          --
│    │    │    └─ConvModule: 4-75                       [1, 128, 80, 80]          --
│    │    │    │    └─Conv2d: 5-97                      [1, 128, 80, 80]          147,456
│    │    │    │    └─BatchNorm2d: 5-98                 [1, 128, 80, 80]          256
│    │    │    │    └─ReLU: 5-99                        [1, 128, 80, 80]          --
│    └─ModuleList: 2-28                                 --                        (recursive)
│    │    └─Sequential: 3-24                            [1, 128, 80, 80]          --
│    │    │    └─ConvModule: 4-76                       [1, 128, 80, 80]          --
│    │    │    │    └─Conv2d: 5-100                     [1, 128, 80, 80]          147,456
│    │    │    │    └─BatchNorm2d: 5-101                [1, 128, 80, 80]          256
│    │    │    │    └─ReLU: 5-102                       [1, 128, 80, 80]          --
│    │    │    └─ConvModule: 4-77                       [1, 128, 80, 80]          --
│    │    │    │    └─Conv2d: 5-103                     [1, 128, 80, 80]          147,456
│    │    │    │    └─BatchNorm2d: 5-104                [1, 128, 80, 80]          256
│    │    │    │    └─ReLU: 5-105                       [1, 128, 80, 80]          --
│    └─ModuleList: 2-29                                 --                        (recursive)
│    │    └─Conv2d: 3-25                                [1, 5, 80, 80]            645
│    └─ModuleList: 2-30                                 --                        (recursive)
│    │    └─Conv2d: 3-26                                [1, 4, 80, 80]            516
│    └─ModuleList: 2-31                                 --                        (recursive)
│    │    └─Conv2d: 3-27                                [1, 1, 80, 80]            129
│    └─ModuleList: 2-27                                 --                        (recursive)
│    │    └─Sequential: 3-28                            [1, 128, 40, 40]          --
│    │    │    └─ConvModule: 4-78                       [1, 128, 40, 40]          --
│    │    │    │    └─Conv2d: 5-106                     [1, 128, 40, 40]          147,456
│    │    │    │    └─BatchNorm2d: 5-107                [1, 128, 40, 40]          256
│    │    │    │    └─ReLU: 5-108                       [1, 128, 40, 40]          --
│    │    │    └─ConvModule: 4-79                       [1, 128, 40, 40]          --
│    │    │    │    └─Conv2d: 5-109                     [1, 128, 40, 40]          147,456
│    │    │    │    └─BatchNorm2d: 5-110                [1, 128, 40, 40]          256
│    │    │    │    └─ReLU: 5-111                       [1, 128, 40, 40]          --
│    └─ModuleList: 2-28                                 --                        (recursive)
│    │    └─Sequential: 3-29                            [1, 128, 40, 40]          --
│    │    │    └─ConvModule: 4-80                       [1, 128, 40, 40]          --
│    │    │    │    └─Conv2d: 5-112                     [1, 128, 40, 40]          147,456
│    │    │    │    └─BatchNorm2d: 5-113                [1, 128, 40, 40]          256
│    │    │    │    └─ReLU: 5-114                       [1, 128, 40, 40]          --
│    │    │    └─ConvModule: 4-81                       [1, 128, 40, 40]          --
│    │    │    │    └─Conv2d: 5-115                     [1, 128, 40, 40]          147,456
│    │    │    │    └─BatchNorm2d: 5-116                [1, 128, 40, 40]          256
│    │    │    │    └─ReLU: 5-117                       [1, 128, 40, 40]          --
│    └─ModuleList: 2-29                                 --                        (recursive)
│    │    └─Conv2d: 3-30                                [1, 5, 40, 40]            645
│    └─ModuleList: 2-30                                 --                        (recursive)
│    │    └─Conv2d: 3-31                                [1, 4, 40, 40]            516
│    └─ModuleList: 2-31                                 --                        (recursive)
│    │    └─Conv2d: 3-32                                [1, 1, 40, 40]            129
│    └─ModuleList: 2-27                                 --                        (recursive)
│    │    └─Sequential: 3-33                            [1, 128, 20, 20]          --
│    │    │    └─ConvModule: 4-82                       [1, 128, 20, 20]          --
│    │    │    │    └─Conv2d: 5-118                     [1, 128, 20, 20]          147,456
│    │    │    │    └─BatchNorm2d: 5-119                [1, 128, 20, 20]          256
│    │    │    │    └─ReLU: 5-120                       [1, 128, 20, 20]          --
│    │    │    └─ConvModule: 4-83                       [1, 128, 20, 20]          --
│    │    │    │    └─Conv2d: 5-121                     [1, 128, 20, 20]          147,456
│    │    │    │    └─BatchNorm2d: 5-122                [1, 128, 20, 20]          256
│    │    │    │    └─ReLU: 5-123                       [1, 128, 20, 20]          --
│    └─ModuleList: 2-28                                 --                        (recursive)
│    │    └─Sequential: 3-34                            [1, 128, 20, 20]          --
│    │    │    └─ConvModule: 4-84                       [1, 128, 20, 20]          --
│    │    │    │    └─Conv2d: 5-124                     [1, 128, 20, 20]          147,456
│    │    │    │    └─BatchNorm2d: 5-125                [1, 128, 20, 20]          256
│    │    │    │    └─ReLU: 5-126                       [1, 128, 20, 20]          --
│    │    │    └─ConvModule: 4-85                       [1, 128, 20, 20]          --
│    │    │    │    └─Conv2d: 5-127                     [1, 128, 20, 20]          147,456
│    │    │    │    └─BatchNorm2d: 5-128                [1, 128, 20, 20]          256
│    │    │    │    └─ReLU: 5-129                       [1, 128, 20, 20]          --
│    └─ModuleList: 2-29                                 --                        (recursive)
│    │    └─Conv2d: 3-35                                [1, 5, 20, 20]            645
│    └─ModuleList: 2-30                                 --                        (recursive)
│    │    └─Conv2d: 3-36                                [1, 4, 20, 20]            516
│    └─ModuleList: 2-31                                 --                        (recursive)
│    │    └─Conv2d: 3-37                                [1, 1, 20, 20]            129
=========================================================================================================
Total params: 8,939,578
Trainable params: 8,939,578
Non-trainable params: 0
Total mult-adds (G): 13.30
=========================================================================================================
Input size (MB): 4.92
Forward/backward pass size (MB): 497.93
Params size (MB): 35.76
Estimated Total Size (MB): 538.60
=========================================================================================================
2024-11-25 16:21:53,415 - mmdet - INFO - 

2024-11-25 16:21:53,445 - mmdet - INFO - load checkpoint from local path: ./data/downloads/pretrained/yolox_s_lite/yolox_s_lite_640x640_20220221_checkpoint.pth
2024-11-25 16:21:56,097 - mmdet - WARNING - The model and loaded state dict do not match exactly

