This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

AM2732: How to improve the sending capability of can?

Part Number: AM2732

Tool/software:

Now I'm using the method recommended in the SDK:

1. use MCAN_initTxBufElement() config the tx buf;

2. set buf number and call MCAN_txBufTransIntrEnable(), MCAN_writeMsgRam(), MCAN_txBufAddReq() to send buffer.

What should I do to send multiple frames of CAN FD messages at one time and quickly? The data segments are all 64 bytes.

Thanks.

  • It takes about 450 microseconds to send a normal 64-byte CANFD message frame. 

    However, for my SDK-based project, when sending canfd messages, I have to wait for the interruption of the transmission completion to be received before continuing to send the next frame of canfd messages.

    In addition to system scheduling, it takes approximately 1 millisecond to send a 64-byte CANFD message.

  • Hi Currin,

    I measured the time for sending a 64-byte message using MCAN with the MCAN example from AM273x MCU+ SDK 09.02.00.60:  mcan_loopback_interrupt_am273x-evm_r5fss0-0_freertos_ti-arm-clang.

    For Debug build, it is around 22us. For Release Build it is about 10us.

    Attached please find the modified mcan_loopback_interrupt.c.

    /*
     *  Copyright (C) 2021 Texas Instruments Incorporated
     *
     *  Redistribution and use in source and binary forms, with or without
     *  modification, are permitted provided that the following conditions
     *  are met:
     *
     *    Redistributions of source code must retain the above copyright
     *    notice, this list of conditions and the following disclaimer.
     *
     *    Redistributions in binary form must reproduce the above copyright
     *    notice, this list of conditions and the following disclaimer in the
     *    documentation and/or other materials provided with the
     *    distribution.
     *
     *    Neither the name of Texas Instruments Incorporated nor the names of
     *    its contributors may be used to endorse or promote products derived
     *    from this software without specific prior written permission.
     *
     *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     *  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     *  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     *  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     *  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     *  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     */
    
    /* This example demonstrates the CAN message transmission and reception in
     * digital loop back mode with the following configuration.
     *
     * CAN FD Message Format.
     * Message ID Type is Standard, Msg Id 0xC0.
     * MCAN is configured in Interrupt Mode.
     * MCAN Interrupt Line Number 0.
     * Arbitration Bit Rate 1Mbps.
     * Data Bit Rate 5Mbps.
     * Buffer mode is used for Tx and RX to store message in message RAM.
     *
     * Message is transmitted and received back internally using internal loopback
     * mode. When the received message id and the data matches with the transmitted
     * one, then the example is completed.
     *
     */
    
    #include <stdio.h>
    #include <kernel/dpl/CycleCounterP.h>
    #include <kernel/dpl/DebugP.h>
    #include <kernel/dpl/AddrTranslateP.h>
    #include <kernel/dpl/SemaphoreP.h>
    #include <drivers/mcan.h>
    #include "ti_drivers_config.h"
    #include "ti_drivers_open_close.h"
    #include "ti_board_open_close.h"
    
    #define APP_MCAN_BASE_ADDR                       (CONFIG_MCAN0_BASE_ADDR)
    #define APP_MCAN_INTR_NUM                        (CONFIG_MCAN0_INTR)
    #define APP_MCAN_MSG_LOOP_COUNT                  (10U)
    
    /* Allocate Message RAM memory section to filter elements, buffers, FIFO */
    /* Maximum STD Filter Element can be configured is 128 */
    #define APP_MCAN_STD_ID_FILTER_CNT               (1U)
    /* Maximum EXT Filter Element can be configured is 64 */
    #define APP_MCAN_EXT_ID_FILTER_CNT               (0U)
    /* Maximum TX Buffer + TX FIFO, combined can be configured is 32 */
    #define APP_MCAN_TX_BUFF_CNT                     (1U)
    #define APP_MCAN_TX_FIFO_CNT                     (0U)
    /* Maximum TX Event FIFO can be configured is 32 */
    #define APP_MCAN_TX_EVENT_FIFO_CNT               (0U)
    /* Maximum RX FIFO 0 can be configured is 64 */
    #define APP_MCAN_FIFO_0_CNT                      (0U)
    /* Maximum RX FIFO 1 can be configured is 64 and
     * rest of the memory is allocated to RX buffer which is again of max size 64 */
    #define APP_MCAN_FIFO_1_CNT                      (0U)
    
