This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

UART BIOS not working, C6748 platform

Other Parts Discussed in Thread: OMAP-L138, SYSCONFIG

Hi,

I am trying to get the UART to work (UART bios) but I had no luck so far.

I have read the C6748_BIOSPSP_User_Guide, and I have selected the UART example (interrupt or edma behaves the same).

The project builds, and it gets downloaded to the evm board (with a C6748 on board), my gel file runs as for other projects,  but then I see no info on the console as the C6748_BIOSPSP_User_Guide describes. could it be a configuration problem?

How do you configure the project correctly, does any one knows the steps? I could be missing some small detail..

I am using:

windows xp,

 CCS Version: 4.2.4.00033,

bios_5_41_10_36,

edma3_lld_01_11_02_05,

pspdrivers_01_30_01,

rtfs_1_10_02_32,

xdctools_3_22_01_21,

xdais_7_10_00_06

Thanks,

George.

  • Hi George,

    Before building the project, I request you to directly check/run the default binaries that come with the psp_01_30_01. When this succeeds, we can confirm that the GEL file and the hardware configurations are appropriate. Then, we can proceed further. Also verify other peripherals on your evm board. Let me know the results..

     

    Best Regards,

    Raghavendra

     

  • Dear Raghavendra,

    Thanks for the reply, how do I check/run the default binaries that come with the psp_01_30_01?

  • Hi George,

    After installing the PSP_01_30_01, run the binaries(already available) placed in - pspdrivers_01_30_01\packages\ti\pspiom\examples\evm6748\uart\interrupt\bin\Debug

     

    Best regards,

    Raghavendra

  • Hi Raghavendra,

    I've run (run T.I. debugger->connect to target->load program)  the .out from the location you've specified but nothing happened, the problem still exists. In the user manual for UART it states that the program when run it will output the following string to the Uart ouput channel: “UART Demo Starts: INPUT a file of size 1000 bytes".

    However, the example shows running but nothing is seen on the console screen. In addition, when I hit go to main (Target->go to main) again nothing happens the cursor does not seem to go to main, although within the Target tab the "goto main" option is masked, so CCS seems to think that the program has jumped at main?


    In general because I've tested the ethernet example (with the same gel) and it works, I was expecting also with the UART after the gel runs the program to wait at main, just as it is done with the ethernet. But this hasn't happened with the UART example and I can't figure out if the problem lies at the program itself or if it is a CCS configuration problem.

    I think I've followed all the required steps, but if you have a procedure that I can follow from scratch to theoretically set the UART to work (a procedure that has been tested elsewhere) I can make a new project and test it to find out if I'm missing any steps during configuraton, etc.

    thanks,

    George.

  • Hi George,

    Please share the GEL file you are using. Also, you are checking the output on a hyperterminal or a teraterm?. There is no extra configuration to be made. The default binaries are tested and should work as is on the EVM. You are using a C6748 EVM or a custom EVM(modified)?. Please try loading/running other peripheral binaries(like i2c, spi, etc) and check.

    Let me know..

     

    Best Regards,

    Raghavendra

  • Hi Raghavendra,


    I'm checking the output on Terminal v1.9b (by bray++). I've tested the pc and the nul cable with a loop around and it works. I am using a C6748 custom board, and I'm selecting the ti.platforms.evm6748 from the Tools menu which is the closest to my board. It is the same platform I've selected when I got the ethernet example to work.

    I've also tried other peripherals like I2C and USB but the problem persists.

    As I see it the main question here is, why the example(s) do not display their output on the console (or on the ROV) as the psp manual describes? The tool I'm using to check the UART is not relevant  at the moment because the examples does not even get to the point where they display their output. For example the i2c should display: Start of I2C sample application, the UART should show: "UART Demo Starts: INPUT a file of size 1000 bytes", etc.

    I have attached the gel file for your info (converted it to .txt as I wasn't able to attach it otherwise)

    Thanks again,

    George.

  • Hello to All,

    I managed to place breakpoints in the code (I'm running the uartSample in debug mode). The code doesn't seem to pass from main (I have active breakpoints there) and it goes directly to the: " user_uart2_init()" function and it seems to stop there. I assume this because it stops at my breakpoint in this function and then when I click on run again it shows running but it doesn't get to any of the other functions: genericUartTest() or echo(), I have also put breakpoints there to check, but the code doen't seem to go anywhere else besides the  " user_uart2_init()" within the: "uartSample.c".

    any thoughts? anyone?

  • Hi George,

    Sorry for the delayed response..

    I do not find the GEL file attached?. Also, if you are using a custom board, understand the differences between your board and the EVM. Accordingly, you will have to modify the sample applications. For example, in the pspdrivers_01_30_01 the UART sample application uses UART instance 2 to perform read/write wherein, the output is seen on the UART console (Hyperterminal PC, baudrate- 115200) connected to the DB9 connectors on the EVM. Are you testing UART 2 instance itself on your custom board?. If it is a different instance of UART, you will have to change the sample application by changing the device id(uartSample.tci) and do the PINMUX appropriately(platforms/evm6748/src/uart_evmInit.c).

    George Paravas said:
    The code doesn't seem to pass from main (I have active breakpoints there) and it goes directly to the: " user_uart2_init()" function and it seems to stop there.

    The echo() task(refer uartSample.tcf) is called after the static creation of the uart device. For this to be successful make sure the above settings/configurations is done appropriately. Still if you do not succeed try probing(placing breapoint) in the uart driver(Uart_init(), uartMdBindDev() ) reload and check.

     All the sample applications in the psp_01_30_01 uses "LOG_printf()" print messages and these are not directly viewed on the CCSv4 console. For this, you will have to check the CCSv4 userguide. In CCSv3.3, goto tools->DSP/BIOS->message log to view the print messages. 

    Hope this helps..

    Best Regards,

    Ragavendra

  • Hi Ragavendra, Thanks for the info,

    I've checked the schematic of the board and the port I'm connected to (DB9) is connected to UART2 on the C6748. I guess this means that I'm using UART instance 2?

    Also is there a manual/schematic of the EVM 6748 so I can check the differences of that board with ours?

    About the ccs4 messages, they show on the ROV , under LOG.

    So if I understand it correctly after the UART gets created and configured, uartSample.tcf calls the echo task to connect to the port and wait for data ta come in and then echo them back?

    Also when I run the application, under ROV->LOG I see the following:

    LOG_system

    seqnum 0:

    TSK: ready TSK_idle (0x11825ca4)

    seqnum 1:

    TSK: ready echoTask (0x11825d04)

    Since attaching does not work I'm copying the gel file below, I'll appreciate it if you can give it a quick look.

    (let me know when you have it so I can delete it, to save some space in this blog)

    Thanks again.

    GelFile:

    //////////////////////////////////////////////////////////////////////////////////

