This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

TDA4VH-Q1: Are official PointPillars ONNX artifacts available for SDK 9.2 or 10 on AM69A, and will upgrading to SDK 10 resolve current artifact generation issues?

Part Number: TDA4VH-Q1
Other Parts Discussed in Thread: AM69A

Tool/software:

Dear TI Support Team,

We are working with the AM69A board and currently using SDK 9.2 for model deployment and real-time inference. Our goal is to run the PointPillars model on this platform. After research, we have encountered several uncertainties regarding the availability and compatibility of ONNX artifacts for PointPillars, and we would appreciate your clarification on the following points:

1. Availability of PointPillars Artifacts for SDK 9.2 and 10
We have only found a PointPillars ONNX artifact (3dod-7100_onnxrt_kitti_mmdet3d_lidar_point_pillars_10k_496x432_qat-p2_onnx.tar.gz) provided for release 9.0.

Despite reviewing the documentation and model zoo, we have not located updated artifacts for SDK 9.2 or SDK 101.

Question: Are there official PointPillars ONNX artifacts available for SDK 9.2 or SDK 10? If so, could you please point us to their location? Having these would help us verify our inference pipeline and ensure our deployment process is correct.

2. Plans for Future Artifact Releases
Question: If such artifacts are not currently available, does TI have a plan or timeline to release PointPillars artifacts compatible with SDK 9.2 or SDK 10 in the near future?

3. Issues with Artifact Generation from Custom Training
We have trained the PointPillars model using the configuration at:
github.com/.../tidl_hv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py

However, we are unable to generate the necessary artifacts for deployment on the AM69A board.

Question: Are there any known issues or additional steps required to successfully generate artifacts for PointPillars under SDK 9.2 or SDK 10?

4. SDK Upgrade and Issue Resolution
Question: If we upgrade to SDK 10, will this resolve the artifact generation and deployment issues we are experiencing?

  • Hello Umair,

    Q1 & Q2: Is this what you were looking for? It is for 10.1, but the 9.2 version can be found by changing the branch. https://github.com/TexasInstruments/edgeai-tensorlab/tree/main/edgeai-modelzoo/models/vision/detection_3d/kitti/mmdet3d

    Q3 & Q4: Could you share the steps and the logs for the compiling that you are using? Are you using OSRT or TIDLRT flow? I am not aware of any known issues or additional steps, but I need some more information on how to recreate your setup before I can comment better. 

    Warm regards,

    Christina

  • Hi Christina, thank you for your response.

    As you suggested, we are using the following:

     

    ONNX model: github.com/.../lidar_point_pillars_10k_496x432_qat-p2.onnx.link

     

    Prototxt file: github.com/.../lidar_point_pillars_10k_496x432.prototxt.link

     

    Our framework is edgeai-benchmark version r9.2:

    github.com/.../edgeai-benchmark

     

    We believe all related information can be found in the log below. We have set the debug level to 3.

     

    We encountered three warnings:

     

    - Warning: Requested Input Data Convert Layer is not added to the network. It is currently not optimal.

     

    - Warning: Requested Output Data Convert Layer is not added to the network. It is currently not optimal.

     

    - WARNING: Conv Layer Conv_8's coefficients cannot be found (or do not match) in the coefficient file. Random coefficients will be generated! Only for evaluation usage! Results are all random!

     

    We understand the first two warnings, as model optimization is not applied in this 3D detection experiment. However, the last warning seems abnormal. I found a related discussion here:

    e2e.ti.com/.../tda4vm-mnist-model-import-error-tidl

     

    That said, the model runs normally with CPUExecutionProvider, so it doesn't seem to be an issue with a dummy model. The input format should also be correct, as I used the same example you provided. Additionally, I verified the input shape, and it matches the expected dimensions.

     

    Please find the log below:

     

     

    TARGET_SOC:     AM69A

    TARGET_MACHINE: pc

    DEBUG MODE:     false @ user:5678

    => Recommend to use the alternate script run_benchmarks_parallelbash_pc.sh

       for import and inference across models in parallel.