    /* Standard Id configured in this app */
    #define APP_MCAN_STD_ID                          (0xC0U)
    #define APP_MCAN_STD_ID_MASK                     (0x7FFU)
    #define APP_MCAN_STD_ID_SHIFT                    (18U)
    
    #define APP_MCAN_EXT_ID_MASK                     (0x1FFFFFFFU)
    
    /* In the CAN FD format, the Data length coding differs from the standard CAN.
     * In case of standard CAN it is 8 bytes */
    static const uint8_t gMcanDataSize[16U] = {0U,  1U,  2U,  3U,
                                               4U,  5U,  6U,  7U,
                                               8U,  12U, 16U, 20U,
                                               24U, 32U, 48U, 64U};
    
    /* Semaphore to indicate transfer completion */
    static SemaphoreP_Object gMcanTxDoneSem, gMcanRxDoneSem;
    static HwiP_Object       gMcanHwiObject;
    static uint32_t          gMcanBaseAddr;
    
    /* Static Function Declarations */
    static void    App_mcanIntrISR(void *arg);
    static void    App_mcanConfig(Bool enableInternalLpbk);
    static void    App_mcanInitMsgRamConfigParams(
                   MCAN_MsgRAMConfigParams *msgRAMConfigParams);
    static void    App_mcanEnableIntr(void);
    static void    App_mcanConfigTxMsg(MCAN_TxBufElement *txMsg);
    static void    App_mcanCompareMsg(MCAN_TxBufElement *txMsg,
                                      MCAN_RxBufElement *rxMsg);
    static void    App_mcanInitStdFilterElemParams(
                                      MCAN_StdMsgIDFilterElement *stdFiltElem,
                                      uint32_t bufNum);
    
    uint32_t startTime, endTime;
    uint32_t timeLog[APP_MCAN_MSG_LOOP_COUNT];
    void mcan_loopback_interrupt_main(void *args)
    {
        int32_t                 status = SystemP_SUCCESS;
        HwiP_Params             hwiPrms;
        MCAN_TxBufElement       txMsg;
        MCAN_ProtocolStatus     protStatus;
        MCAN_RxBufElement       rxMsg;
        MCAN_RxNewDataStatus    newDataStatus;
        MCAN_ErrCntStatus       errCounter;
        uint32_t                i, bufNum, fifoNum, bitPos = 0U;
    
        /* Open drivers to open the UART driver for console */
        Drivers_open();
        Board_driversOpen();
    
        DebugP_log("[MCAN] Loopback Interrupt mode, application started ...\r\n");
    
        /* Construct Tx/Rx Semaphore objects */
        status = SemaphoreP_constructBinary(&gMcanTxDoneSem, 0);
        DebugP_assert(SystemP_SUCCESS == status);
        status = SemaphoreP_constructBinary(&gMcanRxDoneSem, 0);
        DebugP_assert(SystemP_SUCCESS == status);
    
        /* Register interrupt */
        HwiP_Params_init(&hwiPrms);
        hwiPrms.intNum      = APP_MCAN_INTR_NUM;
        hwiPrms.callback    = &App_mcanIntrISR;
        status              = HwiP_construct(&gMcanHwiObject, &hwiPrms);
        DebugP_assert(status == SystemP_SUCCESS);
    
        /* Assign MCAN instance address */
        gMcanBaseAddr = (uint32_t) AddrTranslateP_getLocalAddr(APP_MCAN_BASE_ADDR);
    
        /* Configure MCAN module, Enable LoopBack Mode */
        App_mcanConfig(TRUE);
    
        /* Enable Interrupts */
        App_mcanEnableIntr();
    
        /* Transmit And Receive Message */
        for (i = 0U; i < APP_MCAN_MSG_LOOP_COUNT; i++)
        {
            /* Configure Tx Msg to transmit */
            App_mcanConfigTxMsg(&txMsg);
    
            /* Select buffer number, 32 buffers available */
            bufNum = 0U;
            /* Enable Transmission interrupt for the selected buf num,
             * If FIFO is used, then need to send FIFO start index until FIFO count */
            status = MCAN_txBufTransIntrEnable(gMcanBaseAddr, bufNum, (uint32_t)TRUE);
            DebugP_assert(status == CSL_PASS);
    
            startTime = CycleCounterP_getCount32();
            /* Write message to Msg RAM */
            MCAN_writeMsgRam(gMcanBaseAddr, MCAN_MEM_TYPE_BUF, bufNum, &txMsg);
    
