This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

SK-AM62A-LP: Training failed during Image train with Edge AI studio Model composer

Part Number: SK-AM62A-LP

Tool/software:

Error reading previous trained file

Matplotlib created a temporary cache directory at /tmp/matplotlib-sd7fs966 because the default path (/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.
/opt/edgeai-mmdetection/mmdet/utils/setup_env.py:32: UserWarning: Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
  warnings.warn(
/opt/edgeai-mmdetection/mmdet/utils/setup_env.py:42: UserWarning: Setting MKL_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
  warnings.warn(
fatal: not a git repository (or any of the parent directories): .git
2025-03-21 07:01:06,793 - mmdet - INFO - Environment info:
------------------------------------------------------------
sys.platform: linux
Python: 3.10.14 (main, Jun 25 2024, 21:25:28) [GCC 11.4.0]
CUDA available: False
GCC: gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
PyTorch: 2.0.1+cpu
PyTorch compiling details: PyTorch built with:
  - GCC 9.3
  - C++ Version: 201703
  - Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.1, USE_CUDA=0, USE_CUDNN=OFF, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, 

TorchVision: 0.15.2+cpu
OpenCV: 4.10.0
MMCV: 1.4.8
MMCV Compiler: GCC 11.4
MMCV CUDA Compiler: not available
MMDetection: 2.22.0+
------------------------------------------------------------

2025-03-21 07:01:07,391 - mmdet - INFO - Distributed training: False
2025-03-21 07:01:08,119 - mmdet - INFO - Config:
dataset_type = 'CocoDataset'
data_root = '/opt/EdgeAIRoot/18293833/projects/08f16d60/dataset'
data = dict(
    samples_per_gpu=8,
    workers_per_gpu=2,
    train=dict(
        type='MultiImageMixDataset',
        dataset=dict(
            type='ModelMakerDataset',
            ann_file=
            '/opt/EdgeAIRoot/18293833/projects/08f16d60/dataset/annotations/instances_train.json',
            img_prefix=
            '/opt/EdgeAIRoot/18293833/projects/08f16d60/dataset/train',
            pipeline=[
                dict(type='LoadImageFromFile'),
                dict(type='LoadAnnotations', with_bbox=True)
            ],
            filter_empty_gt=False,
            classes=['bad', 'good', 'reverse']),
        pipeline=[
            dict(type='Mosaic', img_scale=(416, 416), pad_val=114.0),
            dict(
                type='RandomAffine',
                scaling_ratio_range=(0.5, 1.5),
                border=(-208, -208)),
            dict(
                type='MixUp',
                img_scale=(416, 416),
                ratio_range=(0.8, 1.6),
                pad_val=114.0),
            dict(type='YOLOXHSVRandomAug'),
            dict(type='RandomFlip', flip_ratio=0.5),
            dict(type='Resize', img_scale=(416, 416), keep_ratio=True),
            dict(
                type='Pad',
                pad_to_square=True,
                pad_val=dict(img=(114.0, 114.0, 114.0))),
            dict(
                type='FilterAnnotations',
                min_gt_bbox_wh=(1, 1),
                keep_empty=False),
            dict(type='DefaultFormatBundle'),
            dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
        ]),
    val=dict(
        type='ModelMakerDataset',
        ann_file=
        '/opt/EdgeAIRoot/18293833/projects/08f16d60/dataset/annotations/instances_val.json',
        img_prefix='/opt/EdgeAIRoot/18293833/projects/08f16d60/dataset/val',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(416, 416),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Pad',
                        pad_to_square=True,
                        pad_val=dict(img=(114.0, 114.0, 114.0))),
                    dict(type='DefaultFormatBundle'),
                    dict(type='Collect', keys=['img'])
                ])
        ],
        classes=['bad', 'good', 'reverse']),
    test=dict(
        type='CocoDataset',
        ann_file='data/coco/annotations/instances_val2017.json',
        img_prefix='data/coco/val2017/',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(416, 416),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Pad',
                        pad_to_square=True,
                        pad_val=dict(img=(114.0, 114.0, 114.0))),
                    dict(type='DefaultFormatBundle'),
                    dict(type='Collect', keys=['img'])
                ])
        ]),
    persistent_workers=True)
evaluation = dict(interval=1, metric='bbox')
cudnn_benchmark = True
resize_with_scale_factor = True
max_epochs = 300
num_last_epochs = 15
interval = 10
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = './EdgeAIRoot/downloads/pretrained/yolox_nano_lite/yolox_nano_lite_416x416_20220214_checkpoint.pth'
resume_from = None
workflow = [('train', 1)]
print_model_complexity = True
optimizer = dict(
    type='SGD',
    lr=0.001,
    momentum=0.9,
    weight_decay=0.0005,
    nesterov=True,
    paramwise_cfg=dict(norm_decay_mult=0.0, bias_decay_mult=0.0))
optimizer_config = dict(grad_clip=None)
lr_config = dict(
    policy='YOLOX',
    warmup='exp',
    by_epoch=False,
    warmup_by_epoch=True,
    warmup_ratio=1,
    warmup_iters=1,
    num_last_epochs=5,
    min_lr_ratio=0.05)
runner = dict(type='EpochBasedRunner', max_epochs=15)
custom_hooks = [
    dict(type='YOLOXModeSwitchHook', num_last_epochs=15, priority=48),
    dict(type='SyncNormHook', num_last_epochs=15, interval=10, priority=48),
    dict(
        type='ExpMomentumEMAHook',
        resume_from=None,
        momentum=0.0001,
        priority=49)
]
checkpoint_config = dict(interval=10)
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
img_scale = (416, 416)
input_size = (416, 416)
samples_per_gpu = 16
num_classes_dict = dict(
    CocoDataset=80, VOCDataset=20, CityscapesDataset=8, WIDERFaceDataset=1)
dataset_root_dict = dict(
    CocoDataset='data/coco/',
    VOCDataset='data/VOCdevkit/',
    CityscapesDataset='data/cityscapes/',
    WIDERFaceDataset='data/WIDERFace/')
num_classes = 80
img_norm_cfg = dict(mean=[0.0, 0.0, 0.0], std=[1.0, 1.0, 1.0], to_rgb=False)
convert_to_lite_model = dict(group_size_dw=None)
quantize = False
initial_learning_rate = 0.01
model = dict(
    type='YOLOX',
    input_size=(416, 416),
    random_size_range=(10, 20),
    random_size_interval=10,
    backbone=dict(
        type='CSPDarknet',
        deepen_factor=0.33,
        widen_factor=0.25,
        use_depthwise=False),
    neck=dict(
        type='YOLOXPAFPN',
        in_channels=[64, 128, 256],
        out_channels=64,
        num_csp_blocks=1,
        use_depthwise=False),
    bbox_head=dict(
        type='YOLOXHead',
        num_classes=3,
        in_channels=64,
        feat_channels=64,
        use_depthwise=False),
    train_cfg=dict(assigner=dict(type='SimOTAAssigner', center_radius=2.5)),
    test_cfg=dict(score_thr=0.01, nms=dict(type='nms', iou_threshold=0.65)))
train_pipeline = [
    dict(type='Mosaic', img_scale=(416, 416), pad_val=114.0),
    dict(
        type='RandomAffine',
        scaling_ratio_range=(0.5, 1.5),
        border=(-208, -208)),
    dict(
        type='MixUp',
        img_scale=(416, 416),
        ratio_range=(0.8, 1.6),
        pad_val=114.0),
    dict(type='YOLOXHSVRandomAug'),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Resize', img_scale=(416, 416), keep_ratio=True),
    dict(
        type='Pad',
        pad_to_square=True,
        pad_val=dict(img=(114.0, 114.0, 114.0))),
    dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(416, 416),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(
                type='Pad',
                pad_to_square=True,
                pad_val=dict(img=(114.0, 114.0, 114.0))),
            dict(type='DefaultFormatBundle'),
            dict(type='Collect', keys=['img'])
        ])
]
work_dir = '/opt/EdgeAIRoot/18293833/projects/08f16d60/run/20250321-070054/yolox_nano_lite/training'
total_epochs = 15
export_model = True
auto_resume = False
gpu_ids = [0]