    #define PLL0_BASE 0x01C11000 /*SYSTEM PLL BASE ADDRESS*/
    #define PLL0_PID *(unsigned int*) (PLL0_BASE + 0x00) /*PID*/
    #define PLL0_RSTYPE *(unsigned int*) (PLL0_BASE + 0xE4) /*Reset Type status Reg*/
    #define PLL0_PLLCTL *(unsigned int*) (PLL0_BASE + 0x100) /*PLL Control Register*/
    #define PLL0_OCSEL *(unsigned int*) (PLL0_BASE + 0x104) /*OBSCLK Select Register*/
    #define PLL0_SECCTL *(unsigned int*) (PLL0_BASE + 0x108) /*PLL Secondary Control Register*/
    #define PLL0_PLLM *(unsigned int*) (PLL0_BASE + 0x110) /*PLL Multiplier*/
    #define PLL0_PREDIV *(unsigned int*) (PLL0_BASE + 0x114) /*Pre divider*/
    #define PLL0_PLLDIV1 *(unsigned int*) (PLL0_BASE + 0x118) /*Divider-1*/
    #define PLL0_PLLDIV2 *(unsigned int*) (PLL0_BASE + 0x11C) /*Divider-2*/
    #define PLL0_PLLDIV3 *(unsigned int*) (PLL0_BASE + 0x120) /*Divider-3*/
    #define PLL0_OSCDIV1 *(unsigned int*) (PLL0_BASE + 0x124) /*Oscilator Divider*/
    #define PLL0_POSTDIV *(unsigned int*) (PLL0_BASE + 0x128) /*Post Divider*/
    #define PLL0_BPDIV *(unsigned int*) (PLL0_BASE + 0x12C) /*Bypass Divider*/
    #define PLL0_WAKEUP *(unsigned int*) (PLL0_BASE + 0x130) /*Wakeup Reg*/
    #define PLL0_PLLCMD *(unsigned int*) (PLL0_BASE + 0x138) /*Command Reg*/
    #define PLL0_PLLSTAT *(unsigned int*) (PLL0_BASE + 0x13C) /*Status Reg*/
    #define PLL0_ALNCTL *(unsigned int*) (PLL0_BASE + 0x140) /*Clock Align Control Reg*/
    #define PLL0_DCHANGE *(unsigned int*) (PLL0_BASE + 0x144) /*PLLDIV Ratio Chnage status*/
    #define PLL0_CKEN *(unsigned int*) (PLL0_BASE + 0x148) /*Clock Enable Reg*/
    #define PLL0_CKSTAT *(unsigned int*) (PLL0_BASE + 0x14C) /*Clock Status Reg*/
    #define PLL0_SYSTAT *(unsigned int*) (PLL0_BASE + 0x150) /*Sysclk status reg*/
    #define PLL0_PLLDIV4 *(unsigned int*) (PLL0_BASE + 0x160) /*Divider 4*/
    #define PLL0_PLLDIV5 *(unsigned int*) (PLL0_BASE + 0x164) /*Divider 5*/
    #define PLL0_PLLDIV6 *(unsigned int*) (PLL0_BASE + 0x168) /*Divider 6*/
    #define PLL0_PLLDIV7 *(unsigned int*) (PLL0_BASE + 0x16C) /*Divider 7*/
    #define PLL0_PLLDIV8 *(unsigned int*) (PLL0_BASE + 0x170) /*Divider 8*/
    #define PLL0_PLLDIV9 *(unsigned int*) (PLL0_BASE + 0x174) /*Divider 9*/
    #define PLL0_PLLDIV10 *(unsigned int*) (PLL0_BASE + 0x178) /*Divider 10*/
    #define PLL0_PLLDIV11 *(unsigned int*) (PLL0_BASE + 0x17C) /*Divider 11*/
    #define PLL0_PLLDIV12 *(unsigned int*) (PLL0_BASE + 0x180) /*Divider 12*/
    #define PLL0_PLLDIV13 *(unsigned int*) (PLL0_BASE + 0x184) /*Divider 13*/
    #define PLL0_PLLDIV14 *(unsigned int*) (PLL0_BASE + 0x188) /*Divider 14*/
    #define PLL0_PLLDIV15 *(unsigned int*) (PLL0_BASE + 0x18C) /*Divider 15*/
    #define PLL0_PLLDIV16 *(unsigned int*) (PLL0_BASE + 0x190) /*Divider 16*/
    #define PLL1_BASE 0x01E1A000 /*SYSTEM PLL1 BASE ADDRESS*/
    #define PLL1_PID *(unsigned int*) (PLL1_BASE + 0x00) /*PID*/
    #define PLL1_RSTYPE *(unsigned int*) (PLL1_BASE + 0xE4) /*Reset Type status Reg*/
    #define PLL1_PLLCTL *(unsigned int*) (PLL1_BASE + 0x100) /*PLL Control Register*/
    #define PLL1_OCSEL *(unsigned int*) (PLL1_BASE + 0x104) /*OBSCLK Select Register*/
    #define PLL1_SECCTL *(unsigned int*) (PLL1_BASE + 0x108) /*PLL Secondary Control Register*/
    #define PLL1_PLLM *(unsigned int*) (PLL1_BASE + 0x110) /*PLL Multiplier*/
    #define PLL1_PREDIV *(unsigned int*) (PLL1_BASE + 0x114) /*Pre divider*/
    #define PLL1_PLLDIV1 *(unsigned int*) (PLL1_BASE + 0x118) /*Divider-1*/
    #define PLL1_PLLDIV2 *(unsigned int*) (PLL1_BASE + 0x11C) /*Divider-2*/
    #define PLL1_PLLDIV3 *(unsigned int*) (PLL1_BASE + 0x120) /*Divider-3*/
    #define PLL1_OSCDIV1 *(unsigned int*) (PLL1_BASE + 0x124) /*Oscilator Divider*/
    #define PLL1_POSTDIV *(unsigned int*) (PLL1_BASE + 0x128) /*Post Divider*/
    #define PLL1_BPDIV *(unsigned int*) (PLL1_BASE + 0x12C) /*Bypass Divider*/
    #define PLL1_WAKEUP *(unsigned int*) (PLL1_BASE + 0x130) /*Wakeup Reg*/
    #define PLL1_PLLCMD *(unsigned int*) (PLL1_BASE + 0x138) /*Command Reg*/
    #define PLL1_PLLSTAT *(unsigned int*) (PLL1_BASE + 0x13C) /*Status Reg*/
    #define PLL1_ALNCTL *(unsigned int*) (PLL1_BASE + 0x140) /*Clock Align Control Reg*/
    #define PLL1_DCHANGE *(unsigned int*) (PLL1_BASE + 0x144) /*PLLDIV Ratio Chnage status*/
    #define PLL1_CKEN *(unsigned int*) (PLL1_BASE + 0x148) /*Clock Enable Reg*/
    #define PLL1_CKSTAT *(unsigned int*) (PLL1_BASE + 0x14C) /*Clock Status Reg*/
    #define PLL1_SYSTAT *(unsigned int*) (PLL1_BASE + 0x150) /*Sysclk status reg*/
    #define PLL1_PLLDIV4 *(unsigned int*) (PLL1_BASE + 0x160) /*Divider 4*/
    #define PLL1_PLLDIV5 *(unsigned int*) (PLL1_BASE + 0x164) /*Divider 5*/
    #define PLL1_PLLDIV6 *(unsigned int*) (PLL1_BASE + 0x168) /*Divider 6*/
    #define PLL1_PLLDIV7 *(unsigned int*) (PLL1_BASE + 0x16C) /*Divider 7*/
    #define PLL1_PLLDIV8 *(unsigned int*) (PLL1_BASE + 0x170) /*Divider 8*/
    #define PLL1_PLLDIV9 *(unsigned int*) (PLL1_BASE + 0x174) /*Divider 9*/
    #define PLL1_PLLDIV10 *(unsigned int*) (PLL1_BASE + 0x178) /*Divider 10*/
    #define PLL1_PLLDIV11 *(unsigned int*) (PLL1_BASE + 0x17C) /*Divider 11*/
    #define PLL1_PLLDIV12 *(unsigned int*) (PLL1_BASE + 0x180) /*Divider 12*/
    #define PLL1_PLLDIV13 *(unsigned int*) (PLL1_BASE + 0x184) /*Divider 13*/
    #define PLL1_PLLDIV14 *(unsigned int*) (PLL1_BASE + 0x188) /*Divider 14*/
    #define PLL1_PLLDIV15 *(unsigned int*) (PLL1_BASE + 0x18C) /*Divider 15*/
    #define PLL1_PLLDIV16 *(unsigned int*) (PLL1_BASE + 0x190) /*Divider 16*/
    /*PSC Module Related Registers*/
    #define PSC0_BASE 0x01C10000
    #define PSC1_BASE 0x01E27000
    #define PSC0_MDCTL (PSC0_BASE+0xA00)
    #define PSC0_MDSTAT (PSC0_BASE+0x800)
    #define PSC0_PTCMD *(unsigned int*) (PSC0_BASE + 0x120)
    #define PSC0_PTSTAT *(unsigned int*) (PSC0_BASE + 0x128)
    #define PSC1_MDCTL (PSC1_BASE+0xA00)
    #define PSC1_MDSTAT (PSC1_BASE+0x800)
    #define PSC1_PTCMD *(unsigned int*) (PSC1_BASE + 0x120)
    #define PSC1_PTSTAT *(unsigned int*) (PSC1_BASE + 0x128)
    #define PSC_TIMEOUT 200 // This value can be optimized by the user
    #define LPSC_EDMA_CC0 0
    #define LPSC_EDMA_TC0 1
    #define LPSC_EDMA_TC1 2
    #define LPSC_EMIFA 3 /*PSC0*/
    #define LPSC_SPI0 4 /*PSC0*/
    #define LPSC_MMCSD0 5 /*PSC0*/
    // LPSC #6 not used
    // LPSC #7 not used
    // LPSC #8 not used
    #define LPSC_UART0 9 /*PSC0*/
    #define LPSC_SCR0 10
    #define LPSC_SCR1 11
    #define LPSC_SCR2 12
    // LPSC #13 not used
    // LPSC #14 not used
    #define LPSC_DSP 15 /*PSC0*/
    #define LPSC_EDMA_CC1 0
    #define LPSC_USB20 1 /*PSC1*/
    #define LPSC_USB11 2 /*PSC1*/
    #define LPSC_GPIO 3 /*PSC1*/
    #define LPSC_UHPI 4 /*PSC1*/
    #define LPSC_EMAC 5 /*PSC1*/
    #define LPSC_DDR 6 /*PSC1*/
    #define LPSC_MCASP0 7 /*PSC1*/
    #define LPSC_SATA 8 /*PSC1*/
    #define LPSC_VPIF 9 /*PSC1*/
    #define LPSC_SPI1 10 /*PSC1*/
    #define LPSC_I2C1 11 /*PSC1*/
    #define LPSC_UART1 12 /*PSC1*/
    #define LPSC_UART2 13 /*PSC1*/
    #define LPSC_MCBSP0 14 /*PSC1*/
    #define LPSC_MCBSP1 15 /*PSC1*/
    #define LPSC_LCDC 16 /*PSC1*/
    #define LPSC_EPWM 17 /*PSC1*/
    #define LPSC_MMCSD1 18
    #define LPSC_UPP 19
    #define LPSC_ECAP 20
    #define LPSC_EDMA_TC2 21
    // LPSC #22-23 not used
    #define LPSC_SCR_F0 24
    #define LPSC_SCR_F1 25
    #define LPSC_SCR_F2 26
    #define LPSC_SCR_F6 27
    #define LPSC_SCR_F7 28
    #define LPSC_SCR_F8 29
    #define LPSC_BR_F7 30