            /* Add request for transmission, This function will trigger transmission */
            status = MCAN_txBufAddReq(gMcanBaseAddr, bufNum);
            DebugP_assert(status == CSL_PASS);
    
            /* Wait for Tx completion */
            SemaphoreP_pend(&gMcanTxDoneSem, SystemP_WAIT_FOREVER);
            endTime = CycleCounterP_getCount32();
            timeLog[i] = (endTime -startTime)/400;
    
            MCAN_getProtocolStatus(gMcanBaseAddr, &protStatus);
            /* Checking for Tx Errors */
            if (((MCAN_ERR_CODE_NO_ERROR != protStatus.lastErrCode) ||
                 (MCAN_ERR_CODE_NO_CHANGE != protStatus.lastErrCode)) &&
                ((MCAN_ERR_CODE_NO_ERROR != protStatus.dlec) ||
                 (MCAN_ERR_CODE_NO_CHANGE != protStatus.dlec)) &&
                (0U != protStatus.pxe))
            {
                 DebugP_assert(FALSE);
            }
    
            /* Wait for Rx completion */
            SemaphoreP_pend(&gMcanRxDoneSem, SystemP_WAIT_FOREVER);
    
            /* Checking for Rx Errors */
            MCAN_getErrCounters(gMcanBaseAddr, &errCounter);
            DebugP_assert((0U == errCounter.recErrCnt) &&
                          (0U == errCounter.canErrLogCnt));
    
            /* Get the new data staus, indicates buffer num which received message */
            MCAN_getNewDataStatus(gMcanBaseAddr, &newDataStatus);
            MCAN_clearNewDataStatus(gMcanBaseAddr, &newDataStatus);
    
            /* Select buffer and fifo number, Buffer is used in this app */
            bufNum = 0U;
            fifoNum = MCAN_RX_FIFO_NUM_0;
    
            bitPos = (1U << bufNum);
            if (bitPos == (newDataStatus.statusLow & bitPos))
            {
                MCAN_readMsgRam(gMcanBaseAddr, MCAN_MEM_TYPE_BUF, bufNum, fifoNum, &rxMsg);
            }
            else
            {
                DebugP_assert(FALSE);
            }
    
            /* Compare Tx/Rx data */
            App_mcanCompareMsg(&txMsg, &rxMsg);
        }
        /* De-Construct Tx/Rx Semaphore objects */
        HwiP_destruct(&gMcanHwiObject);
        SemaphoreP_destruct(&gMcanTxDoneSem);
        SemaphoreP_destruct(&gMcanRxDoneSem);
    
        DebugP_log("All tests have passed!!\r\n");
    
        Board_driversClose();
        Drivers_close();
    
        return;
    }
    
    static void App_mcanConfig(Bool enableInternalLpbk)
    {
        MCAN_StdMsgIDFilterElement stdFiltElem[APP_MCAN_STD_ID_FILTER_CNT] = {0U};
        MCAN_InitParams            initParams = {0U};
        MCAN_ConfigParams          configParams = {0U};
        MCAN_MsgRAMConfigParams    msgRAMConfigParams = {0U};
        MCAN_BitTimingParams       bitTimes = {0U};
        uint32_t                   i;
    
        /* Initialize MCAN module initParams */
        MCAN_initOperModeParams(&initParams);
        /* CAN FD Mode and Bit Rate Switch Enabled */
        initParams.fdMode          = TRUE;
        initParams.brsEnable       = TRUE;
    
        /* Initialize MCAN module Global Filter Params */
        MCAN_initGlobalFilterConfigParams(&configParams);
    
        /* Initialize MCAN module Bit Time Params */
        /* Configuring default 1Mbps and 5Mbps as nominal and data bit-rate resp */
        MCAN_initSetBitTimeParams(&bitTimes);
    
        /* Initialize MCAN module Message Ram Params */
        App_mcanInitMsgRamConfigParams(&msgRAMConfigParams);
    