2025-03-21 07:01:08,119 - mmdet - INFO - Set random seed to 1323013171, deterministic: False
2025-03-21 07:01:08,175 - mmdet - INFO - initialize CSPDarknet with init_cfg {'type': 'Kaiming', 'layer': 'Conv2d', 'a': 2.23606797749979, 'distribution': 'uniform', 'mode': 'fan_in', 'nonlinearity': 'leaky_relu'}
2025-03-21 07:01:08,185 - mmdet - INFO - initialize YOLOXPAFPN with init_cfg {'type': 'Kaiming', 'layer': 'Conv2d', 'a': 2.23606797749979, 'distribution': 'uniform', 'mode': 'fan_in', 'nonlinearity': 'leaky_relu'}
2025-03-21 07:01:08,192 - mmdet - INFO - initialize YOLOXHead with init_cfg {'type': 'Kaiming', 'layer': 'Conv2d', 'a': 2.23606797749979, 'distribution': 'uniform', 'mode': 'fan_in', 'nonlinearity': 'leaky_relu'}
2025-03-21 07:01:08,398 - mmdet - INFO - =========================================================================================================
Layer (type:depth-idx)                                  Output Shape              Param #
=========================================================================================================
YOLOX                                                   [1, 3, 52, 52]            --
├─CSPDarknet: 1-1                                       [1, 64, 52, 52]           --
│    └─FocusLite: 2-1                                   [1, 16, 208, 208]         --
│    │    └─ConvModule: 3-1                             [1, 12, 208, 208]         --
│    │    │    └─Conv2d: 4-1                            [1, 12, 208, 208]         324
│    │    │    └─BatchNorm2d: 4-2                       [1, 12, 208, 208]         24
│    │    └─ConvModule: 3-2                             [1, 16, 208, 208]         --
│    │    │    └─Conv2d: 4-3                            [1, 16, 208, 208]         1,728
│    │    │    └─BatchNorm2d: 4-4                       [1, 16, 208, 208]         32
│    │    │    └─ReLU: 4-5                              [1, 16, 208, 208]         --
│    └─Sequential: 2-2                                  [1, 32, 104, 104]         --
│    │    └─ConvModule: 3-3                             [1, 32, 104, 104]         --
│    │    │    └─Conv2d: 4-6                            [1, 32, 104, 104]         4,608
│    │    │    └─BatchNorm2d: 4-7                       [1, 32, 104, 104]         64
│    │    │    └─ReLU: 4-8                              [1, 32, 104, 104]         --
│    │    └─CSPLayer: 3-4                               [1, 32, 104, 104]         --
│    │    │    └─ConvModule: 4-9                        [1, 16, 104, 104]         --
│    │    │    │    └─Conv2d: 5-1                       [1, 16, 104, 104]         512
│    │    │    │    └─BatchNorm2d: 5-2                  [1, 16, 104, 104]         32
│    │    │    │    └─ReLU: 5-3                         [1, 16, 104, 104]         --
│    │    │    └─ConvModule: 4-10                       [1, 16, 104, 104]         --
│    │    │    │    └─Conv2d: 5-4                       [1, 16, 104, 104]         512
│    │    │    │    └─BatchNorm2d: 5-5                  [1, 16, 104, 104]         32
│    │    │    │    └─ReLU: 5-6                         [1, 16, 104, 104]         --
│    │    │    └─Sequential: 4-11                       [1, 16, 104, 104]         --
│    │    │    │    └─DarknetBottleneck: 5-7            [1, 16, 104, 104]         --
│    │    │    │    │    └─ConvModule: 6-1              [1, 16, 104, 104]         --
│    │    │    │    │    │    └─Conv2d: 7-1             [1, 16, 104, 104]         256
│    │    │    │    │    │    └─BatchNorm2d: 7-2        [1, 16, 104, 104]         32
│    │    │    │    │    │    └─ReLU: 7-3               [1, 16, 104, 104]         --
│    │    │    │    │    └─ConvModule: 6-2              [1, 16, 104, 104]         --
│    │    │    │    │    │    └─Conv2d: 7-4             [1, 16, 104, 104]         2,304
│    │    │    │    │    │    └─BatchNorm2d: 7-5        [1, 16, 104, 104]         32
│    │    │    │    │    │    └─ReLU: 7-6               [1, 16, 104, 104]         --
│    │    │    └─ConvModule: 4-12                       [1, 32, 104, 104]         --
│    │    │    │    └─Conv2d: 5-8                       [1, 32, 104, 104]         1,024
│    │    │    │    └─BatchNorm2d: 5-9                  [1, 32, 104, 104]         64
│    │    │    │    └─ReLU: 5-10                        [1, 32, 104, 104]         --
│    └─Sequential: 2-3                                  [1, 64, 52, 52]           --
│    │    └─ConvModule: 3-5                             [1, 64, 52, 52]           --
│    │    │    └─Conv2d: 4-13                           [1, 64, 52, 52]           18,432
│    │    │    └─BatchNorm2d: 4-14                      [1, 64, 52, 52]           128
│    │    │    └─ReLU: 4-15                             [1, 64, 52, 52]           --
│    │    └─CSPLayer: 3-6                               [1, 64, 52, 52]           --
│    │    │    └─ConvModule: 4-16                       [1, 32, 52, 52]           --
│    │    │    │    └─Conv2d: 5-11                      [1, 32, 52, 52]           2,048
│    │    │    │    └─BatchNorm2d: 5-12                 [1, 32, 52, 52]           64
│    │    │    │    └─ReLU: 5-13                        [1, 32, 52, 52]           --
│    │    │    └─ConvModule: 4-17                       [1, 32, 52, 52]           --
│    │    │    │    └─Conv2d: 5-14                      [1, 32, 52, 52]           2,048
│    │    │    │    └─BatchNorm2d: 5-15                 [1, 32, 52, 52]           64
│    │    │    │    └─ReLU: 5-16                        [1, 32, 52, 52]           --
│    │    │    └─Sequential: 4-18                       [1, 32, 52, 52]           --
│    │    │    │    └─DarknetBottleneck: 5-17           [1, 32, 52, 52]           --
│    │    │    │    │    └─ConvModule: 6-3              [1, 32, 52, 52]           --
│    │    │    │    │    │    └─Conv2d: 7-7             [1, 32, 52, 52]           1,024
│    │    │    │    │    │    └─BatchNorm2d: 7-8        [1, 32, 52, 52]           64