    #define LPSC_SHARED_RAM 31
    /*DDR MMR Declaration*/
    #define VTPIO_CTL *(unsigned int*)(0x01E2C000) //VTPIO_CTL Register
    #define DDR_SLEW *(unsigned int*)(0x01E2C004) //DDR_SLEW Register
    #define EMIFDDR_SDRAM_CFG 0xB0000000
    #define EMIFDDR_REVID *(unsigned int*)(EMIFDDR_SDRAM_CFG + 0x00) //EMIF Module ID and Revision Register
    #define EMIFDDR_SDRSTAT *(unsigned int*)(EMIFDDR_SDRAM_CFG + 0x04) //SDRAM Status Register
    #define EMIFDDR_SDCR *(unsigned int*)(EMIFDDR_SDRAM_CFG + 0x08) //SDRAM Bank Config Register
    #define EMIFDDR_SDRCR *(unsigned int*)(EMIFDDR_SDRAM_CFG + 0x0C) //SDRAM Refresh Control Register
    #define EMIFDDR_SDTIMR1 *(unsigned int*)(EMIFDDR_SDRAM_CFG + 0x10) //SDRAM Timing Register1
    #define EMIFDDR_SDTIMR2 *(unsigned int*)(EMIFDDR_SDRAM_CFG + 0x14) //SDRAM Timing Register2
    #define EMIFDDR_SDCR2 *(unsigned int*)(EMIFDDR_SDRAM_CFG + 0x1C) //SDRAM Config Register2
    #define EMIFDDR_PBBPR *(unsigned int*)(EMIFDDR_SDRAM_CFG + 0x20) //VBUSM Burst Priority Register
    #define EMIFDDR_VBUSMCFG1 *(unsigned int*)(EMIFDDR_SDRAM_CFG + 0x28) //VBUSM config Value1 Register
    #define EMIFDDR_VBUSMCFG2 *(unsigned int*)(EMIFDDR_SDRAM_CFG + 0x2C) //VBUSM config Value2 Register
    #define EMIFDDR_IRR *(unsigned int*)(EMIFDDR_SDRAM_CFG + 0xC0) //Interrupt Raw Register
    #define EMIFDDR_IMR *(unsigned int*)(EMIFDDR_SDRAM_CFG + 0xC4) //Interrupt Masked Register
    #define EMIFDDR_IMSR *(unsigned int*)(EMIFDDR_SDRAM_CFG + 0xC8) //Interrupt Mask Set Register
    #define EMIFDDR_IMCR *(unsigned int*)(EMIFDDR_SDRAM_CFG + 0xCC) //Interrupt Mask Clear Register
    #define DDRPHYREV *(unsigned int*)(EMIFDDR_SDRAM_CFG + 0xE0) //DDR PHY ID and Revision Register
    #define DRPYC1R *(unsigned int*)(EMIFDDR_SDRAM_CFG + 0xE4) //DDR PHY Control 1 Register
    #define DDR2 0 // Do not change this value
    #define MDDR 1 // Do not change this value
    #define VTP_TIMEOUT 200 // This value can be optimized by the user
    #define DDR_DEBUG 0 // Set this to "1" to program DDR with more timing slack
    #define EMIFDDR_BASE_ADDR 0xC0000000
    #define EMIFA_BASE_ADDR 0x40000000
    #define EMIFA_CS2_BASE_ADDR 0x60000000
    #define EMIFA_CS3_BASE_ADDR 0x62000000
    #define EMIFA_CS4_BASE_ADDR 0x64000000
    #define EMIFA_CS5_BASE_ADDR 0x66000000
    /*EMIF2.5 MMR Declaration*/
    #define EMIFA 0x68000000
    #define EMIFA_AWAITCFG *(unsigned int*)(EMIFA + 0x04)
    #define EMIFA_SDCFG *(unsigned int*)(EMIFA + 0x08)
    #define EMIFA_SDREF *(unsigned int*)(EMIFA + 0x0C)
    #define EMIFA_ACFG2 *(unsigned int*)(EMIFA + 0x10) //Async Bank1 Config Register
    #define EMIFA_ACFG3 *(unsigned int*)(EMIFA + 0x14) //Async Bank2 Config Register
    #define EMIFA_ACFG4 *(unsigned int*)(EMIFA + 0x18) //Async Bank3 Config Register
    #define EMIFA_ACFG5 *(unsigned int*)(EMIFA + 0x1C) //Async Bank4 Config Register
    #define EMIFA_SDTIM *(unsigned int*)(EMIFA + 0x20) //SDRAM Timing Register
    #define EMIFA_SRPD *(unsigned int*)(EMIFA + 0x3C)
    #define EMIFA_NANDFCR *(unsigned int*)(EMIFA + 0x60)
    /*GPIO MMR*/
    #define GPIO_REG_BASE (0x01E26000)
    #define GPIO_BANK_OFFSET (0x28)
    #define GPIO_DAT_OFFSET (0x04)
    #define GPIO_SET_OFFSET (0x08)
    #define GPIO_CLR_OFFSET (0x0C)
    #define GPIO_BINTEN *(unsigned int*)(GPIO_REG_BASE + 0x08)
    #define GPIO_BANK01_BASE (GPIO_REG_BASE + 0x10)
    #define GPIO_BANK23_BASE (GPIO_BANK01_BASE + GPIO_BANK_OFFSET)
    #define GPIO_BANK45_BASE (GPIO_BANK23_BASE + GPIO_BANK_OFFSET)
    #define GPIO_BANK67_BASE (GPIO_BANK45_BASE + GPIO_BANK_OFFSET)
    #define GPIO_BANK8_BASE (GPIO_BANK67_BASE + GPIO_BANK_OFFSET)
    #define GPIO_BANK23_DIR *(unsigned int*)(GPIO_BANK23_BASE)
    #define GPIO_BANK23_DAT *(unsigned int*)(GPIO_BANK23_BASE + GPIO_DAT_OFFSET)
    #define GPIO_BANK23_SET *(unsigned int*)(GPIO_BANK23_BASE + GPIO_SET_OFFSET)
    #define GPIO_BANK23_CLR *(unsigned int*)(GPIO_BANK23_BASE + GPIO_CLR_OFFSET)
    /*System MMR Declaration*/
    #define SYS_BASE 0x01C14000
    #define KICK0R *(unsigned int*)(SYS_BASE + 0x038)
    #define KICK1R *(unsigned int*)(SYS_BASE + 0x03c)
    #define PINMUX0 *(unsigned int*)(SYS_BASE + 0x120) //PINMUX0
    #define PINMUX1 *(unsigned int*)(SYS_BASE + 0x124) //PINMUX1
    #define PINMUX2 *(unsigned int*)(SYS_BASE + 0x128) //PINMUX2
    #define PINMUX3 *(unsigned int*)(SYS_BASE + 0x12C) //PINMUX3
    #define PINMUX4 *(unsigned int*)(SYS_BASE + 0x130) //PINMUX4
    #define PINMUX5 *(unsigned int*)(SYS_BASE + 0x134) //PINMUX5
    #define PINMUX6 *(unsigned int*)(SYS_BASE + 0x138) //PINMUX6
    #define PINMUX7 *(unsigned int*)(SYS_BASE + 0x13C) //PINMUX7
    #define PINMUX8 *(unsigned int*)(SYS_BASE + 0x140) //PINMUX8
    #define PINMUX9 *(unsigned int*)(SYS_BASE + 0x144) //PINMUX9
    #define PINMUX10 *(unsigned int*)(SYS_BASE + 0x148) //PINMUX10
    #define PINMUX11 *(unsigned int*)(SYS_BASE + 0x14C) //PINMUX11
    #define PINMUX12 *(unsigned int*)(SYS_BASE + 0x150) //PINMUX12
    #define PINMUX13 *(unsigned int*)(SYS_BASE + 0x154) //PINMUX13
    #define PINMUX14 *(unsigned int*)(SYS_BASE + 0x158) //PINMUX14
    #define PINMUX15 *(unsigned int*)(SYS_BASE + 0x15C) //PINMUX15
    #define PINMUX16 *(unsigned int*)(SYS_BASE + 0x160) //PINMUX16
    #define PINMUX17 *(unsigned int*)(SYS_BASE + 0x164) //PINMUX17
    #define PINMUX18 *(unsigned int*)(SYS_BASE + 0x168) //PINMUX18
    #define PINMUX19 *(unsigned int*)(SYS_BASE + 0x16C) //PINMUX19
    #define CFGCHIP0 *(unsigned int*)(SYS_BASE + 0x17C)
    #define CFGCHIP2 *(unsigned int*)(SYS_BASE + 0x184)
    #define CFGCHIP3 *(unsigned int*)(SYS_BASE + 0x188)
    #define PD0 0 /*Power Domain-0*/
    #define PD1 1 /*Power Domain-1*/
    #define PLLEN_MUX_SWITCH 4
    #define PLL_LOCK_TIME_CNT 2400
    #define PLL_STABILIZATION_TIME 2000
    #define PLL_RESET_TIME_CNT 200
    OnTargetConnect( )
    {
    GEL_TextOut("\tTarget Connected.\n","Output",1,1,1);
    GEL_TextOut("\t---------------------------------------------\n","Output",1,1,1);
    Clear_Memory_Map();
    Setup_Memory_Map();
    // DEVICE_kickUnlock(); // No longer needed for Si Rev 2.0+
    PSC_All_On_Full_EVM();
    Core_300MHz_DDR_150MHz();
    GEL_TextOut("\tSet up PINMUX\n","Output",1,1,1);
    PINMUX0 = 0x44440000;
    PINMUX1 = 0x88888888;
    PINMUX2 = 0x88888880;
    PINMUX3 = 0x88888888;
    PINMUX4 = 0x22221188;
    PINMUX5 = 0x11111111;
    PINMUX6 = 0x88888888;
    PINMUX7 = 0x11111111;
    PINMUX8 = 0x88888888;
    PINMUX9 = 0x11111111;
    PINMUX10 = 0x11111111;
    PINMUX11 = 0x11111111;
    PINMUX12 = 0x11111111;
    PINMUX13 = 0x44448811;
    PINMUX14 = 0x44444480;
    PINMUX15 = 0x44444444;
    PINMUX16 = 0x44444444;
    PINMUX17 = 0x44444444;
    PINMUX18 = 0x88444444;
    PINMUX19 = 0x88888888;
    GEL_TextOut("\t---------------------------------------------\n","Output",1,1,1);
    }
    menuitem "OMAP-L138 Memory Map"
    /* ------------------------------------------------------------------------ *
    * *
    * Clear_Memory_Map( ) *
    * Clear the Memory Map *
    * *
    * ------------------------------------------------------------------------ */
    hotmenu Clear_Memory_Map()
    {
    GEL_MapOff( );
    GEL_MapReset( );
    GEL_TextOut("\tMemory Map Cleared.\n","Output",1,1,1);
    GEL_TextOut("\t---------------------------------------------\n","Output",1,1,1);
    }
    hotmenu Setup_Memory_Map()
    {
    GEL_MapOn( );
    GEL_MapReset( );
    /* DSP */
    GEL_MapAddStr( 0x00700000, 0, 0x00100000, "R|W|AS4", 0 ); // DSP L2 ROM