    TIDL_TOOLS_PATH=/opt/code/tools/AM69A/tidl_tools

    LD_LIBRARY_PATH=/opt/code/tools/AM69A/tidl_tools

    PYTHONPATH=:

    ===================================================================

    argv: ['./scripts/benchmark_modelzoo.py', 'settings_import_on_pc.yaml', '--target_device', 'AM69A', '--run_inference', 'False']

    settings: {'include_files': None, 'pipeline_type': 'accuracy', 'num_frames': 5, 'calibration_frames': 1, 'calibration_iterations': 1, 'configs_path': './configs', 'models_path': '../edgeai-modelzoo/models', 'modelartifacts_path': './work_dirs/modelartifacts/AM69A', 'modelpackage_path': './work_dirs/modelpackage/AM69A', 'datasets_path': './dependencies/datasets', 'target_device': 'AM69A', 'target_machine': 'pc', 'run_suffix': None, 'parallel_devices': 1, 'parallel_processes': 1, 'tensor_bits': 8, 'runtime_options': {'advanced_options:quantization_scale_type': 4}, 'run_import': True, 'run_inference': False, 'run_missing': True, 'detection_threshold': 0.3, 'detection_top_k': 200, 'detection_nms_threshold': None, 'detection_keep_top_k': None, 'save_output': True, 'num_output_frames': 50, 'model_selection': ['3dod-7100'], 'model_shortlist': None, 'model_exclusion': None, 'task_selection': ['detection_3d'], 'runtime_selection': None, 'session_type_dict': {'onnx': 'onnxrt', 'tflite': 'tflitert', 'mxnet': 'tvmdlr'}, 'dataset_type_dict': None, 'dataset_selection': ['kitti_lidar_det_1class'], 'dataset_loading': True, 'config_range': None, 'enable_logging': True, 'verbose': False, 'capture_log': False, 'experimental_models': True, 'rewrite_results': False, 'with_udp': True, 'flip_test': False, 'model_transformation_dict': None, 'report_perfsim': False, 'tidl_offload': True, 'input_optimization': None, 'run_dir_tree_depth': None, 'target_device_preset': True, 'fast_calibration_factor': 0.5, 'param_template_file': None, 'write_results': True, 'settings_file': 'settings_import_on_pc.yaml', 'basic_keys': ['include_files', 'pipeline_type', 'num_frames', 'calibration_frames', 'calibration_iterations', 'configs_path', 'models_path', 'modelartifacts_path', 'modelpackage_path', 'datasets_path', 'target_device', 'target_machine', 'run_suffix', 'parallel_devices', 'parallel_processes', 'tensor_bits', 'runtime_options', 'run_import', 'run_inference', 'run_missing', 'detection_threshold', 'detection_top_k', 'detection_nms_threshold', 'detection_keep_top_k', 'save_output', 'num_output_frames', 'model_selection', 'model_shortlist', 'model_exclusion', 'task_selection', 'runtime_selection', 'session_type_dict', 'dataset_type_dict', 'dataset_selection', 'dataset_loading', 'config_range', 'enable_logging', 'verbose', 'capture_log', 'experimental_models', 'rewrite_results', 'with_udp', 'flip_test', 'model_transformation_dict', 'report_perfsim', 'tidl_offload', 'input_optimization', 'run_dir_tree_depth', 'target_device_preset', 'fast_calibration_factor', 'param_template_file', 'write_results', 'settings_file'], 'dataset_cache': None}

    work_dir: ./work_dirs/modelartifacts/AM69A/8bits

    Using model configs from Python module: ./configs

     

    INFO:20250627-014540: loading dataset - category:kitti_lidar_det_1class variant:kitti_lidar_det_1class

    configs to run: ['3dod-7100_onnxrt_models_pointPillar_1class_qat_v92_lidar_point_pillars_10k_496x432_qat-p2_onnx']

    number of configs: 1

     

    INFO:20250627-014540: parallel_run - parallel_processes:1 parallel_devices=range(0, 1)

    TASKS                                                       |          |     0% 0/1| [< ]

    INFO:20250627-014540: starting process on parallel_device - 0   0%|          || 0/1 [00:00<?, ?it/s]

     

    INFO:20250627-014540: starting - 3dod-7100_onnxrt_models_pointPillar_1class_qat_v92_lidar_point_pillars_10k_496x432_qat-p2_onnx

    INFO:20250627-014540: model_path - /opt/code/models/pointPillar_1class_qat_v92/lidar_point_pillars_10k_496x432_qat-p2.onnx

    INFO:20250627-014540: model_file - /opt/code/work_dirs/modelartifacts/AM69A/8bits/3dod-7100_onnxrt_models_pointPillar_1class_qat_v92_lidar_point_pillars_10k_496x432_qat-p2_onnx/model/lidar_point_pillars_10k_496x432_qat-p2.onnx