        /* Initialize Filter element to receive msg, should be same as tx msg id */
        for (i = 0U; i < APP_MCAN_STD_ID_FILTER_CNT; i++)
        {
            App_mcanInitStdFilterElemParams(&stdFiltElem[i], i);
        }
        /* wait for memory initialization to happen */
        while (FALSE == MCAN_isMemInitDone(gMcanBaseAddr))
        {}
    
        /* Put MCAN in SW initialization mode */
        MCAN_setOpMode(gMcanBaseAddr, MCAN_OPERATION_MODE_SW_INIT);
        while (MCAN_OPERATION_MODE_SW_INIT != MCAN_getOpMode(gMcanBaseAddr))
        {}
    
        /* Initialize MCAN module */
        MCAN_init(gMcanBaseAddr, &initParams);
        /* Configure MCAN module Gloabal Filter */
        MCAN_config(gMcanBaseAddr, &configParams);
        /* Configure Bit timings */
        MCAN_setBitTime(gMcanBaseAddr, &bitTimes);
        /* Configure Message RAM Sections */
        MCAN_msgRAMConfig(gMcanBaseAddr, &msgRAMConfigParams);
        /* Set Extended ID Mask */
        MCAN_setExtIDAndMask(gMcanBaseAddr, APP_MCAN_EXT_ID_MASK);
    
        /* Configure Standard ID filter element */
        for (i = 0U; i < APP_MCAN_STD_ID_FILTER_CNT; i++)
        {
            MCAN_addStdMsgIDFilter(gMcanBaseAddr, i, &stdFiltElem[i]);
        }
        if (TRUE == enableInternalLpbk)
        {
            MCAN_lpbkModeEnable(gMcanBaseAddr, MCAN_LPBK_MODE_INTERNAL, TRUE);
        }
    
        /* Take MCAN out of the SW initialization mode */
        MCAN_setOpMode(gMcanBaseAddr, MCAN_OPERATION_MODE_NORMAL);
        while (MCAN_OPERATION_MODE_NORMAL != MCAN_getOpMode(gMcanBaseAddr))
        {}
    
        return;
    }
    
    static void App_mcanConfigTxMsg(MCAN_TxBufElement *txMsg)
    {
        uint32_t i;
    
        /* Initialize message to transmit */
        MCAN_initTxBufElement(txMsg);
        /* Standard message identifier 11 bit, stored into ID[28-18] */
        txMsg->id  = ((APP_MCAN_STD_ID & MCAN_STD_ID_MASK) << MCAN_STD_ID_SHIFT);
        txMsg->dlc = MCAN_DATA_SIZE_64BYTES; /* Payload size is 64 bytes */
        txMsg->fdf = TRUE; /* CAN FD Frame Format */
        txMsg->xtd = FALSE; /* Extended id not configured */
        for (i = 0U; i < gMcanDataSize[MCAN_DATA_SIZE_64BYTES]; i++)
        {
            txMsg->data[i] = i;
        }
    
        return;
    }
    
    static void App_mcanInitStdFilterElemParams(MCAN_StdMsgIDFilterElement *stdFiltElem,
                                                uint32_t bufNum)
    {
        /* sfid1 defines the ID of the standard message to be stored. */
        stdFiltElem->sfid1 = APP_MCAN_STD_ID;
        /* As buffer mode is selected, sfid2 should be bufNum[0 - 63] */
        stdFiltElem->sfid2 = bufNum;
        /* Store message in buffer */
        stdFiltElem->sfec  = MCAN_STD_FILT_ELEM_BUFFER;
        /* Below configuration is ignored if message is stored in buffer */
        stdFiltElem->sft   = MCAN_STD_FILT_TYPE_RANGE;
    
        return;
    }
    
    static void App_mcanEnableIntr(void)
    {
        MCAN_enableIntr(gMcanBaseAddr, MCAN_INTR_MASK_ALL, (uint32_t)TRUE);
        MCAN_enableIntr(gMcanBaseAddr,
                        MCAN_INTR_SRC_RES_ADDR_ACCESS, (uint32_t)FALSE);
        /* Select Interrupt Line 0 */
        MCAN_selectIntrLine(gMcanBaseAddr, MCAN_INTR_MASK_ALL, MCAN_INTR_LINE_NUM_0);
        /* Enable Interrupt Line */
        MCAN_enableIntrLine(gMcanBaseAddr, MCAN_INTR_LINE_NUM_0, (uint32_t)TRUE);
    
        return;
    }
    
    static void App_mcanInitMsgRamConfigParams(MCAN_MsgRAMConfigParams
                                               *msgRAMConfigParams)
    {
        int32_t status;
    