│    │    │    │    │    │    └─ReLU: 7-9               [1, 32, 52, 52]           --
│    │    │    │    │    └─ConvModule: 6-4              [1, 32, 52, 52]           --
│    │    │    │    │    │    └─Conv2d: 7-10            [1, 32, 52, 52]           9,216
│    │    │    │    │    │    └─BatchNorm2d: 7-11       [1, 32, 52, 52]           64
│    │    │    │    │    │    └─ReLU: 7-12              [1, 32, 52, 52]           --
│    │    │    │    └─DarknetBottleneck: 5-18           [1, 32, 52, 52]           --
│    │    │    │    │    └─ConvModule: 6-5              [1, 32, 52, 52]           --
│    │    │    │    │    │    └─Conv2d: 7-13            [1, 32, 52, 52]           1,024
│    │    │    │    │    │    └─BatchNorm2d: 7-14       [1, 32, 52, 52]           64
│    │    │    │    │    │    └─ReLU: 7-15              [1, 32, 52, 52]           --
│    │    │    │    │    └─ConvModule: 6-6              [1, 32, 52, 52]           --
│    │    │    │    │    │    └─Conv2d: 7-16            [1, 32, 52, 52]           9,216
│    │    │    │    │    │    └─BatchNorm2d: 7-17       [1, 32, 52, 52]           64
│    │    │    │    │    │    └─ReLU: 7-18              [1, 32, 52, 52]           --
│    │    │    │    └─DarknetBottleneck: 5-19           [1, 32, 52, 52]           --
│    │    │    │    │    └─ConvModule: 6-7              [1, 32, 52, 52]           --
│    │    │    │    │    │    └─Conv2d: 7-19            [1, 32, 52, 52]           1,024
│    │    │    │    │    │    └─BatchNorm2d: 7-20       [1, 32, 52, 52]           64
│    │    │    │    │    │    └─ReLU: 7-21              [1, 32, 52, 52]           --
│    │    │    │    │    └─ConvModule: 6-8              [1, 32, 52, 52]           --
│    │    │    │    │    │    └─Conv2d: 7-22            [1, 32, 52, 52]           9,216
│    │    │    │    │    │    └─BatchNorm2d: 7-23       [1, 32, 52, 52]           64
│    │    │    │    │    │    └─ReLU: 7-24              [1, 32, 52, 52]           --
│    │    │    └─ConvModule: 4-19                       [1, 64, 52, 52]           --
│    │    │    │    └─Conv2d: 5-20                      [1, 64, 52, 52]           4,096
│    │    │    │    └─BatchNorm2d: 5-21                 [1, 64, 52, 52]           128
│    │    │    │    └─ReLU: 5-22                        [1, 64, 52, 52]           --
│    └─Sequential: 2-4                                  [1, 128, 26, 26]          --
│    │    └─ConvModule: 3-7                             [1, 128, 26, 26]          --
│    │    │    └─Conv2d: 4-20                           [1, 128, 26, 26]          73,728
│    │    │    └─BatchNorm2d: 4-21                      [1, 128, 26, 26]          256
│    │    │    └─ReLU: 4-22                             [1, 128, 26, 26]          --
│    │    └─CSPLayer: 3-8                               [1, 128, 26, 26]          --
│    │    │    └─ConvModule: 4-23                       [1, 64, 26, 26]           --
│    │    │    │    └─Conv2d: 5-23                      [1, 64, 26, 26]           8,192
│    │    │    │    └─BatchNorm2d: 5-24                 [1, 64, 26, 26]           128
│    │    │    │    └─ReLU: 5-25                        [1, 64, 26, 26]           --
│    │    │    └─ConvModule: 4-24                       [1, 64, 26, 26]           --
│    │    │    │    └─Conv2d: 5-26                      [1, 64, 26, 26]           8,192
│    │    │    │    └─BatchNorm2d: 5-27                 [1, 64, 26, 26]           128
│    │    │    │    └─ReLU: 5-28                        [1, 64, 26, 26]           --
│    │    │    └─Sequential: 4-25                       [1, 64, 26, 26]           --
│    │    │    │    └─DarknetBottleneck: 5-29           [1, 64, 26, 26]           --
│    │    │    │    │    └─ConvModule: 6-9              [1, 64, 26, 26]           --
│    │    │    │    │    │    └─Conv2d: 7-25            [1, 64, 26, 26]           4,096
│    │    │    │    │    │    └─BatchNorm2d: 7-26       [1, 64, 26, 26]           128
│    │    │    │    │    │    └─ReLU: 7-27              [1, 64, 26, 26]           --
│    │    │    │    │    └─ConvModule: 6-10             [1, 64, 26, 26]           --
│    │    │    │    │    │    └─Conv2d: 7-28            [1, 64, 26, 26]           36,864
│    │    │    │    │    │    └─BatchNorm2d: 7-29       [1, 64, 26, 26]           128
│    │    │    │    │    │    └─ReLU: 7-30              [1, 64, 26, 26]           --
│    │    │    │    └─DarknetBottleneck: 5-30           [1, 64, 26, 26]           --
│    │    │    │    │    └─ConvModule: 6-11             [1, 64, 26, 26]           --
│    │    │    │    │    │    └─Conv2d: 7-31            [1, 64, 26, 26]           4,096
│    │    │    │    │    │    └─BatchNorm2d: 7-32       [1, 64, 26, 26]           128
│    │    │    │    │    │    └─ReLU: 7-33              [1, 64, 26, 26]           --
│    │    │    │    │    └─ConvModule: 6-12             [1, 64, 26, 26]           --
│    │    │    │    │    │    └─Conv2d: 7-34            [1, 64, 26, 26]           36,864
│    │    │    │    │    │    └─BatchNorm2d: 7-35       [1, 64, 26, 26]           128
│    │    │    │    │    │    └─ReLU: 7-36              [1, 64, 26, 26]           --
│    │    │    │    └─DarknetBottleneck: 5-31           [1, 64, 26, 26]           --
│    │    │    │    │    └─ConvModule: 6-13             [1, 64, 26, 26]           --
│    │    │    │    │    │    └─Conv2d: 7-37            [1, 64, 26, 26]           4,096
│    │    │    │    │    │    └─BatchNorm2d: 7-38       [1, 64, 26, 26]           128
│    │    │    │    │    │    └─ReLU: 7-39              [1, 64, 26, 26]           --
│    │    │    │    │    └─ConvModule: 6-14             [1, 64, 26, 26]           --
│    │    │    │    │    │    └─Conv2d: 7-40            [1, 64, 26, 26]           36,864
│    │    │    │    │    │    └─BatchNorm2d: 7-41       [1, 64, 26, 26]           128
│    │    │    │    │    │    └─ReLU: 7-42              [1, 64, 26, 26]           --