    INFO:20250627-014540: quant_file - /opt/code/work_dirs/modelartifacts/AM69A/8bits/3dod-7100_onnxrt_models_pointPillar_1class_qat_v92_lidar_point_pillars_10k_496x432_qat-p2_onnx/model/lidar_point_pillars_10k_496x432_qat-p2_qparams.prototxt

     

    INFO:20250627-014540: running - 3dod-7100_onnxrt_models_pointPillar_1class_qat_v92_lidar_point_pillars_10k_496x432_qat-p2_onnx

    INFO:20250627-014540: pipeline_config - {'task_type': 'detection_3d', 'dataset_category': 'kitti_lidar_det_1class', 'calibration_dataset': <edgeai_benchmark.datasets.kitti_lidar_det.KittiLidar3D object at 0x7fc3286edfc0>, 'input_dataset': <edgeai_benchmark.datasets.kitti_lidar_det.KittiLidar3D object at 0x7fc3286fe4d0>, 'postprocess': <edgeai_benchmark.postprocess.PostProcessTransforms object at 0x7fc2ade1ab00>, 'preprocess': <edgeai_benchmark.preprocess.PreProcessTransforms object at 0x7fc2ade1abf0>, 'session': <edgeai_benchmark.sessions.onnxrt_session.ONNXRTSession object at 0x7fc2ade1ab90>, 'metric': {'label_offset_pred': None}, 'model_info': {'metric_reference': {'accuracy_ap_3d_moderate%': 76.5}, 'model_shortlist': 30}}

    INFO:20250627-014540: import  - 3dod-7100_onnxrt_models_pointPillar_1class_qat_v92_lidar_point_pillars_10k_496x432_qat-p2_onnx - this may take some time...tidl_tools_path                                 = /opt/code/tools/AM69A/tidl_tools

    artifacts_folder                                = /opt/code/work_dirs/modelartifacts/AM69A/8bits/3dod-7100_onnxrt_models_pointPillar_1class_qat_v92_lidar_point_pillars_10k_496x432_qat-p2_onnx/artifacts

    tidl_tensor_bits                                = 8

    debug_level                                     = 3

    num_tidl_subgraphs                              = 16

    tidl_denylist                                   =

    tidl_denylist_layer_name                        =

    tidl_denylist_layer_type                         =

    tidl_allowlist_layer_name                        =

    model_type                                      =

    tidl_calibration_accuracy_level                 = 64

    tidl_calibration_options:num_frames_calibration = 1

    tidl_calibration_options:bias_calibration_iterations = 1

    mixed_precision_factor = -1.000000

    model_group_id = 0

    power_of_2_quantization                         = 3

    ONNX QDQ Enabled                                = 0

    enable_high_resolution_optimization             = 0

    pre_batchnorm_fold                              = 1

    add_data_convert_ops                            = 3

    output_feature_16bit_names_list                 =

    m_params_16bit_names_list                       =

    m_single_core_layers_names_list                    =

    reserved_compile_constraints_flag               = 83886080

    ti_internal_reserved_1                          =

     