size mismatch for bbox_head.multi_level_conv_cls.0.weight: copying a param with shape torch.Size([80, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([5, 128, 1, 1]).
size mismatch for bbox_head.multi_level_conv_cls.0.bias: copying a param with shape torch.Size([80]) from checkpoint, the shape in current model is torch.Size([5]).
size mismatch for bbox_head.multi_level_conv_cls.1.weight: copying a param with shape torch.Size([80, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([5, 128, 1, 1]).
size mismatch for bbox_head.multi_level_conv_cls.1.bias: copying a param with shape torch.Size([80]) from checkpoint, the shape in current model is torch.Size([5]).
size mismatch for bbox_head.multi_level_conv_cls.2.weight: copying a param with shape torch.Size([80, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([5, 128, 1, 1]).
size mismatch for bbox_head.multi_level_conv_cls.2.bias: copying a param with shape torch.Size([80]) from checkpoint, the shape in current model is torch.Size([5]).
unexpected key in source state_dict: ema_backbone_stem_conv_in_conv_weight, ema_backbone_stem_conv_in_bn_weight, ema_backbone_stem_conv_in_bn_bias, ema_backbone_stem_conv_in_bn_running_mean, ema_backbone_stem_conv_in_bn_running_var, ema_backbone_stem_conv_in_bn_num_batches_tracked, ema_backbone_stem_conv_conv_weight, ema_backbone_stem_conv_bn_weight, ema_backbone_stem_conv_bn_bias, ema_backbone_stem_conv_bn_running_mean, ema_backbone_stem_conv_bn_running_var, ema_backbone_stem_conv_bn_num_batches_tracked, ema_backbone_stage1_0_conv_weight, ema_backbone_stage1_0_bn_weight, ema_backbone_stage1_0_bn_bias, ema_backbone_stage1_0_bn_running_mean, ema_backbone_stage1_0_bn_running_var, ema_backbone_stage1_0_bn_num_batches_tracked, ema_backbone_stage1_1_main_conv_conv_weight, ema_backbone_stage1_1_main_conv_bn_weight, ema_backbone_stage1_1_main_conv_bn_bias, ema_backbone_stage1_1_main_conv_bn_running_mean, ema_backbone_stage1_1_main_conv_bn_running_var, ema_backbone_stage1_1_main_conv_bn_num_batches_tracked, ema_backbone_stage1_1_short_conv_conv_weight, ema_backbone_stage1_1_short_conv_bn_weight, ema_backbone_stage1_1_short_conv_bn_bias, ema_backbone_stage1_1_short_conv_bn_running_mean, ema_backbone_stage1_1_short_conv_bn_running_var, ema_backbone_stage1_1_short_conv_bn_num_batches_tracked, ema_backbone_stage1_1_final_conv_conv_weight, ema_backbone_stage1_1_final_conv_bn_weight, ema_backbone_stage1_1_final_conv_bn_bias, ema_backbone_stage1_1_final_conv_bn_running_mean, ema_backbone_stage1_1_final_conv_bn_running_var, ema_backbone_stage1_1_final_conv_bn_num_batches_tracked, ema_backbone_stage1_1_blocks_0_conv1_conv_weight, ema_backbone_stage1_1_blocks_0_conv1_bn_weight, ema_backbone_stage1_1_blocks_0_conv1_bn_bias, ema_backbone_stage1_1_blocks_0_conv1_bn_running_mean, ema_backbone_stage1_1_blocks_0_conv1_bn_running_var, ema_backbone_stage1_1_blocks_0_conv1_bn_num_batches_tracked, ema_backbone_stage1_1_blocks_0_conv2_conv_weight, ema_backbone_stage1_1_blocks_0_conv2_bn_weight, ema_backbone_stage1_1_blocks_0_conv2_bn_bias, ema_backbone_stage1_1_blocks_0_conv2_bn_running_mean, ema_backbone_stage1_1_blocks_0_conv2_bn_running_var, ema_backbone_stage1_1_blocks_0_conv2_bn_num_batches_tracked, ema_backbone_stage2_0_conv_weight, ema_backbone_stage2_0_bn_weight, ema_backbone_stage2_0_bn_bias, ema_backbone_stage2_0_bn_running_mean, ema_backbone_stage2_0_bn_running_var, ema_backbone_stage2_0_bn_num_batches_tracked, ema_backbone_stage2_1_main_conv_conv_weight, ema_backbone_stage2_1_main_conv_bn_weight, ema_backbone_stage2_1_main_conv_bn_bias, ema_backbone_stage2_1_main_conv_bn_running_mean, ema_backbone_stage2_1_main_conv_bn_running_var, ema_backbone_stage2_1_main_conv_bn_num_batches_tracked, ema_backbone_stage2_1_short_conv_conv_weight, ema_backbone_stage2_1_short_conv_bn_weight, ema_backbone_stage2_1_short_conv_bn_bias, ema_backbone_stage2_1_short_conv_bn_running_mean, ema_backbone_stage2_1_short_conv_bn_running_var, ema_backbone_stage2_1_short_conv_bn_num_batches_tracked, ema_backbone_stage2_1_final_conv_conv_weight, ema_backbone_stage2_1_final_conv_bn_weight, ema_backbone_stage2_1_final_conv_bn_bias, ema_backbone_stage2_1_final_conv_bn_running_mean, ema_backbone_stage2_1_final_conv_bn_running_var, ema_backbone_stage2_1_final_conv_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_0_conv1_conv_weight, ema_backbone_stage2_1_blocks_0_conv1_bn_weight, ema_backbone_stage2_1_blocks_0_conv1_bn_bias, ema_backbone_stage2_1_blocks_0_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_0_conv1_bn_running_var, ema_backbone_stage2_1_blocks_0_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_0_conv2_conv_weight, ema_backbone_stage2_1_blocks_0_conv2_bn_weight, ema_backbone_stage2_1_blocks_0_conv2_bn_bias, ema_backbone_stage2_1_blocks_0_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_0_conv2_bn_running_var, ema_backbone_stage2_1_blocks_0_conv2_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_1_conv1_conv_weight, ema_backbone_stage2_1_blocks_1_conv1_bn_weight, ema_backbone_stage2_1_blocks_1_conv1_bn_bias, ema_backbone_stage2_1_blocks_1_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_1_conv1_bn_running_var, ema_backbone_stage2_1_blocks_1_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_1_conv2_conv_weight, ema_backbone_stage2_1_blocks_1_conv2_bn_weight, ema_backbone_stage2_1_blocks_1_conv2_bn_bias, ema_backbone_stage2_1_blocks_1_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_1_conv2_bn_running_var, ema_backbone_stage2_1_blocks_1_conv2_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_2_conv1_conv_weight, ema_backbone_stage2_1_blocks_2_conv1_bn_weight, ema_backbone_stage2_1_blocks_2_conv1_bn_bias, ema_backbone_stage2_1_blocks_2_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_2_conv1_bn_running_var, ema_backbone_stage2_1_blocks_2_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_2_conv2_conv_weight, ema_backbone_stage2_1_blocks_2_conv2_bn_weight, ema_backbone_stage2_1_blocks_2_conv2_bn_bias, ema_backbone_stage2_1_blocks_2_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_2_conv2_bn_running_var, ema_backbone_stage2_1_blocks_2_conv2_bn_num_batches_tracked, ema_backbone_stage3_0_conv_weight, ema_backbone_stage3_0_bn_weight, ema_backbone_stage3_0_bn_bias, ema_backbone_stage3_0_bn_running_mean, ema_backbone_stage3_0_bn_running_var, ema_backbone_stage3_0_bn_num_batches_tracked, ema_backbone_stage3_1_main_conv_conv_weight, ema_backbone_stage3_1_main_conv_bn_weight, ema_backbone_stage3_1_main_conv_bn_bias, ema_backbone_stage3_1_main_conv_bn_running_mean, ema_backbone_stage3_1_main_conv_bn_running_var, ema_backbone_stage3_1_main_conv_bn_num_batches_tracked, ema_backbone_stage3_1_short_conv_conv_weight, ema_backbone_stage3_1_short_conv_bn_weight, ema_backbone_stage3_1_short_conv_bn_bias, ema_backbone_stage3_1_short_conv_bn_running_mean, ema_backbone_stage3_1_short_conv_bn_running_var, ema_backbone_stage3_1_short_conv_bn_num_batches_tracked, ema_backbone_stage3_1_final_conv_conv_weight, ema_backbone_stage3_1_final_conv_bn_weight, ema_backbone_stage3_1_final_conv_bn_bias, ema_backbone_stage3_1_final_conv_bn_running_mean, ema_backbone_stage3_1_final_conv_bn_running_var, ema_backbone_stage3_1_final_conv_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_0_conv1_conv_weight, ema_backbone_stage3_1_blocks_0_conv1_bn_weight, ema_backbone_stage3_1_blocks_0_conv1_bn_bias, ema_backbone_stage3_1_blocks_0_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_0_conv1_bn_running_var, ema_backbone_stage3_1_blocks_0_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_0_conv2_conv_weight, ema_backbone_stage3_1_blocks_0_conv2_bn_weight, ema_backbone_stage3_1_blocks_0_conv2_bn_bias, ema_backbone_stage3_1_blocks_0_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_0_conv2_bn_running_var, ema_backbone_stage3_1_blocks_0_conv2_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_1_conv1_conv_weight, ema_backbone_stage3_1_blocks_1_conv1_bn_weight, ema_backbone_stage3_1_blocks_1_conv1_bn_bias, ema_backbone_stage3_1_blocks_1_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_1_conv1_bn_running_var, ema_backbone_stage3_1_blocks_1_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_1_conv2_conv_weight, ema_backbone_stage3_1_blocks_1_conv2_bn_weight, ema_backbone_stage3_1_blocks_1_conv2_bn_bias, ema_backbone_stage3_1_blocks_1_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_1_conv2_bn_running_var, ema_backbone_stage3_1_blocks_1_conv2_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_2_conv1_conv_weight, ema_backbone_stage3_1_blocks_2_conv1_bn_weight, ema_backbone_stage3_1_blocks_2_conv1_bn_bias, ema_backbone_stage3_1_blocks_2_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_2_conv1_bn_running_var, ema_backbone_stage3_1_blocks_2_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_2_conv2_conv_weight, ema_backbone_stage3_1_blocks_2_conv2_bn_weight, ema_backbone_stage3_1_blocks_2_conv2_bn_bias, ema_backbone_stage3_1_blocks_2_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_2_conv2_bn_running_var, ema_backbone_stage3_1_blocks_2_conv2_bn_num_batches_tracked, ema_backbone_stage4_0_conv_weight, ema_backbone_stage4_0_bn_weight, ema_backbone_stage4_0_bn_bias, ema_backbone_stage4_0_bn_running_mean, ema_backbone_stage4_0_bn_running_var, ema_backbone_stage4_0_bn_num_batches_tracked, ema_backbone_stage4_1_conv1_conv_weight, ema_backbone_stage4_1_conv1_bn_weight, ema_backbone_stage4_1_conv1_bn_bias, ema_backbone_stage4_1_conv1_bn_running_mean, ema_backbone_stage4_1_conv1_bn_running_var, ema_backbone_stage4_1_conv1_bn_num_batches_tracked, ema_backbone_stage4_1_conv2_conv_weight, ema_backbone_stage4_1_conv2_bn_weight, ema_backbone_stage4_1_conv2_bn_bias, ema_backbone_stage4_1_conv2_bn_running_mean, ema_backbone_stage4_1_conv2_bn_running_var, ema_backbone_stage4_1_conv2_bn_num_batches_tracked, ema_backbone_stage4_2_main_conv_conv_weight, ema_backbone_stage4_2_main_conv_bn_weight, ema_backbone_stage4_2_main_conv_bn_bias, ema_backbone_stage4_2_main_conv_bn_running_mean, ema_backbone_stage4_2_main_conv_bn_running_var, ema_backbone_stage4_2_main_conv_bn_num_batches_tracked, ema_backbone_stage4_2_short_conv_conv_weight, ema_backbone_stage4_2_short_conv_bn_weight, ema_backbone_stage4_2_short_conv_bn_bias, ema_backbone_stage4_2_short_conv_bn_running_mean, ema_backbone_stage4_2_short_conv_bn_running_var, ema_backbone_stage4_2_short_conv_bn_num_batches_tracked, ema_backbone_stage4_2_final_conv_conv_weight, ema_backbone_stage4_2_final_conv_bn_weight, ema_backbone_stage4_2_final_conv_bn_bias, ema_backbone_stage4_2_final_conv_bn_running_mean, ema_backbone_stage4_2_final_conv_bn_running_var, ema_backbone_stage4_2_final_conv_bn_num_batches_tracked, ema_backbone_stage4_2_blocks_0_conv1_conv_weight, ema_backbone_stage4_2_blocks_0_conv1_bn_weight, ema_backbone_stage4_2_blocks_0_conv1_bn_bias, ema_backbone_stage4_2_blocks_0_conv1_bn_running_mean, ema_backbone_stage4_2_blocks_0_conv1_bn_running_var, ema_backbone_stage4_2_blocks_0_conv1_bn_num_batches_tracked, ema_backbone_stage4_2_blocks_0_conv2_conv_weight, ema_backbone_stage4_2_blocks_0_conv2_bn_weight, ema_backbone_stage4_2_blocks_0_conv2_bn_bias, ema_backbone_stage4_2_blocks_0_conv2_bn_running_mean, ema_backbone_stage4_2_blocks_0_conv2_bn_running_var, ema_backbone_stage4_2_blocks_0_conv2_bn_num_batches_tracked, ema_neck_reduce_layers_0_conv_weight, ema_neck_reduce_layers_0_bn_weight, ema_neck_reduce_layers_0_bn_bias, ema_neck_reduce_layers_0_bn_running_mean, ema_neck_reduce_layers_0_bn_running_var, ema_neck_reduce_layers_0_bn_num_batches_tracked, ema_neck_reduce_layers_1_conv_weight, ema_neck_reduce_layers_1_bn_weight, ema_neck_reduce_layers_1_bn_bias, ema_neck_reduce_layers_1_bn_running_mean, ema_neck_reduce_layers_1_bn_running_var, ema_neck_reduce_layers_1_bn_num_batches_tracked, ema_neck_top_down_blocks_0_main_conv_conv_weight, ema_neck_top_down_blocks_0_main_conv_bn_weight, ema_neck_top_down_blocks_0_main_conv_bn_bias, ema_neck_top_down_blocks_0_main_conv_bn_running_mean, ema_neck_top_down_blocks_0_main_conv_bn_running_var, ema_neck_top_down_blocks_0_main_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_0_short_conv_conv_weight, ema_neck_top_down_blocks_0_short_conv_bn_weight, ema_neck_top_down_blocks_0_short_conv_bn_bias, ema_neck_top_down_blocks_0_short_conv_bn_running_mean, ema_neck_top_down_blocks_0_short_conv_bn_running_var, ema_neck_top_down_blocks_0_short_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_0_final_conv_conv_weight, ema_neck_top_down_blocks_0_final_conv_bn_weight, ema_neck_top_down_blocks_0_final_conv_bn_bias, ema_neck_top_down_blocks_0_final_conv_bn_running_mean, ema_neck_top_down_blocks_0_final_conv_bn_running_var, ema_neck_top_down_blocks_0_final_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_0_blocks_0_conv1_conv_weight, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_weight, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_bias, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_running_mean, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_running_var, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_num_batches_tracked, ema_neck_top_down_blocks_0_blocks_0_conv2_conv_weight, ema_neck_top_down_blocks_0_blocks_0_conv2_bn_weight, ema_neck_top_down_blocks_0_blocks_0_conv2_bn_bias, ema_neck_top_down_blocks_0_blocks_0_conv2_bn_running_mean, ema_neck_top_down_blocks_0_blocks_0_conv2_bn_running_var, ema_neck_top_down_blocks_0_blocks_0_conv2_bn_num_batches_tracked, ema_neck_top_down_blocks_1_main_conv_conv_weight, ema_neck_top_down_blocks_1_main_conv_bn_weight, ema_neck_top_down_blocks_1_main_conv_bn_bias, ema_neck_top_down_blocks_1_main_conv_bn_running_mean, ema_neck_top_down_blocks_1_main_conv_bn_running_var, ema_neck_top_down_blocks_1_main_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_1_short_conv_conv_weight, ema_neck_top_down_blocks_1_short_conv_bn_weight, ema_neck_top_down_blocks_1_short_conv_bn_bias, ema_neck_top_down_blocks_1_short_conv_bn_running_mean, ema_neck_top_down_blocks_1_short_conv_bn_running_var, ema_neck_top_down_blocks_1_short_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_1_final_conv_conv_weight, ema_neck_top_down_blocks_1_final_conv_bn_weight, ema_neck_top_down_blocks_1_final_conv_bn_bias, ema_neck_top_down_blocks_1_final_conv_bn_running_mean, ema_neck_top_down_blocks_1_final_conv_bn_running_var, ema_neck_top_down_blocks_1_final_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_1_blocks_0_conv1_conv_weight, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_weight, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_bias, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_running_mean, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_running_var, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_num_batches_tracked, ema_neck_top_down_blocks_1_blocks_0_conv2_conv_weight, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_weight, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_bias, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_running_mean, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_running_var, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_num_batches_tracked, ema_neck_downsamples_0_conv_weight, ema_neck_downsamples_0_bn_weight, ema_neck_downsamples_0_bn_bias, ema_neck_downsamples_0_bn_running_mean, ema_neck_downsamples_0_bn_running_var, ema_neck_downsamples_0_bn_num_batches_tracked, ema_neck_downsamples_1_conv_weight, ema_neck_downsamples_1_bn_weight, ema_neck_downsamples_1_bn_bias, ema_neck_downsamples_1_bn_running_mean, ema_neck_downsamples_1_bn_running_var, ema_neck_downsamples_1_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_main_conv_conv_weight, ema_neck_bottom_up_blocks_0_main_conv_bn_weight, ema_neck_bottom_up_blocks_0_main_conv_bn_bias, ema_neck_bottom_up_blocks_0_main_conv_bn_running_mean, ema_neck_bottom_up_blocks_0_main_conv_bn_running_var, ema_neck_bottom_up_blocks_0_main_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_short_conv_conv_weight, ema_neck_bottom_up_blocks_0_short_conv_bn_weight, ema_neck_bottom_up_blocks_0_short_conv_bn_bias, ema_neck_bottom_up_blocks_0_short_conv_bn_running_mean, ema_neck_bottom_up_blocks_0_short_conv_bn_running_var, ema_neck_bottom_up_blocks_0_short_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_final_conv_conv_weight, ema_neck_bottom_up_blocks_0_final_conv_bn_weight, ema_neck_bottom_up_blocks_0_final_conv_bn_bias, ema_neck_bottom_up_blocks_0_final_conv_bn_running_mean, ema_neck_bottom_up_blocks_0_final_conv_bn_running_var, ema_neck_bottom_up_blocks_0_final_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_blocks_0_conv1_conv_weight, ema_neck_bottom_up_blocks_0_blocks_0_conv1_bn_weight, ema_neck_bottom_up_blocks_0_blocks_0_conv1_bn_bias, ema_neck_bottom_up_blocks_0_blocks_0_conv1_bn_running_mean, ema_neck_bottom_up_blocks_0_blocks_0_conv1_bn_running_var, ema_neck_bottom_up_blocks_0_blocks_0_conv1_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_blocks_0_conv2_conv_weight, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_weight, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_bias, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_running_mean, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_running_var, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_main_conv_conv_weight, ema_neck_bottom_up_blocks_1_main_conv_bn_weight, ema_neck_bottom_up_blocks_1_main_conv_bn_bias, ema_neck_bottom_up_blocks_1_main_conv_bn_running_mean, ema_neck_bottom_up_blocks_1_main_conv_bn_running_var, ema_neck_bottom_up_blocks_1_main_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_short_conv_conv_weight, ema_neck_bottom_up_blocks_1_short_conv_bn_weight, ema_neck_bottom_up_blocks_1_short_conv_bn_bias, ema_neck_bottom_up_blocks_1_short_conv_bn_running_mean, ema_neck_bottom_up_blocks_1_short_conv_bn_running_var, ema_neck_bottom_up_blocks_1_short_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_final_conv_conv_weight, ema_neck_bottom_up_blocks_1_final_conv_bn_weight, ema_neck_bottom_up_blocks_1_final_conv_bn_bias, ema_neck_bottom_up_blocks_1_final_conv_bn_running_mean, ema_neck_bottom_up_blocks_1_final_conv_bn_running_var, ema_neck_bottom_up_blocks_1_final_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_blocks_0_conv1_conv_weight, ema_neck_bottom_up_blocks_1_blocks_0_conv1_bn_weight, ema_neck_bottom_up_blocks_1_blocks_0_conv1_bn_bias, ema_neck_bottom_up_blocks_1_blocks_0_conv1_bn_running_mean, ema_neck_bottom_up_blocks_1_blocks_0_conv1_bn_running_var, ema_neck_bottom_up_blocks_1_blocks_0_conv1_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_blocks_0_conv2_conv_weight, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_weight, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_bias, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_running_mean, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_running_var, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_num_batches_tracked, ema_neck_out_convs_0_conv_weight, ema_neck_out_convs_0_bn_weight, ema_neck_out_convs_0_bn_bias, ema_neck_out_convs_0_bn_running_mean, ema_neck_out_convs_0_bn_running_var, ema_neck_out_convs_0_bn_num_batches_tracked, ema_neck_out_convs_1_conv_weight, ema_neck_out_convs_1_bn_weight, ema_neck_out_convs_1_bn_bias, ema_neck_out_convs_1_bn_running_mean, ema_neck_out_convs_1_bn_running_var, ema_neck_out_convs_1_bn_num_batches_tracked, ema_neck_out_convs_2_conv_weight, ema_neck_out_convs_2_bn_weight, ema_neck_out_convs_2_bn_bias, ema_neck_out_convs_2_bn_running_mean, ema_neck_out_convs_2_bn_running_var, ema_neck_out_convs_2_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_0_0_conv_weight, ema_bbox_head_multi_level_cls_convs_0_0_bn_weight, ema_bbox_head_multi_level_cls_convs_0_0_bn_bias, ema_bbox_head_multi_level_cls_convs_0_0_bn_running_mean, ema_bbox_head_multi_level_cls_convs_0_0_bn_running_var, ema_bbox_head_multi_level_cls_convs_0_0_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_0_1_conv_weight, ema_bbox_head_multi_level_cls_convs_0_1_bn_weight, ema_bbox_head_multi_level_cls_convs_0_1_bn_bias, ema_bbox_head_multi_level_cls_convs_0_1_bn_running_mean, ema_bbox_head_multi_level_cls_convs_0_1_bn_running_var, ema_bbox_head_multi_level_cls_convs_0_1_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_1_0_conv_weight, ema_bbox_head_multi_level_cls_convs_1_0_bn_weight, ema_bbox_head_multi_level_cls_convs_1_0_bn_bias, ema_bbox_head_multi_level_cls_convs_1_0_bn_running_mean, ema_bbox_head_multi_level_cls_convs_1_0_bn_running_var, ema_bbox_head_multi_level_cls_convs_1_0_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_1_1_conv_weight, ema_bbox_head_multi_level_cls_convs_1_1_bn_weight, ema_bbox_head_multi_level_cls_convs_1_1_bn_bias, ema_bbox_head_multi_level_cls_convs_1_1_bn_running_mean, ema_bbox_head_multi_level_cls_convs_1_1_bn_running_var, ema_bbox_head_multi_level_cls_convs_1_1_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_2_0_conv_weight, ema_bbox_head_multi_level_cls_convs_2_0_bn_weight, ema_bbox_head_multi_level_cls_convs_2_0_bn_bias, ema_bbox_head_multi_level_cls_convs_2_0_bn_running_mean, ema_bbox_head_multi_level_cls_convs_2_0_bn_running_var, ema_bbox_head_multi_level_cls_convs_2_0_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_2_1_conv_weight, ema_bbox_head_multi_level_cls_convs_2_1_bn_weight, ema_bbox_head_multi_level_cls_convs_2_1_bn_bias, ema_bbox_head_multi_level_cls_convs_2_1_bn_running_mean, ema_bbox_head_multi_level_cls_convs_2_1_bn_running_var, ema_bbox_head_multi_level_cls_convs_2_1_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_0_0_conv_weight, ema_bbox_head_multi_level_reg_convs_0_0_bn_weight, ema_bbox_head_multi_level_reg_convs_0_0_bn_bias, ema_bbox_head_multi_level_reg_convs_0_0_bn_running_mean, ema_bbox_head_multi_level_reg_convs_0_0_bn_running_var, ema_bbox_head_multi_level_reg_convs_0_0_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_0_1_conv_weight, ema_bbox_head_multi_level_reg_convs_0_1_bn_weight, ema_bbox_head_multi_level_reg_convs_0_1_bn_bias, ema_bbox_head_multi_level_reg_convs_0_1_bn_running_mean, ema_bbox_head_multi_level_reg_convs_0_1_bn_running_var, ema_bbox_head_multi_level_reg_convs_0_1_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_1_0_conv_weight, ema_bbox_head_multi_level_reg_convs_1_0_bn_weight, ema_bbox_head_multi_level_reg_convs_1_0_bn_bias, ema_bbox_head_multi_level_reg_convs_1_0_bn_running_mean, ema_bbox_head_multi_level_reg_convs_1_0_bn_running_var, ema_bbox_head_multi_level_reg_convs_1_0_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_1_1_conv_weight, ema_bbox_head_multi_level_reg_convs_1_1_bn_weight, ema_bbox_head_multi_level_reg_convs_1_1_bn_bias, ema_bbox_head_multi_level_reg_convs_1_1_bn_running_mean, ema_bbox_head_multi_level_reg_convs_1_1_bn_running_var, ema_bbox_head_multi_level_reg_convs_1_1_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_2_0_conv_weight, ema_bbox_head_multi_level_reg_convs_2_0_bn_weight, ema_bbox_head_multi_level_reg_convs_2_0_bn_bias, ema_bbox_head_multi_level_reg_convs_2_0_bn_running_mean, ema_bbox_head_multi_level_reg_convs_2_0_bn_running_var, ema_bbox_head_multi_level_reg_convs_2_0_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_2_1_conv_weight, ema_bbox_head_multi_level_reg_convs_2_1_bn_weight, ema_bbox_head_multi_level_reg_convs_2_1_bn_bias, ema_bbox_head_multi_level_reg_convs_2_1_bn_running_mean, ema_bbox_head_multi_level_reg_convs_2_1_bn_running_var, ema_bbox_head_multi_level_reg_convs_2_1_bn_num_batches_tracked, ema_bbox_head_multi_level_conv_cls_0_weight, ema_bbox_head_multi_level_conv_cls_0_bias, ema_bbox_head_multi_level_conv_cls_1_weight, ema_bbox_head_multi_level_conv_cls_1_bias, ema_bbox_head_multi_level_conv_cls_2_weight, ema_bbox_head_multi_level_conv_cls_2_bias, ema_bbox_head_multi_level_conv_reg_0_weight, ema_bbox_head_multi_level_conv_reg_0_bias, ema_bbox_head_multi_level_conv_reg_1_weight, ema_bbox_head_multi_level_conv_reg_1_bias, ema_bbox_head_multi_level_conv_reg_2_weight, ema_bbox_head_multi_level_conv_reg_2_bias, ema_bbox_head_multi_level_conv_obj_0_weight, ema_bbox_head_multi_level_conv_obj_0_bias, ema_bbox_head_multi_level_conv_obj_1_weight, ema_bbox_head_multi_level_conv_obj_1_bias, ema_bbox_head_multi_level_conv_obj_2_weight, ema_bbox_head_multi_level_conv_obj_2_bias