│    │    │    └─ConvModule: 4-26                       [1, 128, 26, 26]          --
│    │    │    │    └─Conv2d: 5-32                      [1, 128, 26, 26]          16,384
│    │    │    │    └─BatchNorm2d: 5-33                 [1, 128, 26, 26]          256
│    │    │    │    └─ReLU: 5-34                        [1, 128, 26, 26]          --
│    └─Sequential: 2-5                                  [1, 256, 13, 13]          --
│    │    └─ConvModule: 3-9                             [1, 256, 13, 13]          --
│    │    │    └─Conv2d: 4-27                           [1, 256, 13, 13]          294,912
│    │    │    └─BatchNorm2d: 4-28                      [1, 256, 13, 13]          512
│    │    │    └─ReLU: 4-29                             [1, 256, 13, 13]          --
│    │    └─SPPBottleneck: 3-10                         [1, 256, 13, 13]          --
│    │    │    └─ConvModule: 4-30                       [1, 128, 13, 13]          --
│    │    │    │    └─Conv2d: 5-35                      [1, 128, 13, 13]          32,768
│    │    │    │    └─BatchNorm2d: 5-36                 [1, 128, 13, 13]          256
│    │    │    │    └─ReLU: 5-37                        [1, 128, 13, 13]          --
│    │    │    └─ModuleList: 4-31                       --                        --
│    │    │    │    └─SequentialMaxPool2d: 5-38         [1, 128, 13, 13]          --
│    │    │    │    │    └─MaxPool2d: 6-15              [1, 128, 13, 13]          --
│    │    │    │    │    └─MaxPool2d: 6-16              [1, 128, 13, 13]          --
│    │    │    │    └─SequentialMaxPool2d: 5-39         [1, 128, 13, 13]          --
│    │    │    │    │    └─MaxPool2d: 6-17              [1, 128, 13, 13]          --
│    │    │    │    │    └─MaxPool2d: 6-18              [1, 128, 13, 13]          --
│    │    │    │    │    └─MaxPool2d: 6-19              [1, 128, 13, 13]          --
│    │    │    │    │    └─MaxPool2d: 6-20              [1, 128, 13, 13]          --
│    │    │    │    └─SequentialMaxPool2d: 5-40         [1, 128, 13, 13]          --
│    │    │    │    │    └─MaxPool2d: 6-21              [1, 128, 13, 13]          --
│    │    │    │    │    └─MaxPool2d: 6-22              [1, 128, 13, 13]          --
│    │    │    │    │    └─MaxPool2d: 6-23              [1, 128, 13, 13]          --
│    │    │    │    │    └─MaxPool2d: 6-24              [1, 128, 13, 13]          --
│    │    │    │    │    └─MaxPool2d: 6-25              [1, 128, 13, 13]          --
│    │    │    │    │    └─MaxPool2d: 6-26              [1, 128, 13, 13]          --
│    │    │    └─ConvModule: 4-32                       [1, 256, 13, 13]          --
│    │    │    │    └─Conv2d: 5-41                      [1, 256, 13, 13]          131,072
│    │    │    │    └─BatchNorm2d: 5-42                 [1, 256, 13, 13]          512
│    │    │    │    └─ReLU: 5-43                        [1, 256, 13, 13]          --
│    │    └─CSPLayer: 3-11                              [1, 256, 13, 13]          --
│    │    │    └─ConvModule: 4-33                       [1, 128, 13, 13]          --
│    │    │    │    └─Conv2d: 5-44                      [1, 128, 13, 13]          32,768
│    │    │    │    └─BatchNorm2d: 5-45                 [1, 128, 13, 13]          256
│    │    │    │    └─ReLU: 5-46                        [1, 128, 13, 13]          --
│    │    │    └─ConvModule: 4-34                       [1, 128, 13, 13]          --
│    │    │    │    └─Conv2d: 5-47                      [1, 128, 13, 13]          32,768
│    │    │    │    └─BatchNorm2d: 5-48                 [1, 128, 13, 13]          256
│    │    │    │    └─ReLU: 5-49                        [1, 128, 13, 13]          --
│    │    │    └─Sequential: 4-35                       [1, 128, 13, 13]          --
│    │    │    │    └─DarknetBottleneck: 5-50           [1, 128, 13, 13]          --
│    │    │    │    │    └─ConvModule: 6-27             [1, 128, 13, 13]          --
│    │    │    │    │    │    └─Conv2d: 7-43            [1, 128, 13, 13]          16,384
│    │    │    │    │    │    └─BatchNorm2d: 7-44       [1, 128, 13, 13]          256
│    │    │    │    │    │    └─ReLU: 7-45              [1, 128, 13, 13]          --
│    │    │    │    │    └─ConvModule: 6-28             [1, 128, 13, 13]          --
│    │    │    │    │    │    └─Conv2d: 7-46            [1, 128, 13, 13]          147,456
│    │    │    │    │    │    └─BatchNorm2d: 7-47       [1, 128, 13, 13]          256
│    │    │    │    │    │    └─ReLU: 7-48              [1, 128, 13, 13]          --
│    │    │    └─ConvModule: 4-36                       [1, 256, 13, 13]          --
│    │    │    │    └─Conv2d: 5-51                      [1, 256, 13, 13]          65,536
│    │    │    │    └─BatchNorm2d: 5-52                 [1, 256, 13, 13]          512
│    │    │    │    └─ReLU: 5-53                        [1, 256, 13, 13]          --
├─YOLOXPAFPN: 1-2                                       [1, 64, 52, 52]           --
│    └─ModuleList: 2-9                                  --                        (recursive)
│    │    └─ConvModule: 3-12                            [1, 128, 13, 13]          --
│    │    │    └─Conv2d: 4-37                           [1, 128, 13, 13]          32,768
│    │    │    └─BatchNorm2d: 4-38                      [1, 128, 13, 13]          256
│    │    │    └─ReLU: 4-39                             [1, 128, 13, 13]          --
│    └─Upsample: 2-7                                    [1, 128, 26, 26]          --
│    └─ModuleList: 2-11                                 --                        (recursive)
│    │    └─CSPLayer: 3-13                              [1, 128, 26, 26]          --
│    │    │    └─ConvModule: 4-40                       [1, 64, 26, 26]           --
│    │    │    │    └─Conv2d: 5-54                      [1, 64, 26, 26]           16,384
│    │    │    │    └─BatchNorm2d: 5-55                 [1, 64, 26, 26]           128