    3dod_ssd is meta arch name

    point_pillars

    Number of OD backbone nodes = 59

    Size of odBackboneNodeIds = 59

    Supported TIDL layer type ---            Clip -- Clip_0

    Supported TIDL layer type ---            Conv -- Conv_1

    Supported TIDL layer type ---            Clip -- Clip_2

    Supported TIDL layer type ---       ReduceMax -- ReduceMax_3

    Supported TIDL layer type ---         Squeeze -- Squeeze_4

    Supported TIDL layer type ---            Conv -- Conv_8

    Supported TIDL layer type ---            Clip -- Clip_9

    Supported TIDL layer type ---            Conv -- Conv_10

    Supported TIDL layer type ---            Clip -- Clip_11

    Supported TIDL layer type ---            Conv -- Conv_12

    Supported TIDL layer type ---            Clip -- Clip_13

    Supported TIDL layer type ---            Conv -- Conv_14

    Supported TIDL layer type ---            Clip -- Clip_15

    Supported TIDL layer type ---            Conv -- Conv_16

    Supported TIDL layer type ---            Clip -- Clip_17

    Supported TIDL layer type ---            Conv -- Conv_18

    Supported TIDL layer type ---            Clip -- Clip_19

    Supported TIDL layer type ---            Conv -- Conv_20

    Supported TIDL layer type ---            Clip -- Clip_21

    Supported TIDL layer type ---            Conv -- Conv_22

    Supported TIDL layer type ---            Clip -- Clip_23

    Supported TIDL layer type ---            Conv -- Conv_24

    Supported TIDL layer type ---            Clip -- Clip_25

    Supported TIDL layer type ---            Conv -- Conv_26

    Supported TIDL layer type ---            Clip -- Clip_27

    Supported TIDL layer type ---            Conv -- Conv_28

    Supported TIDL layer type ---            Clip -- Clip_29

    Supported TIDL layer type ---            Conv -- Conv_30

    Supported TIDL layer type ---            Clip -- Clip_31

    Supported TIDL layer type ---            Conv -- Conv_32

    Supported TIDL layer type ---            Clip -- Clip_33

    Supported TIDL layer type ---            Conv -- Conv_34

    Supported TIDL layer type ---            Clip -- Clip_35

    Supported TIDL layer type ---            Conv -- Conv_36

    Supported TIDL layer type ---            Clip -- Clip_37

    Supported TIDL layer type ---            Conv -- Conv_38

    Supported TIDL layer type ---            Clip -- Clip_39

    Supported TIDL layer type ---          Resize -- Resize_49

    Supported TIDL layer type ---            Conv -- Conv_50

    Supported TIDL layer type ---            Clip -- Clip_51

    Supported TIDL layer type ---            Conv -- Conv_52

    Supported TIDL layer type ---            Clip -- Clip_53

    Supported TIDL layer type ---          Resize -- Resize_43

    Supported TIDL layer type ---            Conv -- Conv_44

    Supported TIDL layer type ---            Clip -- Clip_45

    Supported TIDL layer type ---            Conv -- Conv_46

    Supported TIDL layer type ---            Clip -- Clip_47

    Supported TIDL layer type ---            Conv -- Conv_40

    Supported TIDL layer type ---            Clip -- Clip_41

    Supported TIDL layer type ---          Concat -- Concat_54

    Supported TIDL layer type ---            Clip -- Clip_55

    Supported TIDL layer type ---            Conv -- Conv_60

    Supported TIDL layer type ---            Clip -- Clip_61

    Supported TIDL layer type ---            Conv -- Conv_58

    Supported TIDL layer type ---            Clip -- Clip_59

    Supported TIDL layer type ---            Conv -- Conv_56

    Supported TIDL layer type ---            Clip -- Clip_57

     

    Preliminary subgraphs created = 1

    Final number of subgraphs created are : 1, - Offloaded Nodes - 61, Total Nodes - 61

    INFORMATION -- [TIDL_ResizeLayer]  Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize.

    INFORMATION -- [TIDL_ResizeLayer]  Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize.

    Running runtimes graphviz - /opt/code/tools/AM69A/tidl_tools/tidl_graphVisualiser_runtimes.out /opt/code/work_dirs/modelartifacts/AM69A/8bits/3dod-7100_onnxrt_models_pointPillar_1class_qat_v92_lidar_point_pillars_10k_496x432_qat-p2_onnx/artifacts/allowedNode.txt /opt/code/work_dirs/modelartifacts/AM69A/8bits/3dod-7100_onnxrt_models_pointPillar_1class_qat_v92_lidar_point_pillars_10k_496x432_qat-p2_onnx/artifacts/tempDir/graphvizInfo.txt /opt/code/work_dirs/modelartifacts/AM69A/8bits/3dod-7100_onnxrt_models_pointPillar_1class_qat_v92_lidar_point_pillars_10k_496x432_qat-p2_onnx/artifacts/tempDir/runtimes_visualization.svg