2024-11-25 16:21:56,102 - mmdet - INFO - Start running, host: mchi@ubuntu22, work_dir: /home/mchi/github/edgeai-tensorlab/edgeai-modelmaker/data/projects/1021_3280x2464/run/20241125-162141/yolox_s_lite/training
2024-11-25 16:21:56,102 - mmdet - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH   ) YOLOXLrUpdaterHook                 
(49          ) ExpMomentumEMAHook                 
(NORMAL      ) CheckpointHook                     
(LOW         ) EvalHook                           
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
before_train_epoch:
(VERY_HIGH   ) YOLOXLrUpdaterHook                 
(48          ) YOLOXModeSwitchHook                
(48          ) SyncNormHook                       
(49          ) ExpMomentumEMAHook                 
(LOW         ) IterTimerHook                      
(LOW         ) EvalHook                           
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
before_train_iter:
(VERY_HIGH   ) YOLOXLrUpdaterHook                 
(LOW         ) IterTimerHook                      
(LOW         ) EvalHook                           
 -------------------- 
after_train_iter:
(ABOVE_NORMAL) OptimizerHook                      
(49          ) ExpMomentumEMAHook                 
(NORMAL      ) CheckpointHook                     
(LOW         ) IterTimerHook                      
(LOW         ) EvalHook                           
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
after_train_epoch:
(48          ) SyncNormHook                       
(49          ) ExpMomentumEMAHook                 
(NORMAL      ) CheckpointHook                     
(LOW         ) EvalHook                           
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
before_val_epoch:
(LOW         ) IterTimerHook                      
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
before_val_iter:
(LOW         ) IterTimerHook                      
 -------------------- 
after_val_iter:
(LOW         ) IterTimerHook                      
 -------------------- 
after_val_epoch:
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
after_run:
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
2024-11-25 16:21:56,103 - mmdet - INFO - workflow: [('train', 1)], max: 60 epochs
2024-11-25 16:21:56,120 - mmdet - INFO - Checkpoints will be saved to /home/mchi/github/edgeai-tensorlab/edgeai-modelmaker/data/projects/1021_3280x2464/run/20241125-162141/yolox_s_lite/training by HardDiskBackend.
2024-11-25 16:22:19,129 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:22:19,174 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.001
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.008
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.008
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.008
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.011