│    │    │    │    └─ReLU: 5-56                        [1, 64, 26, 26]           --
│    │    │    └─ConvModule: 4-41                       [1, 64, 26, 26]           --
│    │    │    │    └─Conv2d: 5-57                      [1, 64, 26, 26]           16,384
│    │    │    │    └─BatchNorm2d: 5-58                 [1, 64, 26, 26]           128
│    │    │    │    └─ReLU: 5-59                        [1, 64, 26, 26]           --
│    │    │    └─Sequential: 4-42                       [1, 64, 26, 26]           --
│    │    │    │    └─DarknetBottleneck: 5-60           [1, 64, 26, 26]           --
│    │    │    │    │    └─ConvModule: 6-29             [1, 64, 26, 26]           --
│    │    │    │    │    │    └─Conv2d: 7-49            [1, 64, 26, 26]           4,096
│    │    │    │    │    │    └─BatchNorm2d: 7-50       [1, 64, 26, 26]           128
│    │    │    │    │    │    └─ReLU: 7-51              [1, 64, 26, 26]           --
│    │    │    │    │    └─ConvModule: 6-30             [1, 64, 26, 26]           --
│    │    │    │    │    │    └─Conv2d: 7-52            [1, 64, 26, 26]           36,864
│    │    │    │    │    │    └─BatchNorm2d: 7-53       [1, 64, 26, 26]           128
│    │    │    │    │    │    └─ReLU: 7-54              [1, 64, 26, 26]           --
│    │    │    └─ConvModule: 4-43                       [1, 128, 26, 26]          --
│    │    │    │    └─Conv2d: 5-61                      [1, 128, 26, 26]          16,384
│    │    │    │    └─BatchNorm2d: 5-62                 [1, 128, 26, 26]          256
│    │    │    │    └─ReLU: 5-63                        [1, 128, 26, 26]          --
│    └─ModuleList: 2-9                                  --                        (recursive)
│    │    └─ConvModule: 3-14                            [1, 64, 26, 26]           --
│    │    │    └─Conv2d: 4-44                           [1, 64, 26, 26]           8,192
│    │    │    └─BatchNorm2d: 4-45                      [1, 64, 26, 26]           128
│    │    │    └─ReLU: 4-46                             [1, 64, 26, 26]           --
│    └─Upsample: 2-10                                   [1, 64, 52, 52]           --
│    └─ModuleList: 2-11                                 --                        (recursive)
│    │    └─CSPLayer: 3-15                              [1, 64, 52, 52]           --
│    │    │    └─ConvModule: 4-47                       [1, 32, 52, 52]           --
│    │    │    │    └─Conv2d: 5-64                      [1, 32, 52, 52]           4,096
│    │    │    │    └─BatchNorm2d: 5-65                 [1, 32, 52, 52]           64
│    │    │    │    └─ReLU: 5-66                        [1, 32, 52, 52]           --
│    │    │    └─ConvModule: 4-48                       [1, 32, 52, 52]           --
│    │    │    │    └─Conv2d: 5-67                      [1, 32, 52, 52]           4,096
│    │    │    │    └─BatchNorm2d: 5-68                 [1, 32, 52, 52]           64
│    │    │    │    └─ReLU: 5-69                        [1, 32, 52, 52]           --
│    │    │    └─Sequential: 4-49                       [1, 32, 52, 52]           --
│    │    │    │    └─DarknetBottleneck: 5-70           [1, 32, 52, 52]           --
│    │    │    │    │    └─ConvModule: 6-31             [1, 32, 52, 52]           --
│    │    │    │    │    │    └─Conv2d: 7-55            [1, 32, 52, 52]           1,024
│    │    │    │    │    │    └─BatchNorm2d: 7-56       [1, 32, 52, 52]           64
│    │    │    │    │    │    └─ReLU: 7-57              [1, 32, 52, 52]           --
│    │    │    │    │    └─ConvModule: 6-32             [1, 32, 52, 52]           --
│    │    │    │    │    │    └─Conv2d: 7-58            [1, 32, 52, 52]           9,216
│    │    │    │    │    │    └─BatchNorm2d: 7-59       [1, 32, 52, 52]           64
│    │    │    │    │    │    └─ReLU: 7-60              [1, 32, 52, 52]           --
│    │    │    └─ConvModule: 4-50                       [1, 64, 52, 52]           --
│    │    │    │    └─Conv2d: 5-71                      [1, 64, 52, 52]           4,096
│    │    │    │    └─BatchNorm2d: 5-72                 [1, 64, 52, 52]           128
│    │    │    │    └─ReLU: 5-73                        [1, 64, 52, 52]           --
│    └─ModuleList: 2-14                                 --                        (recursive)
│    │    └─ConvModule: 3-16                            [1, 64, 26, 26]           --
│    │    │    └─Conv2d: 4-51                           [1, 64, 26, 26]           36,864
│    │    │    └─BatchNorm2d: 4-52                      [1, 64, 26, 26]           128
│    │    │    └─ReLU: 4-53                             [1, 64, 26, 26]           --
│    └─ModuleList: 2-15                                 --                        (recursive)
│    │    └─CSPLayer: 3-17                              [1, 128, 26, 26]          --
│    │    │    └─ConvModule: 4-54                       [1, 64, 26, 26]           --
│    │    │    │    └─Conv2d: 5-74                      [1, 64, 26, 26]           8,192
│    │    │    │    └─BatchNorm2d: 5-75                 [1, 64, 26, 26]           128
│    │    │    │    └─ReLU: 5-76                        [1, 64, 26, 26]           --
│    │    │    └─ConvModule: 4-55                       [1, 64, 26, 26]           --
│    │    │    │    └─Conv2d: 5-77                      [1, 64, 26, 26]           8,192
│    │    │    │    └─BatchNorm2d: 5-78                 [1, 64, 26, 26]           128
│    │    │    │    └─ReLU: 5-79                        [1, 64, 26, 26]           --
│    │    │    └─Sequential: 4-56                       [1, 64, 26, 26]           --
│    │    │    │    └─DarknetBottleneck: 5-80           [1, 64, 26, 26]           --
│    │    │    │    │    └─ConvModule: 6-33             [1, 64, 26, 26]           --
│    │    │    │    │    │    └─Conv2d: 7-61            [1, 64, 26, 26]           4,096
│    │    │    │    │    │    └─BatchNorm2d: 7-62       [1, 64, 26, 26]           128