    GEL_MapAddStr( 0x00800000, 0, 0x00040000, "R|W|AS4", 0 ); // DSP l2 RAM
    GEL_MapAddStr( 0x00E00000, 0, 0x00008000, "R|W|AS4", 0 ); // DSP L1P RAM
    GEL_MapAddStr( 0x00F00000, 0, 0x00008000, "R|W|AS4", 0 ); // DSP L1D RAM
    GEL_MapAddStr( 0x01800000, 0, 0x00010000, "R|W|AS4", 0 ); // DSP Interrupt Controller
    GEL_MapAddStr( 0x01810000, 0, 0x00001000, "R|W|AS4", 0 ); // DSP Powerdown Controller
    GEL_MapAddStr( 0x01811000, 0, 0x00001000, "R|W|AS4", 0 ); // DSP Security ID
    GEL_MapAddStr( 0x01812000, 0, 0x00008000, "R|W|AS4", 0 ); // DSP Revision ID
    GEL_MapAddStr( 0x01820000, 0, 0x00010000, "R|W|AS4", 0 ); // DSP EMC
    GEL_MapAddStr( 0x01830000, 0, 0x00010000, "R|W|AS4", 0 ); // DSP Internal Reserved
    GEL_MapAddStr( 0x01840000, 0, 0x00010000, "R|W|AS4", 0 ); // DSP Memory System
    GEL_MapAddStr( 0x11700000, 0, 0x00100000, "R|W|AS4", 0 ); // DSP L2 ROM (mirror)
    GEL_MapAddStr( 0x11800000, 0, 0x00040000, "R|W|AS4", 0 ); // DSP l2 RAM (mirror)
    GEL_MapAddStr( 0x11E00000, 0, 0x00008000, "R|W|AS4", 0 ); // DSP L1P RAM (mirror)
    GEL_MapAddStr( 0x11F00000, 0, 0x00008000, "R|W|AS4", 0 ); // DSP L1D RAM (mirror)
    /* Shared RAM */
    GEL_MapAddStr( 0x80000000, 0, 0x00020000, "R|W|AS4", 0 ); // Shared RAM
    /* EMIFA */
    GEL_MapAddStr( 0x40000000, 0, 0x20000000, "R|W|AS4", 0 ); // EMIFA SDRAM Data
    GEL_MapAddStr( 0x60000000, 0, 0x02000000, "R|W|AS4", 0 ); // EMIFA CS2
    GEL_MapAddStr( 0x62000000, 0, 0x02000000, "R|W|AS4", 0 ); // EMIFA CS3
    GEL_MapAddStr( 0x64000000, 0, 0x02000000, "R|W|AS4", 0 ); // EMIFA CS4
    GEL_MapAddStr( 0x66000000, 0, 0x02000000, "R|W|AS4", 0 ); // EMIFA CS5
    GEL_MapAddStr( 0x68000000, 0, 0x00008000, "R|W|AS4", 0 ); // EMIFA Control
    /* DDR */
    GEL_MapAddStr( 0xB0000000, 0, 0x00008000, "R|W|AS4", 0 ); // DDR Control
    GEL_MapAddStr( 0xC0000000, 0, 0x20000000, "R|W|AS4", 0 ); // DDR Data
    /* Peripherals */
    GEL_MapAddStr( 0x01C00000, 0, 0x00008000, "R|W|AS4", 0 ); // TPCC0
    GEL_MapAddStr( 0x01C08000, 0, 0x00000400, "R|W|AS4", 0 ); // TPTC0
    GEL_MapAddStr( 0x01C08400, 0, 0x00000400, "R|W|AS4", 0 ); // TPTC1
    GEL_MapAddStr( 0x01C10000, 0, 0x00001000, "R|W|AS4", 0 ); // PSC 0
    GEL_MapAddStr( 0x01C11000, 0, 0x00001000, "R|W|AS4", 0 ); // PLL Controller 0
    GEL_MapAddStr( 0x01C12000, 0, 0x00001000, "R|W|AS4", 0 ); // Key Manager
    GEL_MapAddStr( 0x01C13000, 0, 0x00001000, "R|W|AS4", 0 ); // SecCo
    GEL_MapAddStr( 0x01C14000, 0, 0x00001000, "R|W|AS4", 0 ); // SysConfig
    GEL_MapAddStr( 0x01C16000, 0, 0x00001000, "R|W|AS4", 0 ); // IOPU 0
    GEL_MapAddStr( 0x01C17000, 0, 0x00001000, "R|W|AS4", 0 ); // IOPU 2
    GEL_MapAddStr( 0x01C20000, 0, 0x00001000, "R|W|AS4", 0 ); // Timer64P 0
    GEL_MapAddStr( 0x01C21000, 0, 0x00001000, "R|W|AS4", 0 ); // Timer64P 1
    GEL_MapAddStr( 0x01C22000, 0, 0x00001000, "R|W|AS4", 0 ); // I2C 0
    GEL_MapAddStr( 0x01C23000, 0, 0x00001000, "R|W|AS4", 0 ); // RTC
    GEL_MapAddStr( 0x01C24000, 0, 0x00001000, "R|W|AS4", 0 ); // IOPU 1
    GEL_MapAddStr( 0x01C30000, 0, 0x00000200, "R|W|AS4", 0 ); // PRU Data RAM 0
    GEL_MapAddStr( 0x01C32000, 0, 0x00000200, "R|W|AS4", 0 ); // PRU Data RAM 1
    GEL_MapAddStr( 0x01C34000, 0, 0x00004000, "R|W|AS4", 0 ); // PRU Control Registers
    GEL_MapAddStr( 0x01C38000, 0, 0x00001000, "R|W|AS4", 0 ); // PRU 0 Config Memory
    GEL_MapAddStr( 0x01C3C000, 0, 0x00001000, "R|W|AS4", 0 ); // PRU 1 Config Memory
    GEL_MapAddStr( 0x01C40000, 0, 0x00001000, "R|W|AS4", 0 ); // MMC/SD 0
    GEL_MapAddStr( 0x01C41000, 0, 0x00001000, "R|W|AS4", 0 ); // SPI 0
    GEL_MapAddStr( 0x01C42000, 0, 0x00001000, "R|W|AS4", 0 ); // UART 0
    GEL_MapAddStr( 0x01C43000, 0, 0x00001000, "R|W|AS4", 0 ); // MPU 0
    GEL_MapAddStr( 0x01D00000, 0, 0x00001000, "R|W|AS4", 0 ); // McASP 0 Control
    GEL_MapAddStr( 0x01D01000, 0, 0x00001000, "R|W|AS4", 0 ); // McASP 0 FIFO Ctrl
    GEL_MapAddStr( 0x01D02000, 0, 0x00001000, "R|W|AS4", 0 ); // McASP 0 Data
    GEL_MapAddStr( 0x01D0C000, 0, 0x00001000, "R|W|AS4", 0 ); // UART 1
    GEL_MapAddStr( 0x01D0D000, 0, 0x00001000, "R|W|AS4", 0 ); // UART 2
    GEL_MapAddStr( 0x01D0E000, 0, 0x00001000, "R|W|AS4", 0 ); // IOPU 4
    GEL_MapAddStr( 0x01D10000, 0, 0x00000800, "R|W|AS4", 0 ); // McBSP 0 Control
    GEL_MapAddStr( 0x01D10800, 0, 0x00000200, "R|W|AS4", 0 ); // McBSP 0 FIFO Ctrl
    GEL_MapAddStr( 0x01D11000, 0, 0x00000800, "R|W|AS4", 0 ); // McBSP 1 Control
    GEL_MapAddStr( 0x01D11800, 0, 0x00000200, "R|W|AS4", 0 ); // McBSP 1 FIFO Ctrl
    GEL_MapAddStr( 0x01E00000, 0, 0x00010000, "R|W|AS4", 0 ); // USB0 (USB HS) Cfg
    GEL_MapAddStr( 0x01E10000, 0, 0x00001000, "R|W|AS4", 0 ); // UHPI Cfg
    GEL_MapAddStr( 0x01E11000, 0, 0x00001000, "R|W|AS4", 0 ); // UHPI (IODFT)
    GEL_MapAddStr( 0x01E13000, 0, 0x00001000, "R|W|AS4", 0 ); // LCD Controller
    GEL_MapAddStr( 0x01E14000, 0, 0x00001000, "R|W|AS4", 0 ); // MPU 1
    GEL_MapAddStr( 0x01E15000, 0, 0x00001000, "R|W|AS4", 0 ); // MPU 2
    GEL_MapAddStr( 0x01E16000, 0, 0x00001000, "R|W|AS4", 0 ); // UPP
    GEL_MapAddStr( 0x01E17000, 0, 0x00001000, "R|W|AS4", 0 ); // VPIF
    GEL_MapAddStr( 0x01E18000, 0, 0x00002000, "R|W|AS4", 0 ); // SATA
    GEL_MapAddStr( 0x01E1A000, 0, 0x00001000, "R|W|AS4", 0 ); // PLL Controller 1
    GEL_MapAddStr( 0x01E1B000, 0, 0x00001000, "R|W|AS4", 0 ); // MMC/SD 1
    GEL_MapAddStr( 0x01E20000, 0, 0x00002000, "R|W|AS4", 0 ); // EMAC CPPI
    GEL_MapAddStr( 0x01E22000, 0, 0x00001000, "R|W|AS4", 0 ); // EMAC CONTROL registers
    GEL_MapAddStr( 0x01E23000, 0, 0x00001000, "R|W|AS4", 0 ); // EMAC registers
    GEL_MapAddStr( 0x01E24000, 0, 0x00001000, "R|W|AS4", 0 ); // EMAC MDIO port
    GEL_MapAddStr( 0x01E25000, 0, 0x00001000, "R|W|AS4", 0 ); // USB1 (USB FS)
    GEL_MapAddStr( 0x01E26000, 0, 0x00001000, "R|W|AS4", 0 ); // GPIO
    GEL_MapAddStr( 0x01E27000, 0, 0x00001000, "R|W|AS4", 0 ); // PSC 1
    GEL_MapAddStr( 0x01E28000, 0, 0x00001000, "R|W|AS4", 0 ); // I2C 1
    GEL_MapAddStr( 0x01E29000, 0, 0x00001000, "R|W|AS4", 0 ); // IOPU 3
    GEL_MapAddStr( 0x01E2A000, 0, 0x00001000, "R|W|AS4", 0 ); // PBIST Controller
    GEL_MapAddStr( 0x01E2B000, 0, 0x00001000, "R|W|AS4", 0 ); // PBIST Combiner
    GEL_MapAddStr( 0x01E2C000, 0, 0x00001000, "R|W|AS4", 0 ); // System Config
    GEL_MapAddStr( 0x01E30000, 0, 0x00008000, "R|W|AS4", 0 ); // TPCC1
    GEL_MapAddStr( 0x01E38000, 0, 0x00000400, "R|W|AS4", 0 ); // TPTC2
    GEL_MapAddStr( 0x01F00000, 0, 0x00001000, "R|W|AS4", 0 ); // EPWM 0
    GEL_MapAddStr( 0x01F01000, 0, 0x00001000, "R|W|AS4", 0 ); // HRPWM 0
    GEL_MapAddStr( 0x01F02000, 0, 0x00001000, "R|W|AS4", 0 ); // EPWM 1
    GEL_MapAddStr( 0x01F03000, 0, 0x00001000, "R|W|AS4", 0 ); // HRPWM 1
    GEL_MapAddStr( 0x01F06000, 0, 0x00001000, "R|W|AS4", 0 ); // ECAP 0
    GEL_MapAddStr( 0x01F07000, 0, 0x00001000, "R|W|AS4", 0 ); // ECAP 1
    GEL_MapAddStr( 0x01F08000, 0, 0x00001000, "R|W|AS4", 0 ); // ECAP 2
    GEL_MapAddStr( 0x01F0B000, 0, 0x00001000, "R|W|AS4", 0 ); // IOPU 5
    GEL_MapAddStr( 0x01F0C000, 0, 0x00001000, "R|W|AS4", 0 ); // Timer64P 2