2024-11-25 16:22:19,174 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:22:19,174 - mmdet - INFO - Epoch(val) [1][12]	bbox_mAP: 0.0000, bbox_mAP_50: 0.0010, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0000, bbox_mAP_copypaste: 0.000 0.001 0.000 0.000 0.000 0.000
2024-11-25 16:22:44,614 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:22:44,668 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.000

2024-11-25 16:22:44,669 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:22:44,669 - mmdet - INFO - Epoch(val) [2][12]	bbox_mAP: 0.0000, bbox_mAP_50: 0.0000, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0000, bbox_mAP_copypaste: 0.000 0.000 0.000 0.000 0.000 0.000
2024-11-25 16:23:06,317 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:23:06,491 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.002
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.006
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.001
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.003
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.051
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.054
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.054
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.078

2024-11-25 16:23:06,492 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:23:06,492 - mmdet - INFO - Epoch(val) [3][12]	bbox_mAP: 0.0020, bbox_mAP_50: 0.0060, bbox_mAP_75: 0.0010, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0030, bbox_mAP_copypaste: 0.002 0.006 0.001 0.000 0.000 0.003
2024-11-25 16:23:23,938 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:23:24,183 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.002
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.008
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.002
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.069
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.077
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.077
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.111

2024-11-25 16:23:24,185 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:23:24,185 - mmdet - INFO - Epoch(val) [4][12]	bbox_mAP: 0.0020, bbox_mAP_50: 0.0080, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0020, bbox_mAP_copypaste: 0.002 0.008 0.000 0.000 0.000 0.002
2024-11-25 16:23:39,517 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:23:39,667 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.010
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.049
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.014
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.100
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.108
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.108
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.156

2024-11-25 16:23:39,668 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:23:39,668 - mmdet - INFO - Epoch(val) [5][12]	bbox_mAP: 0.0100, bbox_mAP_50: 0.0490, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0140, bbox_mAP_copypaste: 0.010 0.049 0.000 0.000 0.000 0.014
2024-11-25 16:24:13,703 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:24:14,454 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.003
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.022
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.004
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.067
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.069
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.069
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.100

2024-11-25 16:24:14,458 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:24:14,458 - mmdet - INFO - Epoch(val) [6][12]	bbox_mAP: 0.0030, bbox_mAP_50: 0.0220, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0040, bbox_mAP_copypaste: 0.003 0.022 0.000 0.000 0.000 0.004
2024-11-25 16:24:46,333 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:24:46,645 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.008
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.063
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.011
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.085
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.092
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.095
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.137

2024-11-25 16:24:46,647 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:24:46,647 - mmdet - INFO - Epoch(val) [7][12]	bbox_mAP: 0.0080, bbox_mAP_50: 0.0630, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0110, bbox_mAP_copypaste: 0.008 0.063 0.000 0.000 0.000 0.011
2024-11-25 16:25:15,324 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:25:15,705 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.010
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.071
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.013
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.079
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.082
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.082
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.119

2024-11-25 16:25:15,708 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:25:15,708 - mmdet - INFO - Epoch(val) [8][12]	bbox_mAP: 0.0100, bbox_mAP_50: 0.0710, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0130, bbox_mAP_copypaste: 0.010 0.071 0.000 0.000 0.000 0.013
2024-11-25 16:25:42,918 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:25:43,362 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.003
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.022
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.005
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.118
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.164
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.164
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.237

2024-11-25 16:25:43,364 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:25:43,364 - mmdet - INFO - Epoch(val) [9][12]	bbox_mAP: 0.0030, bbox_mAP_50: 0.0220, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0050, bbox_mAP_copypaste: 0.003 0.022 0.000 0.000 0.000 0.005
2024-11-25 16:26:07,550 - mmdet - INFO - Saving checkpoint at 10 epochs
2024-11-25 16:26:09,462 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:26:09,701 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.007
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.039
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.001
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.001
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.011
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.154
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.213
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.213
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.055
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.285

2024-11-25 16:26:09,703 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:26:09,703 - mmdet - INFO - Epoch(val) [10][12]	bbox_mAP: 0.0070, bbox_mAP_50: 0.0390, bbox_mAP_75: 0.0010, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0010, bbox_mAP_l: 0.0110, bbox_mAP_copypaste: 0.007 0.039 0.001 0.000 0.001 0.011
2024-11-25 16:26:41,620 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:26:41,823 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.026
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.133
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.004
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.003
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.038
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.203
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.064
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.311

2024-11-25 16:26:41,825 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:26:41,825 - mmdet - INFO - Epoch(val) [11][12]	bbox_mAP: 0.0260, bbox_mAP_50: 0.1330, bbox_mAP_75: 0.0040, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0030, bbox_mAP_l: 0.0380, bbox_mAP_copypaste: 0.026 0.133 0.004 0.000 0.003 0.038
2024-11-25 16:27:08,445 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:27:08,683 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.011
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.054
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.001
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.017
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.138
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.177
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.179
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.055
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.237