│    │    │    │    │    │    └─ReLU: 7-63              [1, 64, 26, 26]           --
│    │    │    │    │    └─ConvModule: 6-34             [1, 64, 26, 26]           --
│    │    │    │    │    │    └─Conv2d: 7-64            [1, 64, 26, 26]           36,864
│    │    │    │    │    │    └─BatchNorm2d: 7-65       [1, 64, 26, 26]           128
│    │    │    │    │    │    └─ReLU: 7-66              [1, 64, 26, 26]           --
│    │    │    └─ConvModule: 4-57                       [1, 128, 26, 26]          --
│    │    │    │    └─Conv2d: 5-81                      [1, 128, 26, 26]          16,384
│    │    │    │    └─BatchNorm2d: 5-82                 [1, 128, 26, 26]          256
│    │    │    │    └─ReLU: 5-83                        [1, 128, 26, 26]          --
│    └─ModuleList: 2-14                                 --                        (recursive)
│    │    └─ConvModule: 3-18                            [1, 128, 13, 13]          --
│    │    │    └─Conv2d: 4-58                           [1, 128, 13, 13]          147,456
│    │    │    └─BatchNorm2d: 4-59                      [1, 128, 13, 13]          256
│    │    │    └─ReLU: 4-60                             [1, 128, 13, 13]          --
│    └─ModuleList: 2-15                                 --                        (recursive)
│    │    └─CSPLayer: 3-19                              [1, 256, 13, 13]          --
│    │    │    └─ConvModule: 4-61                       [1, 128, 13, 13]          --
│    │    │    │    └─Conv2d: 5-84                      [1, 128, 13, 13]          32,768
│    │    │    │    └─BatchNorm2d: 5-85                 [1, 128, 13, 13]          256
│    │    │    │    └─ReLU: 5-86                        [1, 128, 13, 13]          --
│    │    │    └─ConvModule: 4-62                       [1, 128, 13, 13]          --
│    │    │    │    └─Conv2d: 5-87                      [1, 128, 13, 13]          32,768
│    │    │    │    └─BatchNorm2d: 5-88                 [1, 128, 13, 13]          256
│    │    │    │    └─ReLU: 5-89                        [1, 128, 13, 13]          --
│    │    │    └─Sequential: 4-63                       [1, 128, 13, 13]          --
│    │    │    │    └─DarknetBottleneck: 5-90           [1, 128, 13, 13]          --
│    │    │    │    │    └─ConvModule: 6-35             [1, 128, 13, 13]          --
│    │    │    │    │    │    └─Conv2d: 7-67            [1, 128, 13, 13]          16,384
│    │    │    │    │    │    └─BatchNorm2d: 7-68       [1, 128, 13, 13]          256
│    │    │    │    │    │    └─ReLU: 7-69              [1, 128, 13, 13]          --
│    │    │    │    │    └─ConvModule: 6-36             [1, 128, 13, 13]          --
│    │    │    │    │    │    └─Conv2d: 7-70            [1, 128, 13, 13]          147,456
│    │    │    │    │    │    └─BatchNorm2d: 7-71       [1, 128, 13, 13]          256
│    │    │    │    │    │    └─ReLU: 7-72              [1, 128, 13, 13]          --
│    │    │    └─ConvModule: 4-64                       [1, 256, 13, 13]          --
│    │    │    │    └─Conv2d: 5-91                      [1, 256, 13, 13]          65,536
│    │    │    │    └─BatchNorm2d: 5-92                 [1, 256, 13, 13]          512
│    │    │    │    └─ReLU: 5-93                        [1, 256, 13, 13]          --
│    └─ModuleList: 2-16                                 --                        --
│    │    └─ConvModule: 3-20                            [1, 64, 52, 52]           --
│    │    │    └─Conv2d: 4-65                           [1, 64, 52, 52]           4,096
│    │    │    └─BatchNorm2d: 4-66                      [1, 64, 52, 52]           128
│    │    │    └─ReLU: 4-67                             [1, 64, 52, 52]           --
│    │    └─ConvModule: 3-21                            [1, 64, 26, 26]           --
│    │    │    └─Conv2d: 4-68                           [1, 64, 26, 26]           8,192
│    │    │    └─BatchNorm2d: 4-69                      [1, 64, 26, 26]           128
│    │    │    └─ReLU: 4-70                             [1, 64, 26, 26]           --
│    │    └─ConvModule: 3-22                            [1, 64, 13, 13]           --
│    │    │    └─Conv2d: 4-71                           [1, 64, 13, 13]           16,384
│    │    │    └─BatchNorm2d: 4-72                      [1, 64, 13, 13]           128
│    │    │    └─ReLU: 4-73                             [1, 64, 13, 13]           --
├─YOLOXHead: 1-3                                        [1, 3, 52, 52]            --
│    └─ModuleList: 2-27                                 --                        (recursive)
│    │    └─Sequential: 3-23                            [1, 64, 52, 52]           --
│    │    │    └─ConvModule: 4-74                       [1, 64, 52, 52]           --
│    │    │    │    └─Conv2d: 5-94                      [1, 64, 52, 52]           36,864
│    │    │    │    └─BatchNorm2d: 5-95                 [1, 64, 52, 52]           128
│    │    │    │    └─ReLU: 5-96                        [1, 64, 52, 52]           --
│    │    │    └─ConvModule: 4-75                       [1, 64, 52, 52]           --
│    │    │    │    └─Conv2d: 5-97                      [1, 64, 52, 52]           36,864
│    │    │    │    └─BatchNorm2d: 5-98                 [1, 64, 52, 52]           128
│    │    │    │    └─ReLU: 5-99                        [1, 64, 52, 52]           --
│    └─ModuleList: 2-28                                 --                        (recursive)
│    │    └─Sequential: 3-24                            [1, 64, 52, 52]           --
│    │    │    └─ConvModule: 4-76                       [1, 64, 52, 52]           --
│    │    │    │    └─Conv2d: 5-100                     [1, 64, 52, 52]           36,864
│    │    │    │    └─BatchNorm2d: 5-101                [1, 64, 52, 52]           128
│    │    │    │    └─ReLU: 5-102                       [1, 64, 52, 52]           --
│    │    │    └─ConvModule: 4-77                       [1, 64, 52, 52]           --