    *** In TIDL_createStateImportFunc ***

    Compute on node : TIDLExecutionProvider_TIDL_0_0

      0,            Clip, 3, 1, x.3, 200

      1,            Conv, 3, 1, 200, 397

      2,            Clip, 3, 1, 397, 207

      3,       ReduceMax, 1, 1, 207, 208

      4,         Squeeze, 1, 1, 208, 209

      5, ScatterElements, 3, 1, data.1, 210

      6,         Reshape, 2, 1, 210, 212

      7,            Conv, 3, 1, 212, 400

      8,            Clip, 3, 1, 400, 219

      9,            Conv, 3, 1, 219, 403

    10,            Clip, 3, 1, 403, 226

    11,            Conv, 3, 1, 226, 406

    12,            Clip, 3, 1, 406, 233

    13,            Conv, 3, 1, 233, 409

    14,            Clip, 3, 1, 409, 240

    15,            Conv, 3, 1, 240, 448

    16,            Clip, 3, 1, 448, 331

    17,            Conv, 3, 1, 240, 412

    18,            Clip, 3, 1, 412, 247

    19,            Conv, 3, 1, 247, 415

    20,            Clip, 3, 1, 415, 254

    21,            Conv, 3, 1, 254, 418

    22,            Clip, 3, 1, 418, 261

    23,            Conv, 3, 1, 261, 421

    24,            Clip, 3, 1, 421, 268

    25,            Conv, 3, 1, 268, 424

    26,            Clip, 3, 1, 424, 275

    27,            Conv, 3, 1, 275, 427

    28,            Clip, 3, 1, 427, 282

    29,          Resize, 3, 1, 282, 336

    30,            Conv, 3, 1, 336, 451

    31,            Clip, 3, 1, 451, 343

    32,            Conv, 3, 1, 343, 454

    33,            Clip, 3, 1, 454, 350

    34,            Conv, 3, 1, 282, 430

    35,            Clip, 3, 1, 430, 289

    36,            Conv, 3, 1, 289, 433

    37,            Clip, 3, 1, 433, 296

    38,            Conv, 3, 1, 296, 436

    39,            Clip, 3, 1, 436, 303

    40,            Conv, 3, 1, 303, 439

    41,            Clip, 3, 1, 439, 310

    42,            Conv, 3, 1, 310, 442

    43,            Clip, 3, 1, 442, 317

    44,            Conv, 3, 1, 317, 445

    45,            Clip, 3, 1, 445, 324

    46,          Resize, 3, 1, 324, 355

    47,            Conv, 3, 1, 355, 457

    48,            Clip, 3, 1, 457, 362

    49,            Conv, 3, 1, 362, 460

    50,            Clip, 3, 1, 460, 369

    51,          Concat, 3, 1, 331, 370

    52,            Clip, 3, 1, 370, 375

    53,            Conv, 3, 1, 375, 376

    54,            Clip, 3, 1, 376, 381

    55,            Conv, 3, 1, 375, 382

    56,            Clip, 3, 1, 382, 387

    57,            Conv, 3, 1, 375, 388

    58,            Clip, 3, 1, 388, 393

    59,          Concat, 3, 1, 381, 394

    60,         Reshape, 2, 1, 394, 396

     

    Input tensor name -  x.3

     

    Input tensor name -  data.1

     

    Input tensor name -  coors

    Output tensor name - 396

    Graph Domain TO version : 11In TIDL_onnxRtImportInit subgraph_name=396

    Layer 0, subgraph id 396, name=393

    Layer 1, subgraph id 396, name=381

    Layer 2, subgraph id 396, name=387

    Layer 3, subgraph id 396, name=x.3

    Layer 4, subgraph id 396, name=data.1

    Layer 5, subgraph id 396, name=coors

    TIDL Meta PipeLine (Proto) File  : /opt/code/work_dirs/modelartifacts/AM69A/8bits/3dod-7100_onnxrt_models_pointPillar_1class_qat_v92_lidar_point_pillars_10k_496x432_qat-p2_onnx/model/lidar_point_pillars_10k_496x432.prototxt

    3dod_ssd

    point_pillars

    In TIDL_runtimesOptimizeNet: LayerIndex = 65, dataIndex = 62

    Warning : Requested Input Data Convert Layer is not Added to the network, It is currently not Optimal

    Warning : Requested Output Data Convert Layer is not Added to the network, It is currently not Optimal

    WARNING: Conv Layer Conv_8's coeff cannot be found(or not match) in coef file, Random coeff will be generated! Only for evaluation usage! Results are all random!

     

    ************** Frame index 1 : Running float import *************

    In TIDL_runtimesPostProcessNet

    In TIDL_runtimesPostProcessNet 1

    In TIDL_runtimesPostProcessNet 2

    In TIDL_runtimesPostProcessNet 3

    INFORMATION: [TIDL_ResizeLayer] Resize_43 Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize.

    INFORMATION: [TIDL_ResizeLayer] Resize_49 Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize.