2024-11-25 16:27:08,685 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:27:08,685 - mmdet - INFO - Epoch(val) [12][12]	bbox_mAP: 0.0110, bbox_mAP_50: 0.0540, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0010, bbox_mAP_l: 0.0170, bbox_mAP_copypaste: 0.011 0.054 0.000 0.000 0.001 0.017
2024-11-25 16:27:23,572 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:27:23,847 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.006
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.034
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.002
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.010
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.156
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.192
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.192
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.064
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.252

2024-11-25 16:27:23,849 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:27:23,849 - mmdet - INFO - Epoch(val) [13][12]	bbox_mAP: 0.0060, bbox_mAP_50: 0.0340, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0020, bbox_mAP_l: 0.0100, bbox_mAP_copypaste: 0.006 0.034 0.000 0.000 0.002 0.010
2024-11-25 16:27:47,913 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:27:47,961 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.048
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.200
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.005
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.017
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.065
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.267
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.267
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.267
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.055
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.363

2024-11-25 16:27:47,962 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:27:47,962 - mmdet - INFO - Epoch(val) [14][12]	bbox_mAP: 0.0480, bbox_mAP_50: 0.2000, bbox_mAP_75: 0.0050, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0170, bbox_mAP_l: 0.0650, bbox_mAP_copypaste: 0.048 0.200 0.005 0.000 0.017 0.065
2024-11-25 16:28:16,299 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:28:16,383 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.039
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.187
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.002
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.023
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.055
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.208
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.208
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.208
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.045
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.281

2024-11-25 16:28:16,384 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:28:16,384 - mmdet - INFO - Epoch(val) [15][12]	bbox_mAP: 0.0390, bbox_mAP_50: 0.1870, bbox_mAP_75: 0.0020, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0230, bbox_mAP_l: 0.0550, bbox_mAP_copypaste: 0.039 0.187 0.002 0.000 0.023 0.055
2024-11-25 16:28:49,252 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:28:49,316 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.024
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.140
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.012
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.033
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.185
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.185
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.185
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.064
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.241

2024-11-25 16:28:49,317 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:28:49,317 - mmdet - INFO - Epoch(val) [16][12]	bbox_mAP: 0.0240, bbox_mAP_50: 0.1400, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0120, bbox_mAP_l: 0.0330, bbox_mAP_copypaste: 0.024 0.140 0.000 0.000 0.012 0.033
2024-11-25 16:29:19,318 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:29:19,449 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.043
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.219
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.001
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.013
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.068
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.251
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.264
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.264
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.118
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.333

2024-11-25 16:29:19,450 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:29:19,451 - mmdet - INFO - Epoch(val) [17][12]	bbox_mAP: 0.0430, bbox_mAP_50: 0.2190, bbox_mAP_75: 0.0010, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0130, bbox_mAP_l: 0.0680, bbox_mAP_copypaste: 0.043 0.219 0.001 0.000 0.013 0.068
2024-11-25 16:29:44,961 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:29:45,089 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.072
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.266
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.003
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.007
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.102
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.264
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.272
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.272
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.055
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.370

2024-11-25 16:29:45,090 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:29:45,090 - mmdet - INFO - Epoch(val) [18][12]	bbox_mAP: 0.0720, bbox_mAP_50: 0.2660, bbox_mAP_75: 0.0030, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0070, bbox_mAP_l: 0.1020, bbox_mAP_copypaste: 0.072 0.266 0.003 0.000 0.007 0.102
2024-11-25 16:30:04,811 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:30:05,049 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.022
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.093
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.003
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.006
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.035
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.259
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.287
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.287
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.045
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.396

2024-11-25 16:30:05,051 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:30:05,051 - mmdet - INFO - Epoch(val) [19][12]	bbox_mAP: 0.0220, bbox_mAP_50: 0.0930, bbox_mAP_75: 0.0030, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0060, bbox_mAP_l: 0.0350, bbox_mAP_copypaste: 0.022 0.093 0.003 0.000 0.006 0.035
2024-11-25 16:30:20,493 - mmdet - INFO - Saving checkpoint at 20 epochs
2024-11-25 16:30:22,277 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:30:22,472 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.015
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.061
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.001
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.011
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.024
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.226
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.277
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.279
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.073
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.374

2024-11-25 16:30:22,473 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:30:22,473 - mmdet - INFO - Epoch(val) [20][12]	bbox_mAP: 0.0150, bbox_mAP_50: 0.0610, bbox_mAP_75: 0.0010, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0110, bbox_mAP_l: 0.0240, bbox_mAP_copypaste: 0.015 0.061 0.001 0.000 0.011 0.024
2024-11-25 16:30:42,988 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:30:43,096 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.042
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.197
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.002
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.011
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.065
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.272
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.274
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.274
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.109
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.352

2024-11-25 16:30:43,096 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:30:43,097 - mmdet - INFO - Epoch(val) [21][12]	bbox_mAP: 0.0420, bbox_mAP_50: 0.1970, bbox_mAP_75: 0.0020, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0110, bbox_mAP_l: 0.0650, bbox_mAP_copypaste: 0.042 0.197 0.002 0.000 0.011 0.065
2024-11-25 16:31:02,508 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:31:02,712 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.025
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.129
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.001
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.037
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.164
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.190
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.190
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.009
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.270

2024-11-25 16:31:02,713 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:31:02,713 - mmdet - INFO - Epoch(val) [22][12]	bbox_mAP: 0.0250, bbox_mAP_50: 0.1290, bbox_mAP_75: 0.0010, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0370, bbox_mAP_copypaste: 0.025 0.129 0.001 0.000 0.000 0.037
2024-11-25 16:31:20,233 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:31:20,365 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.061
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.218
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.023
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.022
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.088
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.241
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.254
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.254
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.109
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.322

2024-11-25 16:31:20,366 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:31:20,366 - mmdet - INFO - Epoch(val) [23][12]	bbox_mAP: 0.0610, bbox_mAP_50: 0.2180, bbox_mAP_75: 0.0230, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0220, bbox_mAP_l: 0.0880, bbox_mAP_copypaste: 0.061 0.218 0.023 0.000 0.022 0.088
2024-11-25 16:31:41,916 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:31:42,048 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.112
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.359
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.042
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.041
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.147
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.285
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.297
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.297
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.064
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.404

2024-11-25 16:31:42,049 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:31:42,049 - mmdet - INFO - Epoch(val) [24][12]	bbox_mAP: 0.1120, bbox_mAP_50: 0.3590, bbox_mAP_75: 0.0420, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0410, bbox_mAP_l: 0.1470, bbox_mAP_copypaste: 0.112 0.359 0.042 0.000 0.041 0.147
2024-11-25 16:32:04,155 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:32:04,278 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.097
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.273
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.041
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.028
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.131
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.055
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.315

2024-11-25 16:32:04,279 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:32:04,280 - mmdet - INFO - Epoch(val) [25][12]	bbox_mAP: 0.0970, bbox_mAP_50: 0.2730, bbox_mAP_75: 0.0410, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0280, bbox_mAP_l: 0.1310, bbox_mAP_copypaste: 0.097 0.273 0.041 0.000 0.028 0.131
2024-11-25 16:32:21,399 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:32:21,622 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.072
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.298
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.003
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.047
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.090
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.259
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.262
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.262
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.109
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.333

2024-11-25 16:32:21,623 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:32:21,624 - mmdet - INFO - Epoch(val) [26][12]	bbox_mAP: 0.0720, bbox_mAP_50: 0.2980, bbox_mAP_75: 0.0030, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0470, bbox_mAP_l: 0.0900, bbox_mAP_copypaste: 0.072 0.298 0.003 0.000 0.047 0.090
2024-11-25 16:32:42,458 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:32:42,575 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.071
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.323
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.006
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.035
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.099
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.277
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.287
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.287
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.173
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.344

2024-11-25 16:32:42,576 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:32:42,576 - mmdet - INFO - Epoch(val) [27][12]	bbox_mAP: 0.0710, bbox_mAP_50: 0.3230, bbox_mAP_75: 0.0060, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0350, bbox_mAP_l: 0.0990, bbox_mAP_copypaste: 0.071 0.323 0.006 0.000 0.035 0.099
2024-11-25 16:33:21,450 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:33:21,520 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.071
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.307
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.009
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.027
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.096
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.045
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.319

2024-11-25 16:33:21,521 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:33:21,521 - mmdet - INFO - Epoch(val) [28][12]	bbox_mAP: 0.0710, bbox_mAP_50: 0.3070, bbox_mAP_75: 0.0090, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0270, bbox_mAP_l: 0.0960, bbox_mAP_copypaste: 0.071 0.307 0.009 0.000 0.027 0.096
2024-11-25 16:33:43,761 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:33:43,872 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.095
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.400
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.030
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.034
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.128
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.264
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.264
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.264
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.045
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.363

2024-11-25 16:33:43,873 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:33:43,873 - mmdet - INFO - Epoch(val) [29][12]	bbox_mAP: 0.0950, bbox_mAP_50: 0.4000, bbox_mAP_75: 0.0300, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0340, bbox_mAP_l: 0.1280, bbox_mAP_copypaste: 0.095 0.400 0.030 0.000 0.034 0.128
2024-11-25 16:33:59,760 - mmdet - INFO - Saving checkpoint at 30 epochs
2024-11-25 16:34:01,698 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:34:01,842 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.098
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.360
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.025
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.053
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.152
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.295
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.300
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.300
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.145
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.374

2024-11-25 16:34:01,844 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:34:01,844 - mmdet - INFO - Epoch(val) [30][12]	bbox_mAP: 0.0980, bbox_mAP_50: 0.3600, bbox_mAP_75: 0.0250, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0530, bbox_mAP_l: 0.1520, bbox_mAP_copypaste: 0.098 0.360 0.025 0.000 0.053 0.152
2024-11-25 16:34:21,024 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:34:21,256 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.078
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.352
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.004
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.031
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.129
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.310
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.315
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.315
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.173
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.385

2024-11-25 16:34:21,258 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:34:21,258 - mmdet - INFO - Epoch(val) [31][12]	bbox_mAP: 0.0780, bbox_mAP_50: 0.3520, bbox_mAP_75: 0.0040, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0310, bbox_mAP_l: 0.1290, bbox_mAP_copypaste: 0.078 0.352 0.004 0.000 0.031 0.129
2024-11-25 16:34:46,245 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:34:46,354 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.061
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.234
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.004
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.034
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.098
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.292
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.305
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.305
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.200
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.359