    GEL_MapAddStr( 0x01F0D000, 0, 0x00001000, "R|W|AS4", 0 ); // Timer64P 3
    GEL_MapAddStr( 0x01F0E000, 0, 0x00001000, "R|W|AS4", 0 ); // SPI1
    GEL_MapAddStr( 0x01F10000, 0, 0x00001000, "R|W|AS4", 0 ); // McBSP 0 FIFO Data
    GEL_MapAddStr( 0x01F11000, 0, 0x00001000, "R|W|AS4", 0 ); // McBSP 1 FIFO Data
    GEL_TextOut("\tMemory Map Setup Complete.\n","Output",1,1,1);
    GEL_TextOut("\t---------------------------------------------\n","Output",1,1,1);
    }
    Set_Core_300MHz() {
    device_PLL0(0,23,1,0,1,11,5);
    GEL_TextOut("\tPLL0 init done for Core:300MHz, EMIFA:25MHz\n","Output",1,1,1);
    }
    Set_Core_200MHz() {
    device_PLL0(0,23,2,0,1,7,3);
    GEL_TextOut("\tPLL0 init done for Core:200MHz, EMIFA:25MHz\n","Output",1,1,1);
    }
    Set_Core_100MHz() {
    device_PLL0(0,23,5,0,1,3,1);
    GEL_TextOut("\tPLL0 init done for Core:100MHz, EMIFA:25MHz\n","Output",1,1,1);
    }
    Set_DDRPLL_150MHz() {
    device_PLL1(23,1,0,1,2);
    GEL_TextOut("\tPLL1 init done for DDR:150MHz\n","Output",1,1,1);
    }
    Set_DDRPLL_132MHz() {
    device_PLL1(21,1,0,1,2);
    GEL_TextOut("\tPLL1 init done for DDR:132MHz\n","Output",1,1,1);
    }
    Set_DDRPLL_126MHz() {
    device_PLL1(20,1,0,1,2);
    GEL_TextOut("\tPLL1 init done for DDR:126MHz\n","Output",1,1,1);
    }
    Set_DDRPLL_102MHz() {
    device_PLL1(16,1,0,1,2);
    GEL_TextOut("\tPLL1 init done for DDR:102MHz\n","Output",1,1,1);
    }
    Set_DDR_150MHz() {
    GEL_TextOut("\tDDR initialization is in progress....\n","Output",1,1,1);
    Set_DDRPLL_150MHz();
    DEVICE_DDRConfig(DDR2, 150);
    GEL_TextOut("\tDDR init for 150 MHz is done\n","Output",1,1,1);
    }
    Set_mDDR_150MHz() {
    GEL_TextOut("\tmDDR initialization is in progress....\n","Output",1,1,1);
    Set_DDRPLL_150MHz();
    DEVICE_DDRConfig(MDDR, 150);
    GEL_TextOut("\tmDDR init for 150 MHz is done\n","Output",1,1,1);
    }
    Set_mDDR_132MHz() {
    GEL_TextOut("\tmDDR initialization is in progress....\n","Output",1,1,1);
    Set_DDRPLL_132MHz();
    DEVICE_DDRConfig(MDDR, 132);
    GEL_TextOut("\tmDDR init for 132 MHz is done\n","Output",1,1,1);
    }
    Set_mDDR_126MHz() {
    GEL_TextOut("\tmDDR initialization is in progress....\n","Output",1,1,1);
    Set_DDRPLL_126MHz();
    DEVICE_DDRConfig(MDDR, 126);
    GEL_TextOut("\tmDDR init for 126 MHz is done\n","Output",1,1,1);
    }
    Set_mDDR_102MHz() {
    GEL_TextOut("\tmDDR initialization is in progress....\n","Output",1,1,1);
    Set_DDRPLL_102MHz();
    DEVICE_DDRConfig(MDDR, 102);
    GEL_TextOut("\tmDDR init for 102 MHz is done\n","Output",1,1,1);
    }
    menuitem "Frequency Settings"
    hotmenu Core_300MHz_mDDR_150MHz() {
    Set_Core_300MHz();
    Set_mDDR_150MHz();
    GEL_TextOut("\t---------------------------------------------\n","Output",1,1,1);
    }
    menuitem "Frequency Settings"
    hotmenu Core_300MHz_DDR_150MHz() {
    Set_Core_300MHz();
    Set_DDR_150MHz();
    GEL_TextOut("\t---------------------------------------------\n","Output",1,1,1);
    }
    hotmenu Core_300MHz_mDDR_132MHz() {
    Set_Core_300MHz();
    Set_mDDR_132MHz();
    GEL_TextOut("\t---------------------------------------------\n","Output",1,1,1);
    }
    hotmenu Core_200MHz_mDDR_126MHz() {
    Set_Core_200MHz();
    Set_mDDR_126MHz();
    GEL_TextOut("\t---------------------------------------------\n","Output",1,1,1);
    }
    hotmenu Core_100MHz_mDDR_102MHz() {
    Set_Core_100MHz();
    Set_mDDR_102MHz();
    GEL_TextOut("\t---------------------------------------------\n","Output",1,1,1);
    }
    menuitem "Experimenter"
    hotmenu PSC_All_On_Experimenter() {
    GEL_TextOut("\tEnabling Experimenter PSCs...\n","Output",1,1,1);
    // PSC0
    PSC0_LPSC_enable(0, LPSC_EDMA_CC0);
    PSC0_LPSC_enable(0, LPSC_EDMA_TC0);
    PSC0_LPSC_enable(0, LPSC_EDMA_TC1);
    PSC0_LPSC_enable(0, LPSC_SPI0);
    PSC0_LPSC_enable(0, LPSC_MMCSD0);
    PSC0_LPSC_enable(0, LPSC_UART0);
    PSC0_LPSC_enable(0, LPSC_SCR0);
    PSC0_LPSC_enable(0, LPSC_SCR1);
    PSC0_LPSC_enable(0, LPSC_SCR2);
    // PSC1
    PSC1_LPSC_enable(0, LPSC_EDMA_CC1);
    PSC1_LPSC_enable(0, LPSC_USB20);
    PSC1_LPSC_enable(0, LPSC_USB11);
    CFGCHIP2 = 0x09F2; // Enable USB clock, PHY_PLLON, glue logic mux(USB2 ref clk input)
    PSC1_LPSC_enable(0, LPSC_GPIO);
    PSC1_LPSC_enable(0, LPSC_UHPI);
    PSC1_LPSC_enable(0, LPSC_EMAC);
    PSC1_LPSC_enable(0, LPSC_DDR);
    PSC1_LPSC_enable(0, LPSC_MCASP0);
    PSC1_LPSC_force(LPSC_SATA); // Must use force to enable SATA
    PSC1_LPSC_enable(0, LPSC_SATA);
    PSC1_LPSC_enable(0, LPSC_SPI1);
    PSC1_LPSC_enable(0, LPSC_I2C1);
    PSC1_LPSC_enable(0, LPSC_UART1);
    PSC1_LPSC_enable(0, LPSC_UART2);
    PSC1_LPSC_enable(0, LPSC_MCBSP0);
    PSC1_LPSC_enable(0, LPSC_MCBSP1);
    PSC1_LPSC_enable(0, LPSC_EPWM);
    PSC1_LPSC_enable(0, LPSC_MMCSD1);
    PSC1_LPSC_enable(0, LPSC_ECAP);
    PSC1_LPSC_enable(0, LPSC_EDMA_TC2);
    PSC1_LPSC_enable(0, LPSC_SCR_F0);
    PSC1_LPSC_enable(0, LPSC_SCR_F1);
    PSC1_LPSC_enable(0, LPSC_SCR_F2);
    PSC1_LPSC_enable(0, LPSC_SCR_F6);
    PSC1_LPSC_enable(0, LPSC_SCR_F7);
    PSC1_LPSC_enable(0, LPSC_SCR_F8);
    PSC1_LPSC_enable(0, LPSC_BR_F7);
    PSC1_LPSC_enable(0, LPSC_SHARED_RAM);
    GEL_TextOut("\tPSC Enable Complete.\n","Output",1,1,1);
    GEL_TextOut("\t---------------------------------------------\n","Output",1,1,1);
    }
    menuitem "Full EVM"
    hotmenu PSC_All_On_Full_EVM() {
    // PSC0
    PSC0_LPSC_enable(0, LPSC_EDMA_CC0);
    PSC0_LPSC_enable(0, LPSC_EDMA_TC0);
    PSC0_LPSC_enable(0, LPSC_EDMA_TC1);
    PSC0_LPSC_enable(0, LPSC_EMIFA);
    PSC0_LPSC_enable(0, LPSC_SPI0);
    PSC0_LPSC_enable(0, LPSC_MMCSD0);
    PSC0_LPSC_enable(0, LPSC_UART0);
    PSC0_LPSC_enable(0, LPSC_SCR0);
    PSC0_LPSC_enable(0, LPSC_SCR1);
    PSC0_LPSC_enable(0, LPSC_SCR2);
    // PSC1
    PSC1_LPSC_enable(0, LPSC_EDMA_CC1);
    PSC1_LPSC_enable(0, LPSC_USB20);
    PSC1_LPSC_enable(0, LPSC_USB11);
    CFGCHIP2 = 0x09F2; //Enable USB clock, PHY_PLLON, glue logic mux(USB2 ref clk input)
    PSC1_LPSC_enable(0, LPSC_GPIO);
    PSC1_LPSC_enable(0, LPSC_UHPI);
    PSC1_LPSC_enable(0, LPSC_EMAC);
    PSC1_LPSC_enable(0, LPSC_MCASP0);
    PSC1_LPSC_force(LPSC_SATA);
    PSC1_LPSC_enable(0, LPSC_SATA);
    PSC1_LPSC_enable(0, LPSC_VPIF);
    PSC1_LPSC_enable(0, LPSC_SPI1);
    PSC1_LPSC_enable(0, LPSC_I2C1);
    PSC1_LPSC_enable(0, LPSC_UART1);
    PSC1_LPSC_enable(0, LPSC_UART2);
    PSC1_LPSC_enable(0, LPSC_MCBSP0);
    PSC1_LPSC_enable(0, LPSC_MCBSP1);
    PSC1_LPSC_enable(0, LPSC_LCDC);
    PSC1_LPSC_enable(0, LPSC_EPWM);
    PSC1_LPSC_enable(0, LPSC_MMCSD1);
    PSC1_LPSC_enable(0, LPSC_UPP);
    PSC1_LPSC_enable(0, LPSC_ECAP);
    PSC1_LPSC_enable(0, LPSC_EDMA_TC2);
    PSC1_LPSC_enable(0, LPSC_SCR_F0);
    PSC1_LPSC_enable(0, LPSC_SCR_F1);
    PSC1_LPSC_enable(0, LPSC_SCR_F2);
    PSC1_LPSC_enable(0, LPSC_SCR_F6);
    PSC1_LPSC_enable(0, LPSC_SCR_F7);
    PSC1_LPSC_enable(0, LPSC_SCR_F8);
    PSC1_LPSC_enable(0, LPSC_BR_F7);
    PSC1_LPSC_enable(0, LPSC_SHARED_RAM);