    ****************************************************

    **          2 WARNINGS          0 ERRORS          **

    ****************************************************

    In TIDL_runtimesPostProcessNet 4

    ************ in TIDL_subgraphRtCreate ************

    The soft limit is 2048

    The hard limit is 2048

    MEM: Init ... !!!

    MEM: Init ... Done !!!

    0.0s:  VX_ZONE_INIT:Enabled

    0.7s:  VX_ZONE_ERROR:Enabled

    0.8s:  VX_ZONE_WARNING:Enabled

    0.2154s:  VX_ZONE_INIT:[tivxInit:185] Initialization Done !!!

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    Memory used for  ALG_SCRATCH_DATA_BUFF_MEMREC is greater than requested

    ************ TIDL_subgraphRtCreate done ************

    *******   In TIDL_subgraphRtInvoke  ********

       0         1.00000       -55.00000        63.00000 6

       3         1.00000       -55.00000        63.00000 6

       1         1.00000         0.00000         0.00000 6

       4         1.00000         0.00000         0.00000 6

       5         1.00000       -55.00000        63.00000 6

       6         1.00000        -2.00000         2.00000 6

       7         1.00000        -0.19525         2.00000 6

       8         1.00000        -0.19525         2.00000 6

       9         1.00000        -0.19525         2.00000 6

      10         1.00000        -0.19525         2.00000 6

       2         1.00000         0.00000       255.00000 5

      11         1.00000        -0.19525         2.00000 6

      12         1.00000         0.00000         1.00000 6

      13         1.00000         0.00000         1.00000 6

     

    INFO:20250627-014640: parallel_run - num_total_tasks:1 len(queued_tasks):0 len(process_dict):1 len(result_list):0

      14         1.00000         0.00000         1.00000 6

     

    INFO:20250627-014740: parallel_run - num_total_tasks:1 len(queued_tasks):0 len(process_dict):1 len(result_list):0

      15         1.00000         0.00000         1.00000 6

    Memory for  TIDL_refConv2d accumulator is not sufficient exiting...

    TASKS                                                       | 100%|██████████|| 1/1 [02:12<00:00, 132.57s/it]

    TASKS                                                       | 100%|██████████|| 1/1 [02:12<00:00, 132.47s/it]

     

    -------------------------------------------------------------------

    argv: ['./scripts/benchmark_modelzoo.py', 'settings_import_on_pc.yaml', '--target_device', 'AM69A', '--run_import', 'False']

    settings: {'include_files': None, 'pipeline_type': 'accuracy', 'num_frames': 5, 'calibration_frames': 1, 'calibration_iterations': 1, 'configs_path': './configs', 'models_path': '../edgeai-modelzoo/models', 'modelartifacts_path': './work_dirs/modelartifacts/AM69A', 'modelpackage_path': './work_dirs/modelpackage/AM69A', 'datasets_path': './dependencies/datasets', 'target_device': 'AM69A', 'target_machine': 'pc', 'run_suffix': None, 'parallel_devices': 1, 'parallel_processes': 1, 'tensor_bits': 8, 'runtime_options': {'advanced_options:quantization_scale_type': 4}, 'run_import': False, 'run_inference': True, 'run_missing': True, 'detection_threshold': 0.3, 'detection_top_k': 200, 'detection_nms_threshold': None, 'detection_keep_top_k': None, 'save_output': True, 'num_output_frames': 50, 'model_selection': ['3dod-7100'], 'model_shortlist': None, 'model_exclusion': None, 'task_selection': ['detection_3d'], 'runtime_selection': None, 'session_type_dict': {'onnx': 'onnxrt', 'tflite': 'tflitert', 'mxnet': 'tvmdlr'}, 'dataset_type_dict': None, 'dataset_selection': ['kitti_lidar_det_1class'], 'dataset_loading': True, 'config_range': None, 'enable_logging': True, 'verbose': False, 'capture_log': False, 'experimental_models': True, 'rewrite_results': False, 'with_udp': True, 'flip_test': False, 'model_transformation_dict': None, 'report_perfsim': False, 'tidl_offload': True, 'input_optimization': None, 'run_dir_tree_depth': None, 'target_device_preset': True, 'fast_calibration_factor': 0.5, 'param_template_file': None, 'write_results': True, 'settings_file': 'settings_import_on_pc.yaml', 'basic_keys': ['include_files', 'pipeline_type', 'num_frames', 'calibration_frames', 'calibration_iterations', 'configs_path', 'models_path', 'modelartifacts_path', 'modelpackage_path', 'datasets_path', 'target_device', 'target_machine', 'run_suffix', 'parallel_devices', 'parallel_processes', 'tensor_bits', 'runtime_options', 'run_import', 'run_inference', 'run_missing', 'detection_threshold', 'detection_top_k', 'detection_nms_threshold', 'detection_keep_top_k', 'save_output', 'num_output_frames', 'model_selection', 'model_shortlist', 'model_exclusion', 'task_selection', 'runtime_selection', 'session_type_dict', 'dataset_type_dict', 'dataset_selection', 'dataset_loading', 'config_range', 'enable_logging', 'verbose', 'capture_log', 'experimental_models', 'rewrite_results', 'with_udp', 'flip_test', 'model_transformation_dict', 'report_perfsim', 'tidl_offload', 'input_optimization', 'run_dir_tree_depth', 'target_device_preset', 'fast_calibration_factor', 'param_template_file', 'write_results', 'settings_file'], 'dataset_cache': None}