│    │    │    │    └─Conv2d: 5-103                     [1, 64, 52, 52]           36,864
│    │    │    │    └─BatchNorm2d: 5-104                [1, 64, 52, 52]           128
│    │    │    │    └─ReLU: 5-105                       [1, 64, 52, 52]           --
│    └─ModuleList: 2-29                                 --                        (recursive)
│    │    └─Conv2d: 3-25                                [1, 3, 52, 52]            195
│    └─ModuleList: 2-30                                 --                        (recursive)
│    │    └─Conv2d: 3-26                                [1, 4, 52, 52]            260
│    └─ModuleList: 2-31                                 --                        (recursive)
│    │    └─Conv2d: 3-27                                [1, 1, 52, 52]            65
│    └─ModuleList: 2-27                                 --                        (recursive)
│    │    └─Sequential: 3-28                            [1, 64, 26, 26]           --
│    │    │    └─ConvModule: 4-78                       [1, 64, 26, 26]           --
│    │    │    │    └─Conv2d: 5-106                     [1, 64, 26, 26]           36,864
│    │    │    │    └─BatchNorm2d: 5-107                [1, 64, 26, 26]           128
│    │    │    │    └─ReLU: 5-108                       [1, 64, 26, 26]           --
│    │    │    └─ConvModule: 4-79                       [1, 64, 26, 26]           --
│    │    │    │    └─Conv2d: 5-109                     [1, 64, 26, 26]           36,864
│    │    │    │    └─BatchNorm2d: 5-110                [1, 64, 26, 26]           128
│    │    │    │    └─ReLU: 5-111                       [1, 64, 26, 26]           --
│    └─ModuleList: 2-28                                 --                        (recursive)
│    │    └─Sequential: 3-29                            [1, 64, 26, 26]           --
│    │    │    └─ConvModule: 4-80                       [1, 64, 26, 26]           --
│    │    │    │    └─Conv2d: 5-112                     [1, 64, 26, 26]           36,864
│    │    │    │    └─BatchNorm2d: 5-113                [1, 64, 26, 26]           128
│    │    │    │    └─ReLU: 5-114                       [1, 64, 26, 26]           --
│    │    │    └─ConvModule: 4-81                       [1, 64, 26, 26]           --
│    │    │    │    └─Conv2d: 5-115                     [1, 64, 26, 26]           36,864
│    │    │    │    └─BatchNorm2d: 5-116                [1, 64, 26, 26]           128
│    │    │    │    └─ReLU: 5-117                       [1, 64, 26, 26]           --
│    └─ModuleList: 2-29                                 --                        (recursive)
│    │    └─Conv2d: 3-30                                [1, 3, 26, 26]            195
│    └─ModuleList: 2-30                                 --                        (recursive)
│    │    └─Conv2d: 3-31                                [1, 4, 26, 26]            260
│    └─ModuleList: 2-31                                 --                        (recursive)
│    │    └─Conv2d: 3-32                                [1, 1, 26, 26]            65
│    └─ModuleList: 2-27                                 --                        (recursive)
│    │    └─Sequential: 3-33                            [1, 64, 13, 13]           --
│    │    │    └─ConvModule: 4-82                       [1, 64, 13, 13]           --
│    │    │    │    └─Conv2d: 5-118                     [1, 64, 13, 13]           36,864
│    │    │    │    └─BatchNorm2d: 5-119                [1, 64, 13, 13]           128
│    │    │    │    └─ReLU: 5-120                       [1, 64, 13, 13]           --
│    │    │    └─ConvModule: 4-83                       [1, 64, 13, 13]           --
│    │    │    │    └─Conv2d: 5-121                     [1, 64, 13, 13]           36,864
│    │    │    │    └─BatchNorm2d: 5-122                [1, 64, 13, 13]           128
│    │    │    │    └─ReLU: 5-123                       [1, 64, 13, 13]           --
│    └─ModuleList: 2-28                                 --                        (recursive)
│    │    └─Sequential: 3-34                            [1, 64, 13, 13]           --
│    │    │    └─ConvModule: 4-84                       [1, 64, 13, 13]           --
│    │    │    │    └─Conv2d: 5-124                     [1, 64, 13, 13]           36,864
│    │    │    │    └─BatchNorm2d: 5-125                [1, 64, 13, 13]           128
│    │    │    │    └─ReLU: 5-126                       [1, 64, 13, 13]           --
│    │    │    └─ConvModule: 4-85                       [1, 64, 13, 13]           --
│    │    │    │    └─Conv2d: 5-127                     [1, 64, 13, 13]           36,864
│    │    │    │    └─BatchNorm2d: 5-128                [1, 64, 13, 13]           128
│    │    │    │    └─ReLU: 5-129                       [1, 64, 13, 13]           --
│    └─ModuleList: 2-29                                 --                        (recursive)
│    │    └─Conv2d: 3-35                                [1, 3, 13, 13]            195
│    └─ModuleList: 2-30                                 --                        (recursive)
│    │    └─Conv2d: 3-36                                [1, 4, 13, 13]            260
│    └─ModuleList: 2-31                                 --                        (recursive)
│    │    └─Conv2d: 3-37                                [1, 1, 13, 13]            65
=========================================================================================================
Total params: 2,242,388
Trainable params: 2,242,388
Non-trainable params: 0
Total mult-adds (G): 1.45
=========================================================================================================
Input size (MB): 2.08
Forward/backward pass size (MB): 109.43
Params size (MB): 8.97
Estimated Total Size (MB): 120.47
=========================================================================================================
2025-03-21 07:01:08,399 - mmdet - INFO - 