        MCAN_initMsgRamConfigParams(msgRAMConfigParams);
    
        /* Configure the user required msg ram params */
        msgRAMConfigParams->lss = APP_MCAN_STD_ID_FILTER_CNT;
        msgRAMConfigParams->lse = APP_MCAN_EXT_ID_FILTER_CNT;
        msgRAMConfigParams->txBufCnt = APP_MCAN_TX_BUFF_CNT;
        msgRAMConfigParams->txFIFOCnt = APP_MCAN_TX_FIFO_CNT;
        /* Buffer/FIFO mode is selected */
        msgRAMConfigParams->txBufMode = MCAN_TX_MEM_TYPE_BUF;
        msgRAMConfigParams->txEventFIFOCnt = APP_MCAN_TX_EVENT_FIFO_CNT;
        msgRAMConfigParams->rxFIFO0Cnt = APP_MCAN_FIFO_0_CNT;
        msgRAMConfigParams->rxFIFO1Cnt = APP_MCAN_FIFO_1_CNT;
        /* FIFO blocking mode is selected */
        msgRAMConfigParams->rxFIFO0OpMode = MCAN_RX_FIFO_OPERATION_MODE_BLOCKING;
        msgRAMConfigParams->rxFIFO1OpMode = MCAN_RX_FIFO_OPERATION_MODE_BLOCKING;
    
        status = MCAN_calcMsgRamParamsStartAddr(msgRAMConfigParams);
        DebugP_assert(status == CSL_PASS);
    
        return;
    }
    
    static void App_mcanCompareMsg(MCAN_TxBufElement *txMsg,
                                   MCAN_RxBufElement *rxMsg)
    {
        uint32_t i;
    
        if (((txMsg->id >> APP_MCAN_STD_ID_SHIFT) & APP_MCAN_STD_ID_MASK) ==
                ((rxMsg->id >> APP_MCAN_STD_ID_SHIFT) & APP_MCAN_STD_ID_MASK))
        {
            for (i = 0U; i < gMcanDataSize[MCAN_DATA_SIZE_64BYTES]; i++)
            {
                if (txMsg->data[i] != rxMsg->data[i])
                {
                    DebugP_logError("Data mismatch !!!\r\n");
                    DebugP_assert(FALSE);
                }
            }
        }
        else
        {
            DebugP_logError("Message ID mismatch !!!\r\n");
            DebugP_assert(FALSE);
        }
    
        return;
    }
    
    static void App_mcanIntrISR(void *arg)
    {
        uint32_t intrStatus;
    
        intrStatus = MCAN_getIntrStatus(gMcanBaseAddr);
        MCAN_clearIntrStatus(gMcanBaseAddr, intrStatus);
    
        if (MCAN_INTR_SRC_TRANS_COMPLETE ==
            (intrStatus & MCAN_INTR_SRC_TRANS_COMPLETE))
        {
            SemaphoreP_post(&gMcanTxDoneSem);
        }
    
        /* If FIFO0/FIFO1 is used, then MCAN_INTR_SRC_DEDICATED_RX_BUFF_MSG macro
         * needs to be replaced by MCAN_INTR_SRC_RX_FIFO0_NEW_MSG/
         * MCAN_INTR_SRC_RX_FIFO1_NEW_MSG respectively */
        if (MCAN_INTR_SRC_DEDICATED_RX_BUFF_MSG ==
            (intrStatus & MCAN_INTR_SRC_DEDICATED_RX_BUFF_MSG))
        {
            SemaphoreP_post(&gMcanRxDoneSem);
        }
    
        return;
    }
    
     

    Best regards,

    Ming

  • Hi Ming,

    I used the same project as yours. After testing, the transmission delay was also around 10 microseconds.

    But I'm actually running the millimeter-wave SDK, which also includes tasks such as front-end wave generation control and Ethernet. Will this have an impact on the transmission efficiency of can?

    Best regards,

    Currin

  • Hi Currin,

    Of course, the task priority of the task which runs the MCAN transmission is critical to the time lapse for each transfer. To improve the MCAN transfer performance, you will need to give it the highest priority.

    Best regards,

    Ming