    work_dir: ./work_dirs/modelartifacts/AM69A/8bits

    Using model configs from Python module: ./configs

     

    INFO:20250627-014753: loading dataset - category:kitti_lidar_det_1class variant:kitti_lidar_det_1class

    configs to run: ['3dod-7100_onnxrt_models_pointPillar_1class_qat_v92_lidar_point_pillars_10k_496x432_qat-p2_onnx']

    number of configs: 1

     

    INFO:20250627-014753: parallel_run - parallel_processes:1 parallel_devices=range(0, 1)

    TASKS                                                       |          |     0% 0/1| [< ]

    INFO:20250627-014753: starting process on parallel_device - 0   0%|          || 0/1 [00:00<?, ?it/s]

     

    INFO:20250627-014753: starting - 3dod-7100_onnxrt_models_pointPillar_1class_qat_v92_lidar_point_pillars_10k_496x432_qat-p2_onnx

    INFO:20250627-014753: model_path - /opt/code/models/pointPillar_1class_qat_v92/lidar_point_pillars_10k_496x432_qat-p2.onnx

    INFO:20250627-014753: model_file - /opt/code/work_dirs/modelartifacts/AM69A/8bits/3dod-7100_onnxrt_models_pointPillar_1class_qat_v92_lidar_point_pillars_10k_496x432_qat-p2_onnx/model/lidar_point_pillars_10k_496x432_qat-p2.onnx

    INFO:20250627-014753: quant_file - /opt/code/work_dirs/modelartifacts/AM69A/8bits/3dod-7100_onnxrt_models_pointPillar_1class_qat_v92_lidar_point_pillars_10k_496x432_qat-p2_onnx/model/lidar_point_pillars_10k_496x432_qat-p2_qparams.prototxt

     

    INFO:20250627-014753: running - 3dod-7100_onnxrt_models_pointPillar_1class_qat_v92_lidar_point_pillars_10k_496x432_qat-p2_onnx

    INFO:20250627-014753: pipeline_config - {'task_type': 'detection_3d', 'dataset_category': 'kitti_lidar_det_1class', 'calibration_dataset': <edgeai_benchmark.datasets.kitti_lidar_det.KittiLidar3D object at 0x7f7529d11fc0>, 'input_dataset': <edgeai_benchmark.datasets.kitti_lidar_det.KittiLidar3D object at 0x7f7529d224d0>, 'postprocess': <edgeai_benchmark.postprocess.PostProcessTransforms object at 0x7f74af453820>, 'preprocess': <edgeai_benchmark.preprocess.PreProcessTransforms object at 0x7f74af453730>, 'session': <edgeai_benchmark.sessions.onnxrt_session.ONNXRTSession object at 0x7f74af453790>, 'metric': {'label_offset_pred': None}, 'model_info': {'metric_reference': {'accuracy_ap_3d_moderate%': 76.5}, 'model_shortlist': 30}}

    INFO:20250627-014753: infer  - 3dod-7100_onnxrt_models_pointPillar_1class_qat_v92_lidar_point_pillars_10k_496x432_qat-p2_onnx - this may take some time...libtidl_onnxrt_EP loaded 0x743c4f0

    artifacts_folder                                = /opt/code/work_dirs/modelartifacts/AM69A/8bits/3dod-7100_onnxrt_models_pointPillar_1class_qat_v92_lidar_point_pillars_10k_496x432_qat-p2_onnx/artifacts

    debug_level                                     = 3

    target_priority                                 = 0

    max_pre_empt_delay                              = 340282346638528859811704183484516925440.000000