    GEL_TextOut("\tPSC Enable Complete.\n","Output",1,1,1);
    GEL_TextOut("\t---------------------------------------------\n","Output",1,1,1);
    }
    hotmenu EMIFA_NAND_PINMUX() {
    PSC0_LPSC_enable(0, LPSC_EMIFA);
    PINMUX7 = (PINMUX7 & ~0x00FF0FF0) | 0x00110110;
    PINMUX9 = 0x11111111;
    PINMUX12 = (PINMUX12 & ~0x0FF00000) | 0x01100000;
    EMIFA_ACFG2 &= ~0x1; // 8-bit
    EMIFA_NANDFCR = (EMIFA_NANDFCR & ~0x30) | 0x12;
    // Set OE Low
    PINMUX6 = (PINMUX6 & ~0x000000F0) | 0x00000080;
    GPIO_BANK23_DIR = (GPIO_BANK23_DIR & ~(1 << 6));
    GPIO_BANK23_CLR = (1 << 6);
    GEL_TextOut("\tEMIFA Pins Configured for NAND.\n","Output",1,1,1);
    GEL_TextOut("\t---------------------------------------------\n","Output",1,1,1);
    }
    hotmenu EMIFA_NOR_PINMUX() {
    PSC0_LPSC_enable(0, LPSC_EMIFA);
    PINMUX5 = (PINMUX5 & ~0xFF000000) | 0x11000000;
    PINMUX6 = (PINMUX6 & ~0x0F00000F) | 0x01000001;
    PINMUX7 = (PINMUX7 & ~0x00FF000F) | 0x00110001;
    PINMUX8 = 0x11111111;
    PINMUX9 = 0x11111111;
    PINMUX10 = 0x11111111;
    PINMUX11 = 0x11111111;
    PINMUX12 = 0x11111111;
    EMIFA_ACFG2 |= 0x1; // 16-bit
    GEL_TextOut("\tEMIFA Pins Configured for NOR.\n","Output",1,1,1);
    GEL_TextOut("\t---------------------------------------------\n","Output",1,1,1);
    }
    hotmenu SPI1_PINMUX() {
    PSC1_LPSC_enable(0, LPSC_SPI1);
    PINMUX5 = (PINMUX5 & ~0x00FF0FF0) | 0x00110110;
    GEL_TextOut("\tSPI1 Pins Configured.\n","Output",1,1,1);
    GEL_TextOut("\t---------------------------------------------\n","Output",1,1,1);
    }
    /******************************************************************************************************************
    ********************************
    Device_PLL0 init:
    CLKMODE - 0---->On Chip Oscilator 1---->External Oscilator
    PLL0_SYSCLK1 - Fixed ratio /1
    PLL0_SYSCLK2 - Fixed ratio /2
    PLL0_SYSCLK3 - Variable Divider (EMIFA)
    PLL0_SYSCLK4 - Fixed ratio /4
    PLL0_SYSCLK5 - Not used -- do nothing
    PLL0_SYSCLK6 - Fixed ratio /1
    PLL0_SYSCLK7 - Variable Divider (RMII)
    ******************************************************************************************************************
    ************************************/
    device_PLL0(unsigned int CLKMODE, unsigned int PLLM, unsigned int POSTDIV,unsigned int PLLDIV1, unsigned int
    PLLDIV2, unsigned int PLLDIV3, unsigned int PLLDIV7 ) {
    unsigned int i=0;
    /* Clear PLL lock bit */
    CFGCHIP0 &= ~(0x00000010);
    /* Set PLLENSRC '0',bit 5, PLL Enable(PLLEN) selection is controlled through MMR */
    PLL0_PLLCTL &= ~(0x00000020);
    /* PLLCTL.EXTCLKSRC bit 9 should be left at 0 for Freon */
    PLL0_PLLCTL &= ~(0x00000200);
    /* Set PLLEN=0 to put in bypass mode*/
    PLL0_PLLCTL &= ~(0x00000001);
    /*wait for 4 cycles to allow PLLEN mux switches properly to bypass clock*/
    for(i=0; i<PLLEN_MUX_SWITCH; i++) {;}
    /* Select the Clock Mode bit 8 as External Clock or On Chip Oscilator*/
    PLL0_PLLCTL &= 0xFFFFFEFF;
    PLL0_PLLCTL |= (CLKMODE << 8);
    /*Clear PLLRST bit to reset the PLL */
    PLL0_PLLCTL &= ~(0x00000008);
    /* Disable the PLL output*/
    PLL0_PLLCTL |= (0x00000010);
    /* PLL initialization sequence
    Power up the PLL by setting PWRDN bit set to 0 */
    PLL0_PLLCTL &= ~(0x00000002);
    /* Enable the PLL output*/
    PLL0_PLLCTL &= ~(0x00000010);
    /*PLL stabilisation time- take out this step , not required here when PLL in bypassmode*/
    for(i=0; i<PLL_STABILIZATION_TIME; i++) {;}
    /*Program the required multiplier value in PLLM*/
    PLL0_PLLM = PLLM;
    /*If desired to scale all the SYSCLK frequencies of a given PLLC, program the POSTDIV ratio*/
    PLL0_POSTDIV = 0x8000 | POSTDIV;
    /*Check for the GOSTAT bit in PLLSTAT to clear to 0 to indicate that no GO operation is currently in
    progress*/
    while(PLL0_PLLSTAT & 0x1==1){}
    /*Program the RATIO field in PLLDIVx with the desired divide factors. In addition, make sure in this step you
    leave the PLLDIVx.DxEN bits set so clocks are still enabled (default).*/
    PLL0_PLLDIV1 = 0x8000 | PLLDIV1; // Fixed Ratio /1
    PLL0_PLLDIV2 = 0x8000 | PLLDIV2; // Fixed Ratio /2
    PLL0_PLLDIV4 = 0x8000 | (((PLLDIV1+1)*4)-1); // Fixed Ratio /4
    PLL0_PLLDIV6 = 0x8000 | PLLDIV1; // Fixed Ratio /1
    PLL0_PLLDIV3 = 0x8000 | PLLDIV3; // Variable Ratio (EMIF)
    PLL0_PLLDIV7 = 0x8000 | PLLDIV7; // Variable Ratio (RMII)
    /*Set the GOSET bit in PLLCMD to 1 to initiate a new divider transition.*/
    PLL0_PLLCMD |= 0x1;
    /*Wait for the GOSTAT bit in PLLSTAT to clear to 0 (completion of phase alignment).*/
    while(PLL0_PLLSTAT & 0x1==1) { }
    /*Wait for PLL to reset properly.*/
    for(i=0; i<PLL_RESET_TIME_CNT; i++) {;}
    /*Set the PLLRST bit in PLLCTL to 1 to bring the PLL out of reset*/
    PLL0_PLLCTL |= 0x8;
    /*Wait for PLL to lock.*/
    for(i=0; i<PLL_LOCK_TIME_CNT; i++) {;}
    /*Set the PLLEN bit in PLLCTL to 1 to remove the PLL from bypass mode*/
    PLL0_PLLCTL |= 0x1;
    }
    /**********************************************************************************
    DDR PLL1 init:
    ***********************************************************************************/
    device_PLL1(unsigned int PLLM,unsigned int POSTDIV,unsigned int PLLDIV1, unsigned int PLLDIV2, unsigned int
    PLLDIV3 ) {
    unsigned int i=0;
    /* Clear PLL lock bit */
    CFGCHIP3 &= ~(0x00000020);
    /* Set PLLENSRC '0',bit 5, PLL Enable(PLLEN) selection is controlled through MMR */
    PLL1_PLLCTL &= ~(0x00000020);
    /* PLLCTL.EXTCLKSRC bit 9 should be left at 0 for Freon */
    PLL1_PLLCTL &= ~(0x00000200);
    /* Set PLLEN=0 to put in bypass mode*/
    PLL1_PLLCTL &= ~(0x00000001);
    /*wait for 4 cycles to allow PLLEN mux switches properly to bypass clock*/
    for(i=0; i<PLLEN_MUX_SWITCH; i++) {;}
    /*Clear PLLRST bit to reset the PLL */
    PLL1_PLLCTL &= ~(0x00000008);
    /* Disable the PLL output*/
    PLL1_PLLCTL |= (0x00000010);
    /* PLL initialization sequence
    Power up the PLL by setting PWRDN bit set to 0 */
    PLL1_PLLCTL &= ~(0x00000002);
    /* Enable the PLL output*/
    PLL1_PLLCTL &= ~(0x00000010);
    /*PLL stabilisation time- take out this step , not required here when PLL in bypassmode*/
    for(i=0; i<PLL_STABILIZATION_TIME; i++) {;}
    /*Program the required multiplier value in PLLM*/
    PLL1_PLLM = PLLM;
    /*If desired to scale all the SYSCLK frequencies of a given PLLC, program the POSTDIV ratio*/
    PLL1_POSTDIV = 0x8000 | POSTDIV;
    /*Check for the GOSTAT bit in PLLSTAT to clear to 0 to indicate that no GO operation is currently in
    progress*/
    while(PLL1_PLLSTAT & 0x1==1){}
    /*Program the RATIO field in PLLDIVx with the desired divide factors. In addition, make sure in this step you
    leave the PLLDIVx.DxEN bits set so clocks are still enabled (default).*/
    PLL1_PLLDIV1 = 0x8000 | PLLDIV1; // DDR frequency (aka 2X_CLK)
    PLL1_PLLDIV2 = 0x8000 | PLLDIV2; // Optional CFGCHIP3[ASYNC3_CLKSRC] clock source