2024-11-25 16:34:46,355 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:34:46,355 - mmdet - INFO - Epoch(val) [32][12]	bbox_mAP: 0.0610, bbox_mAP_50: 0.2340, bbox_mAP_75: 0.0040, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0340, bbox_mAP_l: 0.0980, bbox_mAP_copypaste: 0.061 0.234 0.004 0.000 0.034 0.098
2024-11-25 16:35:03,893 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:35:03,988 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.083
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.384
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.007
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.022
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.148
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.269
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.282
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.282
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.118
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.359

2024-11-25 16:35:03,989 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:35:03,989 - mmdet - INFO - Epoch(val) [33][12]	bbox_mAP: 0.0830, bbox_mAP_50: 0.3840, bbox_mAP_75: 0.0070, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0220, bbox_mAP_l: 0.1480, bbox_mAP_copypaste: 0.083 0.384 0.007 0.000 0.022 0.148
2024-11-25 16:35:30,271 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:35:30,312 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.096
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.326
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.007
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.016
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.159
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.313
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.313
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.313
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.136
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.396

2024-11-25 16:35:30,312 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:35:30,312 - mmdet - INFO - Epoch(val) [34][12]	bbox_mAP: 0.0960, bbox_mAP_50: 0.3260, bbox_mAP_75: 0.0070, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0160, bbox_mAP_l: 0.1590, bbox_mAP_copypaste: 0.096 0.326 0.007 0.000 0.016 0.159
2024-11-25 16:36:00,513 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:36:00,553 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.082
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.397
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.005
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.024
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.114
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.267
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.267
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.267
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.100
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.344

2024-11-25 16:36:00,553 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:36:00,553 - mmdet - INFO - Epoch(val) [35][12]	bbox_mAP: 0.0820, bbox_mAP_50: 0.3970, bbox_mAP_75: 0.0050, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0240, bbox_mAP_l: 0.1140, bbox_mAP_copypaste: 0.082 0.397 0.005 0.000 0.024 0.114
2024-11-25 16:36:26,753 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:36:26,834 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.069
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.324
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.018
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.096
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.205
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.205
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.205
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.045
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.278

2024-11-25 16:36:26,835 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:36:26,835 - mmdet - INFO - Epoch(val) [36][12]	bbox_mAP: 0.0690, bbox_mAP_50: 0.3240, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0180, bbox_mAP_l: 0.0960, bbox_mAP_copypaste: 0.069 0.324 0.000 0.000 0.018 0.096
2024-11-25 16:36:56,195 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:36:56,273 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.122
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.500
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.005
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.028
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.170
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.267
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.267
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.267
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.073
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.356

2024-11-25 16:36:56,274 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:36:56,274 - mmdet - INFO - Epoch(val) [37][12]	bbox_mAP: 0.1220, bbox_mAP_50: 0.5000, bbox_mAP_75: 0.0050, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0280, bbox_mAP_l: 0.1700, bbox_mAP_copypaste: 0.122 0.500 0.005 0.000 0.028 0.170
2024-11-25 16:37:31,155 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:37:31,215 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.116
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.403
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.039
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.018
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.164
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.262
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.262
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.262
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.073
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.348

2024-11-25 16:37:31,216 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:37:31,216 - mmdet - INFO - Epoch(val) [38][12]	bbox_mAP: 0.1160, bbox_mAP_50: 0.4030, bbox_mAP_75: 0.0390, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0180, bbox_mAP_l: 0.1640, bbox_mAP_copypaste: 0.116 0.403 0.039 0.000 0.018 0.164
2024-11-25 16:38:03,173 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:38:03,260 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.097
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.457
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.022
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.040
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.132
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.313
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.313
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.313
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.145
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.393

2024-11-25 16:38:03,261 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:38:03,261 - mmdet - INFO - Epoch(val) [39][12]	bbox_mAP: 0.0970, bbox_mAP_50: 0.4570, bbox_mAP_75: 0.0220, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0400, bbox_mAP_l: 0.1320, bbox_mAP_copypaste: 0.097 0.457 0.022 0.000 0.040 0.132
2024-11-25 16:38:32,880 - mmdet - INFO - Saving checkpoint at 40 epochs
2024-11-25 16:38:34,743 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:38:34,836 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.115
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.443
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.009
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.011
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.173
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.285
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.285
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.285
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.073
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.381

2024-11-25 16:38:34,837 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:38:34,837 - mmdet - INFO - Epoch(val) [40][12]	bbox_mAP: 0.1150, bbox_mAP_50: 0.4430, bbox_mAP_75: 0.0090, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0110, bbox_mAP_l: 0.1730, bbox_mAP_copypaste: 0.115 0.443 0.009 0.000 0.011 0.173
2024-11-25 16:39:05,323 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:39:05,415 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.117
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.432
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.002
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.024
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.166
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.282
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.282
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.282
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.100
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.367

2024-11-25 16:39:05,415 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:39:05,416 - mmdet - INFO - Epoch(val) [41][12]	bbox_mAP: 0.1170, bbox_mAP_50: 0.4320, bbox_mAP_75: 0.0020, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0240, bbox_mAP_l: 0.1660, bbox_mAP_copypaste: 0.117 0.432 0.002 0.000 0.024 0.166
2024-11-25 16:39:35,404 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:39:35,509 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.115
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.467
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.013
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.021
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.165
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.246
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.246
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.246
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.027
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.344

2024-11-25 16:39:35,510 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:39:35,510 - mmdet - INFO - Epoch(val) [42][12]	bbox_mAP: 0.1150, bbox_mAP_50: 0.4670, bbox_mAP_75: 0.0130, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0210, bbox_mAP_l: 0.1650, bbox_mAP_copypaste: 0.115 0.467 0.013 0.000 0.021 0.165
2024-11-25 16:40:08,153 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:40:08,250 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.097
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.414
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.004
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.021
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.144
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.256
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.259
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.259
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.036
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.359

2024-11-25 16:40:08,251 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:40:08,251 - mmdet - INFO - Epoch(val) [43][12]	bbox_mAP: 0.0970, bbox_mAP_50: 0.4140, bbox_mAP_75: 0.0040, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0210, bbox_mAP_l: 0.1440, bbox_mAP_copypaste: 0.097 0.414 0.004 0.000 0.021 0.144
2024-11-25 16:40:35,325 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:40:35,420 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.097
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.391
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.013
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.004
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.147
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.259
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.264
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.264
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.073
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.352

2024-11-25 16:40:35,421 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:40:35,421 - mmdet - INFO - Epoch(val) [44][12]	bbox_mAP: 0.0970, bbox_mAP_50: 0.3910, bbox_mAP_75: 0.0130, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0040, bbox_mAP_l: 0.1470, bbox_mAP_copypaste: 0.097 0.391 0.013 0.000 0.004 0.147
2024-11-25 16:40:35,427 - mmdet - INFO - No mosaic and mixup aug now!
2024-11-25 16:40:35,446 - mmdet - INFO - Add additional L1 loss now!
2024-11-25 16:41:00,250 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:41:00,303 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.125
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.496
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.010
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.037
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.191
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.321
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.321
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.321
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.155
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.400

2024-11-25 16:41:00,303 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:41:00,303 - mmdet - INFO - Epoch(val) [45][12]	bbox_mAP: 0.1250, bbox_mAP_50: 0.4960, bbox_mAP_75: 0.0100, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0370, bbox_mAP_l: 0.1910, bbox_mAP_copypaste: 0.125 0.496 0.010 0.000 0.037 0.191
2024-11-25 16:41:15,804 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:41:15,849 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.151
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.450
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.070
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.095
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.207
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.433
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.433
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.433
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.336
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.489

2024-11-25 16:41:15,850 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:41:15,850 - mmdet - INFO - Epoch(val) [46][12]	bbox_mAP: 0.1510, bbox_mAP_50: 0.4500, bbox_mAP_75: 0.0700, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0950, bbox_mAP_l: 0.2070, bbox_mAP_copypaste: 0.151 0.450 0.070 0.000 0.095 0.207
2024-11-25 16:41:34,399 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:41:34,437 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.158
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.475
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.076
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.085
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.214
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.415
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.415
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.415
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.318
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.470

2024-11-25 16:41:34,437 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:41:34,437 - mmdet - INFO - Epoch(val) [47][12]	bbox_mAP: 0.1580, bbox_mAP_50: 0.4750, bbox_mAP_75: 0.0760, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0850, bbox_mAP_l: 0.2140, bbox_mAP_copypaste: 0.158 0.475 0.076 0.000 0.085 0.214
2024-11-25 16:41:59,647 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:41:59,678 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.205
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.589
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.108
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.082
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.284
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.423
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.423
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.423
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.282
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.496

2024-11-25 16:41:59,679 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:41:59,679 - mmdet - INFO - Epoch(val) [48][12]	bbox_mAP: 0.2050, bbox_mAP_50: 0.5890, bbox_mAP_75: 0.1080, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0820, bbox_mAP_l: 0.2840, bbox_mAP_copypaste: 0.205 0.589 0.108 0.000 0.082 0.284
2024-11-25 16:42:22,000 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:42:22,030 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.200
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.646
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.099
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.075
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.274
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.382
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.382
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.382
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.227
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.459

2024-11-25 16:42:22,031 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:42:22,031 - mmdet - INFO - Epoch(val) [49][12]	bbox_mAP: 0.2000, bbox_mAP_50: 0.6460, bbox_mAP_75: 0.0990, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0750, bbox_mAP_l: 0.2740, bbox_mAP_copypaste: 0.200 0.646 0.099 0.000 0.075 0.274
2024-11-25 16:42:40,298 - mmdet - INFO - Saving checkpoint at 50 epochs
2024-11-25 16:42:42,145 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:42:42,175 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.204
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.585
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.099
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.076
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.278
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.403
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.403
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.403
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.255
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.478

2024-11-25 16:42:42,176 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:42:42,176 - mmdet - INFO - Epoch(val) [50][12]	bbox_mAP: 0.2040, bbox_mAP_50: 0.5850, bbox_mAP_75: 0.0990, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0760, bbox_mAP_l: 0.2780, bbox_mAP_copypaste: 0.204 0.585 0.099 0.000 0.076 0.278
2024-11-25 16:42:59,862 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:42:59,889 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.235
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.640
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.132
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.083
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.318
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.423
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.423
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.423
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.264
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.504