    Final number of subgraphs created are : 1, - Offloaded Nodes - 61, Total Nodes - 61

    In TIDL_createStateInfer

    Compute on node : TIDLExecutionProvider_TIDL_0_0

    ************ in TIDL_subgraphRtCreate ************

    Invoke  : ERROR: Unable to open network file /opt/code/work_dirs/modelartifacts/AM69A/8bits/3dod-7100_onnxrt_models_pointPillar_1class_qat_v92_lidar_point_pillars_10k_496x432_qat-p2_onnx/artifacts/396_tidl_net.bin

    TASKS                                                       | 100%|██████████|| 1/1 [00:00<00:00,  1.98it/s]

     

     

    -------------------------------------------------------------------

    settings: {'include_files': None, 'pipeline_type': 'accuracy', 'num_frames': 5, 'calibration_frames': 1, 'calibration_iterations': 1, 'configs_path': './configs', 'models_path': '../edgeai-modelzoo/models', 'modelartifacts_path': './work_dirs/modelartifacts/', 'modelpackage_path': './work_dirs/modelpackage/', 'datasets_path': './dependencies/datasets', 'target_device': None, 'target_machine': 'pc', 'run_suffix': None, 'parallel_devices': 1, 'parallel_processes': 1, 'tensor_bits': 8, 'runtime_options': None, 'run_import': True, 'run_inference': True, 'run_missing': True, 'detection_threshold': 0.3, 'detection_top_k': 200, 'detection_nms_threshold': None, 'detection_keep_top_k': None, 'save_output': True, 'num_output_frames': 50, 'model_selection': ['3dod-7100'], 'model_shortlist': None, 'model_exclusion': None, 'task_selection': ['detection_3d'], 'runtime_selection': None, 'session_type_dict': {'onnx': 'onnxrt', 'tflite': 'tflitert', 'mxnet': 'tvmdlr'}, 'dataset_type_dict': None, 'dataset_selection': ['kitti_lidar_det_1class'], 'dataset_loading': True, 'config_range': None, 'enable_logging': True, 'verbose': False, 'capture_log': False, 'experimental_models': True, 'rewrite_results': False, 'with_udp': True, 'flip_test': False, 'model_transformation_dict': None, 'report_perfsim': False, 'tidl_offload': True, 'input_optimization': None, 'run_dir_tree_depth': None, 'target_device_preset': True, 'fast_calibration_factor': None, 'param_template_file': None, 'write_results': True, 'skip_pattern': '_package', 'settings_file': 'settings_import_on_pc.yaml', 'basic_keys': ['include_files', 'pipeline_type', 'num_frames', 'calibration_frames', 'calibration_iterations', 'configs_path', 'models_path', 'modelartifacts_path', 'modelpackage_path', 'datasets_path', 'target_device', 'target_machine', 'run_suffix', 'parallel_devices', 'parallel_processes', 'tensor_bits', 'runtime_options', 'run_import', 'run_inference', 'run_missing', 'detection_threshold', 'detection_top_k', 'detection_nms_threshold', 'detection_keep_top_k', 'save_output', 'num_output_frames', 'model_selection', 'model_shortlist', 'model_exclusion', 'task_selection', 'runtime_selection', 'session_type_dict', 'dataset_type_dict', 'dataset_selection', 'dataset_loading', 'config_range', 'enable_logging', 'verbose', 'capture_log', 'experimental_models', 'rewrite_results', 'with_udp', 'flip_test', 'model_transformation_dict', 'report_perfsim', 'tidl_offload', 'input_optimization', 'run_dir_tree_depth', 'target_device_preset', 'fast_calibration_factor', 'param_template_file', 'write_results', 'skip_pattern', 'settings_file'], 'dataset_cache': None}

    results found for 4 models

    Report generated at ./work_dirs/modelartifacts/

     

  • Hello, 

    Which version of TIDL tools are you running? There is a backport compatible one for 9.2 (10_00_07_00)https://github.com/TexasInstruments/edgeai-tidl-tools/blob/master/docs/version_compatibility_table.md

    Please see if the same behavior occurs in this one.

    Thanks,

    Christina