    PLL1_PLLDIV3 = 0x8000 | PLLDIV3; // Optional PLL0 clock source
    /*Set the GOSET bit in PLLCMD to 1 to initiate a new divider transition.*/
    PLL1_PLLCMD |= 0x1;
    /*Wait for the GOSTAT bit in PLLSTAT to clear to 0 (completion of phase alignment).*/
    while(PLL1_PLLSTAT & 0x1==1) { }
    /*Wait for PLL to reset properly */
    for(i=0; i<PLL_RESET_TIME_CNT; i++) {;}
    /*Set the PLLRST bit in PLLCTL to 1 to bring the PLL out of reset*/
    PLL1_PLLCTL |= 0x8;
    /*Wait for PLL to lock. See PLL spec for PLL lock time*/
    for(i=0; i<PLL_LOCK_TIME_CNT; i++) {;}
    /*Set the PLLEN bit in PLLCTL to 1 to remove the PLL from bypass mode*/
    PLL1_PLLCTL |= 0x1;
    }
    /**********************************************************************************
    Device Kick Unlock:
    Kick0 register + data (unlock)
    Kick1 register + data (unlock)
    ***********************************************************************************/
    DEVICE_kickUnlock() {
    KICK0R = 0x83e70b13; // Kick0 register + data (unlock)
    KICK1R = 0x95a4f1e0; // Kick1 register + data (unlock)
    GEL_TextOut("\tKICK Unlocked.\n","Output",1,1,1);
    GEL_TextOut("\t---------------------------------------------\n","Output",1,1,1);
    }
    /**********************************************************************************
    PSC Common functions :
    ***********************************************************************************/
    /*Force module state without handshaking */
    PSC1_LPSC_force(unsigned int LPSC_num) {
    *(unsigned int*) (PSC1_MDCTL+4*LPSC_num) = (*(unsigned int*) (PSC1_MDCTL+4*LPSC_num) | 0x80000000);
    }
    /*SyncReset Function for PSC1*/
    PSC1_LPSC_SyncReset(unsigned int PD, unsigned int LPSC_num) {
    unsigned int j;
    if( (*(unsigned int*)(PSC1_MDSTAT+4 * LPSC_num) & 0x1F) != 0x1 ) {
    *(unsigned int*) (PSC1_MDCTL+4*LPSC_num) = (*(unsigned int*) (PSC1_MDCTL+4*LPSC_num) & 0xFFFFFFE0) | 0x0001;
    PSC1_PTCMD = 0x1<<PD;
    j = 0;
    /*Wait for power state transition to finish*/
    while( (PSC1_PTSTAT & (0x1<<PD) ) !=0) {
    if( j++ > PSC_TIMEOUT ) {
    GEL_TextOut("\tPSC1 Sync Reset Transition Timeout on Domain %d, LPSC %d\n","Output",1,1,1,PD,LPSC_num);
    break;
    }
    }
    j = 0;
    while( (*(unsigned int*)(PSC1_MDSTAT+4 * LPSC_num) & 0x1F) !=0x1) {
    if( j++ > PSC_TIMEOUT ) {
    GEL_TextOut("\tPSC1 Sync Reset Verify Timeout on Domain %d, LPSC %d\n","Output",1,1,1,PD,LPSC_num);
    break;
    }
    }
    }
    }
    /*Enable Function for PSC1*/
    PSC1_LPSC_enable(unsigned int PD, unsigned int LPSC_num) {
    unsigned int j;
    if( (*(unsigned int*)(PSC1_MDSTAT+4 * LPSC_num) & 0x1F) != 0x3 ) {
    *(unsigned int*) (PSC1_MDCTL+4*LPSC_num) = (*(unsigned int*) (PSC1_MDCTL+4*LPSC_num) & 0xFFFFFFE0) | 0x0003;
    PSC1_PTCMD = 0x1<<PD;
    j = 0;
    /*Wait for power state transition to finish*/
    while( (PSC1_PTSTAT & (0x1<<PD) ) !=0) {
    if( j++ > PSC_TIMEOUT ) {
    GEL_TextOut("\tPSC1 Enable Transition Timeout on Domain %d, LPSC %d\n","Output",1,1,1,PD,LPSC_num);
    break;
    }
    }
    j = 0;
    while( (*(unsigned int*)(PSC1_MDSTAT+4 * LPSC_num) & 0x1F) !=0x3) {
    if( j++ > PSC_TIMEOUT ) {
    GEL_TextOut("\tPSC1 Enable Verify Timeout on Domain %d, LPSC %d\n","Output",1,1,1,PD,LPSC_num);
    break;
    }
    }
    }
    }
    /*LPSC Enable Function for DSP*/
    PSC0_LPSC_enableCore(unsigned int PD, unsigned int LPSC_num) {
    unsigned int j;
    if( (*(unsigned int*)(PSC0_MDSTAT+4 * LPSC_num) & 0x11F) != 0x103 ) {
    *(unsigned int*) (PSC0_MDCTL+4*LPSC_num) = (*(unsigned int*) (PSC0_MDCTL+4*LPSC_num) & 0xFFFFFEE0) | 0x0103;
    PSC0_PTCMD = 0x1<<PD;
    j = 0;
    /*Wait for power state transition to finish*/
    while( (PSC0_PTSTAT & (0x1<<PD) ) !=0) {
    if( j++ > PSC_TIMEOUT ) {
    GEL_TextOut("\tPSC0 Enable Core Transition Timeout on Domain %d, LPSC %d\n","Output",1,1,1,PD,LPSC_num);
    break;
    }
    }
    j = 0;
    while( (*(unsigned int*)(PSC0_MDSTAT+4 * LPSC_num) & 0x11F) !=0x103) {
    if( j++ > PSC_TIMEOUT ) {
    GEL_TextOut("\tPSC0 Enable Core Verify Timeout on Domain %d, LPSC %d\n","Output",1,1,1,PD,LPSC_num);
    break;
    }
    }
    }
    }
    /*SyncReset Function for PSC0*/
    PSC0_LPSC_SyncReset(unsigned int PD, unsigned int LPSC_num) {
    unsigned int j;
    if( (*(unsigned int*)(PSC0_MDSTAT+4 * LPSC_num) & 0x1F) != 0x1 ) {
    *(unsigned int*) (PSC0_MDCTL+4*LPSC_num) = (*(unsigned int*) (PSC0_MDCTL+4*LPSC_num) & 0xFFFFFFE0) | 0x0001;
    PSC0_PTCMD = 0x1<<PD;
    j = 0;
    /*Wait for power state transition to finish*/
    while( (PSC0_PTSTAT & (0x1<<PD) ) !=0) {
    if( j++ > PSC_TIMEOUT ) {
    GEL_TextOut("\tPSC0 Sync Reset Transition Timeout on Domain %d, LPSC %d\n","Output",1,1,1,PD,LPSC_num);
    break;
    }
    }
    j = 0;
    while( (*(unsigned int*)(PSC0_MDSTAT+4 * LPSC_num) & 0x1F) !=0x1) {
    if( j++ > PSC_TIMEOUT ) {
    GEL_TextOut("\tPSC0 Sync Reset Verify Timeout on Domain %d, LPSC %d\n","Output",1,1,1,PD,LPSC_num);
    break;
    }
    }
    }
    }
    /*Enable Function for PSC0*/
    PSC0_LPSC_enable(unsigned int PD, unsigned int LPSC_num) {
    unsigned int j;
    if( (*(unsigned int*)(PSC0_MDSTAT+4 * LPSC_num) & 0x1F) != 0x3 ) {
    *(unsigned int*) (PSC0_MDCTL+4*LPSC_num) = (*(unsigned int*) (PSC0_MDCTL+4*LPSC_num) & 0xFFFFFFE0) | 0x0003;
    PSC0_PTCMD = 0x1<<PD;
    j = 0;
    /*Wait for power state transition to finish*/
    while( (PSC0_PTSTAT & (0x1<<PD) ) !=0) {
    if( j++ > PSC_TIMEOUT ) {
    GEL_TextOut("\tPSC0 Enable Transition Timeout on Domain %d, LPSC %d\n","Output",1,1,1,PD,LPSC_num);
    break;
    }
    }
    j = 0;
    while( (*(unsigned int*)(PSC0_MDSTAT+4 * LPSC_num) & 0x1F) !=0x3) {
    if( j++ > PSC_TIMEOUT ) {
    GEL_TextOut("\tPSC0 Enable Verify Timeout on Domain %d, LPSC %d\n","Output",1,1,1,PD,LPSC_num);
    break;
    }
    }
    }
    }
    /**********************************************************************************
    DDR Configuration routine:
    1. DDR Enable
    2. VTP calibration
    3. Configure DDR
    4. Set to self-refresh, enable mclkstop and DDR Sync Reset
    5. Enable DDR and disable self-refresh
    int freq is MHz
    DDR2 = 0
    MDDR = 1
    A DDR configuration spreadsheet tool is located here:
    http://processors.wiki.ti.com/index.php/Programming_mDDR/DDR2_EMIF_on_OMAP-L1x/C674x
    ***********************************************************************************/
    DEVICE_DDRConfig(unsigned int ddr_type, unsigned int freq)
    {
    unsigned int j;
    unsigned int tmp_SDCR;
    // Enable the Clock to EMIFDDR SDRAM
    PSC1_LPSC_enable(PD0, LPSC_DDR);
    // Begin VTP Calibration
    VTPIO_CTL &= ~0x00000040; // Clear POWERDN
    VTPIO_CTL &= ~0x00000080; // Clear LOCK
    VTPIO_CTL |= 0x00002000; // Set CLKRZ in case it was cleared before (VTP looks for CLKRZ edge transition)
    VTPIO_CTL &= ~0x00002000; // Clear CLKRZ (Use read-modify-write to ensure 1 VTP cycle wait for previous instruction)