Traceback (most recent call last):
  File "/opt/.pyenv/versions/py310/lib/python3.10/site-packages/mmcv/utils/registry.py", line 52, in build_from_cfg
    return obj_cls(**args)
  File "/opt/edgeai-mmdetection/mmdet/datasets/modelmaker.py", line 27, in __init__
    super().__init__(*args, **kwargs)
  File "/opt/edgeai-mmdetection/mmdet/datasets/custom.py", line 95, in __init__
    self.data_infos = self.load_annotations(local_path)
  File "/opt/edgeai-mmdetection/mmdet/datasets/coco.py", line 87, in load_annotations
    assert len(set(total_ann_ids)) == len(
AssertionError: Annotation ids in '/opt/EdgeAIRoot/18293833/projects/08f16d60/dataset/annotations/instances_train.json' are not unique!

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/opt/run.py", line 52, in main
    run_modelmaker.main(config)
  File "/opt/edgeai-modelmaker/scripts/run_modelmaker.py", line 76, in main
    model_runner.run()
  File "/opt/edgeai-modelmaker/edgeai_modelmaker/ai_modules/vision/runner.py", line 166, in run
    self.model_training.run()
  File "/opt/edgeai-modelmaker/edgeai_modelmaker/ai_modules/vision/training/edgeai_mmdetection/detection.py", line 417, in run
    train_module.main(args)
  File "/opt/edgeai-mmdetection/tools/train.py", line 227, in main
    datasets = [build_dataset(cfg.data.train)]
  File "/opt/edgeai-mmdetection/mmdet/datasets/builder.py", line 75, in build_dataset
    cp_cfg['dataset'] = build_dataset(cp_cfg['dataset'])
  File "/opt/edgeai-mmdetection/mmdet/datasets/builder.py", line 81, in build_dataset
    dataset = build_from_cfg(cfg, DATASETS, default_args)
  File "/opt/.pyenv/versions/py310/lib/python3.10/site-packages/mmcv/utils/registry.py", line 55, in build_from_cfg
    raise type(e)(f'{obj_cls.__name__}: {e}')
AssertionError: ModelMakerDataset: Annotation ids in '/opt/EdgeAIRoot/18293833/projects/08f16d60/dataset/annotations/instances_train.json' are not unique!
Attached is my Training error log.

Training failed during Image train with Edge AI studio Model composer, Error reading previous trained file.

Model selection: AM62A

Model: Yolox_nano_lite

  • Hello,

    We will find a solution to your query -- I see where the error starts. It looks like the model was setup, but hit an error while parsing your dataset.

    AssertionError: Annotation ids in '/opt/EdgeAIRoot/18293833/projects/08f16d60/dataset/annotations/instances_train.json' are not unique!
    

    Within the JSON file (COCO format), there will be image IDs and Annotation ID's. Annotations and Images are each their own lists of JSON objects, where each object needs a unique number / ID. This error indicates looks like there may be some repeated annotation ID's in this file.

    This is specific to your dataset. I think you need to load that file, potentially with a scripting language like Python, and check if/where there are duplicated ID's

    BR,
    Reese