2024-11-25 16:42:59,890 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:42:59,890 - mmdet - INFO - Epoch(val) [51][12]	bbox_mAP: 0.2350, bbox_mAP_50: 0.6400, bbox_mAP_75: 0.1320, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0830, bbox_mAP_l: 0.3180, bbox_mAP_copypaste: 0.235 0.640 0.132 0.000 0.083 0.318
2024-11-25 16:43:19,825 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:43:19,850 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.216
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.567
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.111
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.074
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.294
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.413
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.413
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.413
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.273
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.485

2024-11-25 16:43:19,851 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:43:19,851 - mmdet - INFO - Epoch(val) [52][12]	bbox_mAP: 0.2160, bbox_mAP_50: 0.5670, bbox_mAP_75: 0.1110, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0740, bbox_mAP_l: 0.2940, bbox_mAP_copypaste: 0.216 0.567 0.111 0.000 0.074 0.294
2024-11-25 16:43:45,711 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:43:45,735 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.232
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.653
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.136
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.081
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.318
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.405
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.405
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.405
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.191
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.507

2024-11-25 16:43:45,736 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:43:45,736 - mmdet - INFO - Epoch(val) [53][12]	bbox_mAP: 0.2320, bbox_mAP_50: 0.6530, bbox_mAP_75: 0.1360, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0810, bbox_mAP_l: 0.3180, bbox_mAP_copypaste: 0.232 0.653 0.136 0.000 0.081 0.318
2024-11-25 16:44:12,978 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:44:13,001 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.222
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.655
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.108
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.088
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.298
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.392
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.392
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.392
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.218
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.478

2024-11-25 16:44:13,001 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:44:13,001 - mmdet - INFO - Epoch(val) [54][12]	bbox_mAP: 0.2220, bbox_mAP_50: 0.6550, bbox_mAP_75: 0.1080, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0880, bbox_mAP_l: 0.2980, bbox_mAP_copypaste: 0.222 0.655 0.108 0.000 0.088 0.298
2024-11-25 16:44:40,354 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:44:40,383 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.225
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.650
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.104
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.079
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.303
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.392
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.392
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.392
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.200
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.485

2024-11-25 16:44:40,383 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:44:40,383 - mmdet - INFO - Epoch(val) [55][12]	bbox_mAP: 0.2250, bbox_mAP_50: 0.6500, bbox_mAP_75: 0.1040, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0790, bbox_mAP_l: 0.3030, bbox_mAP_copypaste: 0.225 0.650 0.104 0.000 0.079 0.303
2024-11-25 16:44:59,186 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:44:59,211 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.216
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.646
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.115
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.080
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.291
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.377
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.377
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.377
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.218
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.456

2024-11-25 16:44:59,212 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:44:59,212 - mmdet - INFO - Epoch(val) [56][12]	bbox_mAP: 0.2160, bbox_mAP_50: 0.6460, bbox_mAP_75: 0.1150, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0800, bbox_mAP_l: 0.2910, bbox_mAP_copypaste: 0.216 0.646 0.115 0.000 0.080 0.291
2024-11-25 16:45:20,408 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:45:20,439 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.219
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.669
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.075
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.092
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.294
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.379
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.379
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.379
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.245
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.448

2024-11-25 16:45:20,440 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:45:20,440 - mmdet - INFO - Epoch(val) [57][12]	bbox_mAP: 0.2190, bbox_mAP_50: 0.6690, bbox_mAP_75: 0.0750, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0920, bbox_mAP_l: 0.2940, bbox_mAP_copypaste: 0.219 0.669 0.075 0.000 0.092 0.294
2024-11-25 16:45:48,193 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:45:48,218 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.234
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.668
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.098
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.071
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.326
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.369
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.369
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.369
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.218
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.444

2024-11-25 16:45:48,219 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:45:48,219 - mmdet - INFO - Epoch(val) [58][12]	bbox_mAP: 0.2340, bbox_mAP_50: 0.6680, bbox_mAP_75: 0.0980, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0710, bbox_mAP_l: 0.3260, bbox_mAP_copypaste: 0.234 0.668 0.098 0.000 0.071 0.326
2024-11-25 16:46:14,833 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:46:14,858 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.238
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.696
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.092
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.080
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.330
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.382
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.382
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.382
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.236
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.456

2024-11-25 16:46:14,859 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:46:14,859 - mmdet - INFO - Epoch(val) [59][12]	bbox_mAP: 0.2380, bbox_mAP_50: 0.6960, bbox_mAP_75: 0.0920, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0800, bbox_mAP_l: 0.3300, bbox_mAP_copypaste: 0.238 0.696 0.092 0.000 0.080 0.330
2024-11-25 16:46:39,681 - mmdet - INFO - Saving checkpoint at 60 epochs
2024-11-25 16:46:41,406 - mmdet - INFO - Evaluating bbox...
2024-11-25 16:46:41,431 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.217
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.682
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.091
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.075
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.297
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.379
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.379
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.379
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.236
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.452

2024-11-25 16:46:41,432 - mmdet - INFO - Exp name: yolox_s_lite.py
2024-11-25 16:46:41,432 - mmdet - INFO - Epoch(val) [60][12]	bbox_mAP: 0.2170, bbox_mAP_50: 0.6820, bbox_mAP_75: 0.0910, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0750, bbox_mAP_l: 0.2970, bbox_mAP_copypaste: 0.217 0.682 0.091 0.000 0.075 0.297

SUCCESS: ModelMaker - Training completed.

  • Hi,

    The expert assigned to this on vacation this week. Kindly expect delay in response.

    Best Regards,
    Sudheer

  • could you help check the log:
    I don’t understand why the compiled models are trained with the same data set. Some models do not work and the following error log appears.

    root@am68a-sk:~/edgeai-gst-apps/apps_cpp/bin/Release# ./app_edgeai ~/fork_detection.yaml -l 3
    libtidl_onnxrt_EP loaded 0x2451ecc0 
    Final number of subgraphs created are : 1, - Offloaded Nodes - 283, Total Nodes - 283 
    APP: Init ... !!!
    MEM: Init ... !!!
    MEM: Initialized DMA HEAP (fd=5) !!!
    MEM: Init ... Done !!!
    IPC: Init ... !!!
    IPC: Init ... Done !!!
    REMOTE_SERVICE: Init ... !!!
    REMOTE_SERVICE: Init ... Done !!!
       110.952355 s: GTC Frequency = 200 MHz
    APP: Init ... Done !!!
       110.952469 s:  VX_ZONE_INIT:Enabled
       110.952478 s:  VX_ZONE_ERROR:Enabled
       110.952485 s:  VX_ZONE_WARNING:Enabled
       110.953525 s:  VX_ZONE_INIT:[tivxInitLocal:130] Initialization Done !!!
       110.954001 s:  VX_ZONE_INIT:[tivxHostInitLocal:101] Initialization Done for HOST !!!
       110.971130 s:  VX_ZONE_ERROR:[ownContextSendCmd:822] Command ack message returned failure cmd_status: -1
       110.971159 s:  VX_ZONE_ERROR:[ownContextSendCmd:862] tivxEventWait() failed.
       110.971168 s:  VX_ZONE_ERROR:[ownNodeKernelInit:584] Target kernel, TIVX_CMD_NODE_CREATE failed for node TIDLNode
       110.971175 s:  VX_ZONE_ERROR:[ownNodeKernelInit:585] Please be sure the target callbacks have been registered for this core
       110.971181 s:  VX_ZONE_ERROR:[ownNodeKernelInit:586] If the target callbacks have been registered, please ensure no errors are occurring within the create callback of this kernel
       110.971190 s:  VX_ZONE_ERROR:[ownGraphNodeKernelInit:583] kernel init for node 0, kernel com.ti.tidl:1:2 ... failed !!!
       110.971216 s:  VX_ZONE_ERROR:[vxVerifyGraph:2059] Node kernel init failed
       110.971224 s:  VX_ZONE_ERROR:[vxVerifyGraph:2113] Graph verify failed
    TIDL_RT_OVX: ERROR: Verifying TIDL graph ... Failed !!!
    TIDL_RT_OVX: ERROR: Verify OpenVX graph failed
    graph
    ==========[INPUT PIPELINE(S)]==========
    
    [PIPE-0]
    
    v4l2src device=/dev/video-rpi-cam0 io-mode=5 ! queue leaky=2 ! capsfilter caps="video/x-bayer, width=(int)3280, height=(int)2464, format=(string)rggb;" ! tiovxisp dcc-isp-file=/opt/imaging/imx219/linear/dcc_viss.bin sensor-name=SENSOR_SONY_IMX219_RPI ! capsfilter caps="video/x-raw, format=(string)NV12;" ! tiovxmultiscaler name=multiscaler_split_00
    multiscaler_split_00. ! queue ! capsfilter caps="video/x-raw, width=(int)820, height=(int)640;" ! tiovxmultiscaler target=1 ! capsfilter caps="video/x-raw, width=(int)640, height=(int)640;" ! tiovxdlpreproc out-pool-size=4 data-type=3 tensor-format=1 ! capsfilter caps="application/x-tensor-tiovx;" ! appsink max-buffers=2 drop=true name=flow0_pre_proc0
    multiscaler_split_00. ! queue ! capsfilter caps="video/x-raw, width=(int)1120, height=(int)720;" ! tiovxdlcolorconvert out-pool-size=4 ! capsfilter caps="video/x-raw, format=(string)RGB;" ! appsink max-buffers=2 drop=true name=flow0_sensor0
    
    ==========[OUTPUT PIPELINE]==========
    
    appsrc do-timestamp=true format=3 block=true name=flow0_post_proc0 ! tiovxdlcolorconvert ! capsfilter caps="video/x-raw, width=(int)1120, height=(int)720, format=(string)NV12;" ! queue ! mosaic0.sink0
    
    tiovxmosaic target=1 background=/tmp/background0 name=mosaic0 src::pool-size=4
    sink_0::startx="<480>" sink_0::starty="<150>" sink_0::widths="<1120>" sink_0::heights="<720>"
    ! capsfilter caps="video/x-raw, format=(string)NV12, width=(int)1920, height=(int)1080;" ! queue ! tiperfoverlay title=                   Edge Computer ! kmssink sync=false max-lateness=5000000 qos=true processing-deadline=15000000 driver-name=tidss connector-id=40 plane-id=31 force-modesetting=true
    