    VTPIO_CTL |= 0x00002000; // Set CLKRZ (Use read-modify-write to ensure 1 VTP cycle wait for previous instruction)
    j = 0;
    // Polling READY bit to see when VTP calibration is done
    while((VTPIO_CTL & 0x00008000) == 0) {
    if( j++ > VTP_TIMEOUT ) {
    GEL_TextOut("\tVTP Ready timeout\n","Output",1,1,1);
    break;
    }
    }
    VTPIO_CTL |= 0x00000080; // Set LOCK bit for static calibration mode
    VTPIO_CTL |= 0x00000040; // Set POWERDN bit to power down VTP module
    // End VTP Calibration
    VTPIO_CTL |= 0x00004000; // Set IOPWRDN to allow powerdown of input receivers when PWRDNEN is set
    // **********************************************************************************************
    // Setting based on the looser of 512Mb mDDR MT46H32M16LFBF-6,
    // 1Gb mDDR MT46H64M16LF-6, or
    // 1Gb mDDR MT46H64M16LFBF-6 on EVM
    // Config DDR timings
    DRPYC1R = (0x0 << 8) | // Reserved
    (0x1 << 7) | // EXT_STRBEN
    (0x1 << 6) | // PWRDNEN
    (0x0 << 3) | // Reserved
    (0x4 << 0); // RL
    // DRPYC1R Value = 0x000000C4
    if( DDR_DEBUG ) {
    // Configure EMIF with max timings for more slack
    // Try this if memory is not stable
    DRPYC1R |= 0x7; // RL
    }
    // Settings that change depending on DDR2 or MDDR
    if( ddr_type == DDR2 ) {
    DDR_SLEW = 0x00000000; // Disable Pull Downs, Disable LVCMOS Rx
    tmp_SDCR = (0x0 << 25) | // MSDRAMEN
    (0x1 << 20); // DDR2EN
    GEL_TextOut("\tUsing DDR2 settings\n","Output",1,1,1);
    }
    else if( ddr_type == MDDR ) {
    DDR_SLEW = 0x00000030; // Enable Pull Downs, Enable LVCMOS Rx
    tmp_SDCR = (0x1 << 25) | // MSDRAMEN
    (0x0 << 20); // DDR2EN
    GEL_TextOut("\tUsing mDDR settings\n","Output",1,1,1);
    }
    else {
    DDR_SLEW = 0x00000030; // Enable Pull Downs, Enable LVCMOS Rx
    tmp_SDCR = (0x1 << 25) | // MSDRAMEN
    (0x0 << 20); // DDR2EN
    GEL_TextOut("\tUnknown DDR Type! Using MDDR settings\n","Output",1,1,1);
    }
    EMIFDDR_SDCR |= 0x00800000; // Set BOOTUNLOCK
    EMIFDDR_SDCR = tmp_SDCR | // Settings that change depending on DDR2 or MDDR
    (EMIFDDR_SDCR & 0xF0000000) | // Reserved
    (0x0 << 27) | // DDR2TERM1
    (0x0 << 26) | // IBANK_POS
    (0x0 << 24) | // DDRDRIVE1
    (0x0 << 23) | // BOOTUNLOCK
    (0x0 << 22) | // DDR2DDQS
    (0x0 << 21) | // DDR2TERM0
    (0x0 << 19) | // DDRDLL_DIS
    (0x0 << 18) | // DDRDRIVE0
    (0x1 << 17) | // DDREN
    (0x1 << 16) | // SDRAMEN
    (0x1 << 15) | // TIMUNLOCK
    (0x1 << 14) | // NM
    (0x0 << 12) | // Reserved
    (0x3 << 9) | // CL
    (0x0 << 7) | // Reserved
    (0x2 << 4) | // IBANK
    (0x0 << 3) | // Reserved
    (0x2 << 0); // PAGESIZE
    // mDDR SDCR Value = 0x02034622
    if( ddr_type == MDDR ) {
    EMIFDDR_SDCR2 = 0x00000000; // IBANK_POS set to 0 so this register does not apply
    }
    if( DDR_DEBUG ) {
    // Configure EMIF with max timings for more slack
    // Try this if memory is not stable
    EMIFDDR_SDTIMR1 = (0x7F << 25) | // tRFC
    (0x07 << 22) | // tRP
    (0x07 << 19) | // tRCD
    (0x07 << 16) | // tWR
    (0x1F << 11) | // tRAS
    (0x1F << 6) | // tRC
    (0x07 << 3) | // tRRD
    (EMIFDDR_SDTIMR1 & 0x4) | // Reserved
    (0x03 << 0); // tWTR
    EMIFDDR_SDTIMR2 = (EMIFDDR_SDTIMR2 & 0x80000000) | // Reserved
    (((unsigned int) ((70000 / 7812.5) - 0.5)) << 27) | // tRASMAX
    (0x3 << 25) | // tXP
    (0x0 << 23) | // tODT (Not supported)
    (0x7F << 16) | // tXSNR
    (0xFF << 8) | // tXSRD
    (0x07 << 5) | // tRTP (1 Cycle)
    (0x1F << 0); // tCKE
    // SDTIMR1 Value = 0xFFFFFFFB
    // SDTIMR2 Value = 0x467FFFFF
    GEL_TextOut("\tDDR Timings Configured for Debug\n","Output",1,1,1);
    }
    else {
    // Let float -> integer truncate handle minus 1; Safer to round up for timings
    EMIFDDR_SDTIMR1 = (((unsigned int) (110.0 * freq / 1000)) << 25) | // tRFC
    (((unsigned int) ( 18.0 * freq / 1000)) << 22) | // tRP
    (((unsigned int) ( 18.0 * freq / 1000)) << 19) | // tRCD
    (((unsigned int) ( 15.0 * freq / 1000)) << 16) | // tWR
    (((unsigned int) ( 42.0 * freq / 1000)) << 11) | // tRAS
    (((unsigned int) ( 60.0 * freq / 1000)) << 6) | // tRC
    (((unsigned int) ( 12.0 * freq / 1000)) << 3) | // tRRD
    (EMIFDDR_SDTIMR1 & 0x4) | // Reserved
    ((2 - 1) << 0); // tWTR
    EMIFDDR_SDTIMR2 = (EMIFDDR_SDTIMR2 & 0x80000000) | // Reserved
    (((unsigned int) ((70000 / 7812.5) - 1)) << 27) | // tRASMAX
    (0x3 << 25) | // tXP (Should be 6-1 per MT46H64M16LFBF-6 datasheet, but field only goes up to 0b11)
    (0x0 << 23) | // tODT (Not supported)
    (((unsigned int) (138.0 * freq / 1000)) << 16) | // tXSNR (tXSR for mDDR)
    (((unsigned int) (138.0 * freq / 1000)) << 8) | // tXSRD (tXSR for mDDR)
    ((2 - 1) << 5) | // tRTP
    ((1 - 1) << 0); // tCKE
    // SDTIMR1 Value @ 150MHz = 0x20923249
    // SDTIMR2 Value @ 150MHz = 0x3E141420
    }
    EMIFDDR_SDCR &= ~0x00008000; // Clear TIMUNLOCK
    // Let float -> integer truncate handle RR round-down; Safer to round down for refresh rate
    EMIFDDR_SDRCR = (0x1 << 31) | // LPMODEN (Required for LPSC SyncReset/Enable)
    (0x1 << 30) | // MCLKSTOPEN (Required for LPSC SyncReset/Enable)
    (0x0 << 24) | // Reserved
    (0x0 << 23) | // SR_PD
    (0x0 << 16) | // Reserved
    (((unsigned int) (7.8125 * freq)) << 0); // RR
    // SyncReset the Clock to EMIFDDR SDRAM
    PSC1_LPSC_SyncReset(PD0, LPSC_DDR);
    // Enable the Clock to EMIFDDR SDRAM
    PSC1_LPSC_enable(PD0, LPSC_DDR);
    // Disable self-refresh
    EMIFDDR_SDRCR &= ~0xC0000000;
    // SDRCR Value @ 150MHz = 0x00000493
    // Set PBBPR to a value lower than default to prevent blocking
    EMIFDDR_PBBPR = 0x30;
    }



  • Hi George,

    George Paravas said:

    So if I understand it correctly after the UART gets created and configured, uartSample.tcf calls the echo task to connect to the port and wait for data ta come in and then echo them back?

    Yes, Thats correct. It outputs "UART Demo Starts:  INPUT a file of size 1000 bytes" on the Hyperterminal/teraterm and then you will have to send a file of 1000 bytes(sample.txt) which will be echoed back on the Hyperterminal/teraterm.

    I have copied the GEL file data you posted(can remove it now!) and the main difference I see is in setting the PLLM multilplier. Please find the GEL file attached(C6748.txt) and try using this one and check the UART's behavior (Since it does not allow attaching *.gel file, I have coverted it to *.txt). When composing a post, there are 3 options - compose | options | preview . By clicking options, you can attach/upload the files.

    George Paravas said:

    seqnum 1:

    TSK: ready echoTask (0x11825d04)

    So, is it going inside echoTask?

    Did you try probing into the UART driver?. Is there any progress here? Let me know..

     

    Best Regards,

    Raghavendra

  • Hi Raghavendra,


    I didn't manage to get it to work with bios 5, I've taken a new approach and I got my UARTs to work with the gel file I've posted but without the bios5, So without bios 5 it works as should.

    George.