    [WARNING] This channel is already in use, continuing anyway. Use GPIO::setwarnings(false) to disable warnings.
    [WARNING] This channel is already in use, continuing anyway. Use GPIO::setwarnings(false) to disable warnings.
    [WARNING] This channel is already in use, continuing anyway. Use GPIO::setwarnings(false) to disable warnings.
    [WARNING] This channel is already in use, continuing anyway. Use GPIO::setwarnings(false) to disable warnings.
    [WARNING] This channel is already in use, continuing anyway. Use GPIO::setwarnings(false) to disable warnings.
    IttCtrl_registerHandler: command echo registered at location 0 
    IttCtrl_registerHandler: command iss_read_2a_params registered at location 1 
    IttCtrl_registerHandler: command iss_write_2a_params registered at location 2 
    IttCtrl_registerHandler: command iss_raw_save registered at location 3 
    IttCtrl_registerHandler: command iss_yuv_save registered at location 4 
    IttCtrl_registerHandler: command iss_read_sensor_reg registered at location 5 
    IttCtrl_registerHandler: command iss_write_sensor_reg registered at location 6 
    IttCtrl_registerHandler: command dev_ctrl registered at location 7 
    IttCtrl_registerHandler: command iss_send_dcc_file registered at location 8 
    Error: failed to open i2c bus at /dev/i2c-9
    Warning: Failed to initialize i2c bus. Register read/write will not work !!!
     NETWORK: Opened at IP Addr = 192.168.1.8, socket port=5000!!!
       111.842275 s:  VX_ZONE_ERROR:[ownContextSendCmd:822] Command ack message returned failure cmd_status: -1
       111.842306 s:  VX_ZONE_ERROR:[ownContextSendCmd:862] tivxEventWait() failed.
       111.842315 s:  VX_ZONE_ERROR:[ownNodeKernelInit:584] Target kernel, TIVX_CMD_NODE_CREATE failed for node TIDLNode
       111.842321 s:  VX_ZONE_ERROR:[ownNodeKernelInit:585] Please be sure the target callbacks have been registered for this core
       111.842328 s:  VX_ZONE_ERROR:[ownNodeKernelInit:586] If the target callbacks have been registered, please ensure no errors are occurring within the create callback of this kernel
       111.842336 s:  VX_ZONE_ERROR:[ownGraphNodeKernelInit:583] kernel init for node 0, kernel com.ti.tidl:1:2 ... failed !!!
       111.842351 s:  VX_ZONE_ERROR:[vxVerifyGraph:2059] Node kernel init failed
       111.842357 s:  VX_ZONE_ERROR:[vxVerifyGraph:2113] Graph verify failed
       111.842418 s:  VX_ZONE_ERROR:[ownGraphScheduleGraphWrapper:803] graph is not in a state required to be scheduled
       111.842425 s:  VX_ZONE_ERROR:[vxProcessGraph:738] schedule graph failed
       111.842431 s:  VX_ZONE_ERROR:[vxProcessGraph:743] wait graph failed
    ERROR: Running TIDL graph ... Failed !!!
       111.871616 s:  VX_ZONE_ERROR:[ownContextSendCmd:822] Command ack message returned failure cmd_status: -1
       111.871658 s:  VX_ZONE_ERROR:[ownContextSendCmd:862] tivxEventWait() failed.
       111.871670 s:  VX_ZONE_ERROR:[ownNodeKernelInit:584] Target kernel, TIVX_CMD_NODE_CREATE failed for node TIDLNode
       111.871679 s:  VX_ZONE_ERROR:[ownNodeKernelInit:585] Please be sure the target callbacks have been registered for this core
       111.871687 s:  VX_ZONE_ERROR:[ownNodeKernelInit:586] If the target callbacks have been registered, please ensure no errors are occurring within the create callback of this kernel
       111.871697 s:  VX_ZONE_ERROR:[ownGraphNodeKernelInit:583] kernel init for node 0, kernel com.ti.tidl:1:2 ... failed !!!
       111.871724 s:  VX_ZONE_ERROR:[vxVerifyGraph:2059] Node kernel init failed
       111.871733 s:  VX_ZONE_ERROR:[vxVerifyGraph:2113] Graph verify failed
       111.871812 s:  VX_ZONE_ERROR:[ownGraphScheduleGraphWrapper:803] graph is not in a state required to be scheduled
       111.871825 s:  VX_ZONE_ERROR:[vxProcessGraph:738] schedule graph failed
       111.871833 s:  VX_ZONE_ERROR:[vxProcessGraph:743] wait graph failed
    ERROR: Running TIDL graph ... Failed !!!
       111.902659 s:  VX_ZONE_ERROR:[ownContextSendCmd:822] Command ack message returned failure cmd_status: -1
       111.902704 s:  VX_ZONE_ERROR:[ownContextSendCmd:862] tivxEventWait() failed.
       111.902715 s:  VX_ZONE_ERROR:[ownNodeKernelInit:584] Target kernel, TIVX_CMD_NODE_CREATE failed for node TIDLNode
       111.902724 s:  VX_ZONE_ERROR:[ownNodeKernelInit:585] Please be sure the target callbacks have been registered for this core
       111.902732 s:  VX_ZONE_ERROR:[ownNodeKernelInit:586] If the target callbacks have been registered, please ensure no errors are occurring within the create callback of this kernel
       111.902743 s:  VX_ZONE_ERROR:[ownGraphNodeKernelInit:583] kernel init for node 0, kernel com.ti.tidl:1:2 ... failed !!!
       111.902767 s:  VX_ZONE_ERROR:[vxVerifyGraph:2059] Node kernel init failed
       111.902775 s:  VX_ZONE_ERROR:[vxVerifyGraph:2113] Graph verify failed

  •  I checked the compilation log, It seems that my problem is the same as this post,

    e2e.ti.com/.../sk-am62a-lp-issue-with-the-network-compilation-with-edgeai-tensorlab-tidl_e_dataflow_info_null-network-compiler-returned-with-error

    i have this warning,
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] Network compiler returned with error or didn't executed, this model can only be used on PC/Host emulation mode, it is not expected to work on target/EVM.

    It seems that both SDK9.1 and SDK9.2 have this problem, I want to know what the final solution is if I don’t upgrade to SDK10.0,I am using SDK9.1.
    I tried just replacing tidl-tools to version v10.0. TIDL_E_DATAFLOW_INFO_NULL did not appear, but there were still other problems during deployment. The inference time was very long.
    and tried re-cloning edgeai-tensorlab and trying different machines, but neither worked.
     Because the project is quite urgent, can you help me solve this problem as soon as possible? Thank you.

  • I wonder if any experts can help me check this issue. Thanks.

  • Any updates?

  • Hi,

    Who can help me take a look this problem? Thanks
    and even I compile the out of the box example, There is also this warning,
    WARNING: [TIDL_E_DATAFLOW_INFO_NULL] Network compiler returned with error or didn't executed, this model can only be used on PC/Host emulation mode, it is not expected to work on target/EVM.

  • @
    Can you help find someone to look into this problem for me? Thank you.

  • Hi 

    This is a known issue because of the linux version incompatibility. There are three workarounds: 

    1. degrade your ubuntu machine linux version to below 6.5

    2. Or use edgeai tidl tools version 10.0.5, which is compatible with 9.2 sdk. 

    3. Or use latest version like 10.1 to test if your model work. If it does work, you can upgrade tidl only on your 9.2 sdk.

    Regards,

    Adam

  • I haven't tried workroud 1 yet,

    workroud 2, I used SDK 9.1,  I tried just replacing tidl-tools to version v10.0_xx(10.0.02~10.0.08). TIDL_E_DATAFLOW_INFO_NULL did not appear, but there were still other problems during deployment. The inference time was very long.


    and i tried SDK10.0 with  tidl-tools to version v10.0  TIDL_E_DATAFLOW_INFO_NULL did not appear, As described in the post below,
    have changed the same trainning and compilation parameters as Model Composer in Model Maker with the same datasets,The average procision of the model compiled by Model Maker is lower than that of the model compiled by Model Composer( Target board test result)
    https://e2e.ti.com/support/processors-group/processors/f/processors-forum/1413808/sk-am68-how-to-change-trainning-and-compilation-parameters-in-model-maker/5479430?tisearch=e2e-sitesearch&keymatch=%25252520user%2525253A612430#5479430


    another issue:
    https://dev.ti.com/modelcomposer/
    for Model Composer, It also appears TIDL_E_DATAFLOW_INFO_NULL when compiling,

    I tried two different projects. In one of them, I didn’t change the datasets. It was run on the board before.

    Since yesterday, the above warning has appeared when I compiled the results. It cannot be run on the board. Even I have not changed the datasets. What happened?

  • Hi

    and i tried SDK10.0 with  tidl-tools to version v10.0  TIDL_E_DATAFLOW_INFO_NULL did not appear, As described in the post below

    Correct me if I understand incorrectly: model maker 10.0 + sdk 10.0 works. However, the model created by model maker 10.0 has less accuracy than the model created by model composer with sdk 9.1.

    Since yesterday, the above warning has appeared when I compiled the results. It cannot be run on the board.

    It is a known issue with sdk below 10.0 incompatibility with higher linux version. It is possible that the machine running the model composer is upgraded to higher linux version.

    Regards,

    Adam

  • and i tried SDK10.0 with  tidl-tools to version v10.0  TIDL_E_DATAFLOW_INFO_NULL did not appear, As described in the post below

    Correct me if I understand incorrectly: model maker 10.0 + sdk 10.0 works. However, the model created by model maker 10.0 has less accuracy than the model created by model composer with sdk 9.1.

    >>>yes,since the TIDL_E_DATAFLOW_INFO_NULL  i can not compare  model maker 9.1 + sdk 9.1 with model composer  9.1 + sdk 9.1

    Since yesterday, the above warning has appeared when I compiled the results. It cannot be run on the board.

    It is a known issue with sdk below 10.0 incompatibility with higher linux version. It is possible that the machine running the model composer is upgraded to higher linux version.

    >>>you mean the machine running the model composer(TI Server) maybe upgrade to higher kernel version, that is, the web version of model composer  can no longer be used now?    



  • Hi Adam;

    Thanks for inputs and helps

    Hi csscyt;

    Here is the info about the compatibility between TIDL and SDK.

    https://github.com/TexasInstruments/edgeai-tidl-tools/blob/master/docs/version_compatibility_table.md

    When you download the SDK, make sure to implement the compatible version TIDL. 

    Since this thread becomes a long discussion, I will close this one. If you still have questions, please submit a new ticket with latest related info. So we can address that easily.

    Thanks and regards

    Wen Li