AM6421: R5 Remoteproc stop cause kernel panic

Part Number: AM6421

Tool/software:

Hello e2e Team,

We're encountering an issue with the remoteproc driver on our custom board. After loading an R5 binary—such as a Fieldbus stack—and starting it, the remote core cannot be stopped using:

echo stop > state

Instead of stopping gracefully, the system crashes, and only a watchdog reset can recover it.Our setup includes a custom kernel based on Debian 6.1.124 with RT patches. We're currently using most of the remoteproc commits from the TI Git repository. Relevant files are attached for reference.

Here’s a snippet of the log output:

-----------------------------------------------------------------------------------------------------------------------------------------

[ 1741.100218] ------------[ cut here ]------------

[ 1741.100238] kernel BUG at net/core/dev.c:10846!

[ 1741.100257] Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT_RT SMP

[ 1741.100272] CPU: 0 PID: 1258 Comm: sh Not tainted 6.1.124-rt47 #1

[ 1741.100283] Hardware name: Sick SIG300 (DT)

[ 1741.100289] pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)

[ 1741.100298] pc : free_netdev+0x150/0x190

[ 1741.100320] lr : free_netdev+0xd8/0x190

[ 1741.100326] sp : ffff8000093b37b0

[ 1741.100330] x29: ffff8000093b37b0 x28: ffff0000024a8000 x27: 0000000000000000

[ 1741.100346] x26: 0000000000000000 x25: ffff800009074eb0 x24: ffff0000038a46d0

[ 1741.100357] x23: ffff0000038a4700 x22: ffff0000038a4400 x21: ffff000003a6d050

[ 1741.100369] x20: ffff000003a6d000 x19: ffff000003a6cef8 x18: ffff000003f7a270

[ 1741.100380] x17: ffff800015922000 x16: ffff800008000000 x15: ffff0000040e7268

[ 1741.100392] x14: 0000000000000000 x13: ffff000003f7a270 x12: ffff0000040e7240

[ 1741.100403] x11: 0000ffffffffffff x10: ffff000003f7a2a8 x9 : ffff000003f7a270

[ 1741.100414] x8 : 0000000000020000 x7 : 000000000000002e x6 : 0000000000000002

[ 1741.100424] x5 : ffff000000256b80 x4 : ffff800008f7bf08 x3 : ffff0000024a8000

[ 1741.100435] x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000001

[ 1741.100447] Call trace:

[ 1741.100453] free_netdev+0x150/0x190

[ 1741.100460] devm_free_netdev+0x14/0x20

[ 1741.100474] release_nodes+0x40/0x70

[ 1741.100487] devres_release_all+0x88/0xd0

[ 1741.100495] device_unbind_cleanup+0x18/0x68

[ 1741.100507] device_release_driver_internal+0x100/0x188

[ 1741.100519] device_release_driver+0x18/0x28

[ 1741.100529] bus_remove_device+0xd4/0x160

[ 1741.100539] device_del+0x17c/0x3b8

[ 1741.100547] device_unregister+0x20/0x78

[ 1741.100555] rpmsg_remove_device+0x10/0x20

[ 1741.100567] device_for_each_child+0x60/0xa8

[ 1741.100575] rpmsg_remove+0x40/0xa8

[ 1741.100583] virtio_dev_remove+0x44/0xa0

[ 1741.100596] device_remove+0x4c/0x80

[ 1741.100606] device_release_driver_internal+0xe0/0x188

[ 1741.100617] device_release_driver+0x18/0x28

[ 1741.100627] bus_remove_device+0xd4/0x160

[ 1741.100636] device_del+0x17c/0x3b8

[ 1741.100643] device_unregister+0x20/0x78

[ 1741.100650] unregister_virtio_device+0x18/0x40

[ 1741.100659] rproc_remove_virtio_dev+0x14/0x28

[ 1741.100672] device_for_each_child+0x60/0xa8

[ 1741.100680] rproc_vdev_do_stop+0x2c/0x58

[ 1741.100691] rproc_stop+0x54/0x158

[ 1741.100700] rproc_shutdown+0x60/0x148

[ 1741.100710] state_store+0x84/0x110

[ 1741.100721] dev_attr_store+0x18/0x30

[ 1741.100733] sysfs_kf_write+0x44/0x60

[ 1741.100745] kernfs_fop_write_iter+0x128/0x1b8

[ 1741.100754] vfs_write+0x380/0x4b0

[ 1741.100767] ksys_write+0x68/0xf0

[ 1741.100776] __arm64_sys_write+0x1c/0x28

[ 1741.100786] invoke_syscall+0x44/0x108

[ 1741.100798] el0_svc_common.constprop.3+0x94/0xf8

[ 1741.100808] do_el0_svc+0x24/0x98

[ 1741.100816] el0_svc+0x20/0x50

[ 1741.100826] el0t_64_sync_handler+0x98/0xc0

[ 1741.100833] el0t_64_sync+0x170/0x174

[ 1741.100847] Code: f94013f5 a8c37bfd d50323bf d65f03c0 (d4210000)

[ 1741.377634] ---[ end trace 0000000000000000 ]---

[ 1741.377640] Kernel panic - not syncing: Oops - BUG: Fatal exception

[ 1741.388501] Kernel Offset: disabled

[ 1741.388503] CPU features: 0x000000,00800084,0000420b

[ 1741.388509] Memory Limit: none

-----------------------------------------------------------------------------------------------------------------------------------------

Our setup:

  • Linux 6.1.124+debian-1+rt
  • Sysfw: 11.xx.xx
  • U-Boot: 2021.01

Any insights or suggestions would be greatly appreciated.

Thank you!

ti_sci_proc.h

// SPDX-License-Identifier: GPL-2.0-only
/*
 * TI K3 R5F (MCU) Remote Processor driver
 *
 * Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/
 *	Suman Anna <s-anna@ti.com>
 */

#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/mailbox_client.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_reserved_mem.h>
#include <linux/omap-mailbox.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/remoteproc.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/suspend.h>

#include "omap_remoteproc.h"
#include "remoteproc_internal.h"
#include "ti_sci_proc.h"

/* This address can either be for ATCM or BTCM with the other at address 0x0 */
#define K3_R5_TCM_DEV_ADDR	0x41010000

/* R5 TI-SCI Processor Configuration Flags */
#define PROC_BOOT_CFG_FLAG_R5_DBG_EN			0x00000001
#define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN			0x00000002
#define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP			0x00000100
#define PROC_BOOT_CFG_FLAG_R5_TEINIT			0x00000200
#define PROC_BOOT_CFG_FLAG_R5_NMFI_EN			0x00000400
#define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE		0x00000800
#define PROC_BOOT_CFG_FLAG_R5_BTCM_EN			0x00001000
#define PROC_BOOT_CFG_FLAG_R5_ATCM_EN			0x00002000
/* Available from J7200 SoCs onwards */
#define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS		0x00004000
/* Applicable to only AM64x SoCs */
#define PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE		0x00008000

/* R5 TI-SCI Processor Control Flags */
#define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT		0x00000001

/* R5 TI-SCI Processor Status Flags */
#define PROC_BOOT_STATUS_FLAG_R5_WFE			0x00000001
#define PROC_BOOT_STATUS_FLAG_R5_WFI			0x00000002
#define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED		0x00000004
#define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED	0x00000100
/* Applicable to only AM64x SoCs */
#define PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY	0x00000200

/**
 * struct k3_r5_mem - internal memory structure
 * @cpu_addr: MPU virtual address of the memory region
 * @bus_addr: Bus address used to access the memory region
 * @dev_addr: Device address from remoteproc view
 * @size: Size of the memory region
 */
struct k3_r5_mem {
	void __iomem *cpu_addr;
	phys_addr_t bus_addr;
	u32 dev_addr;
	size_t size;
};

/*
 * All cluster mode values are not applicable on all SoCs. The following
 * are the modes supported on various SoCs:
 *   Split mode       : AM65x, J721E, J7200 and AM64x SoCs
 *   LockStep mode    : AM65x, J721E and J7200 SoCs
 *   Single-CPU mode  : AM64x SoCs only
 *   Single-Core mode : AM62x, AM62A SoCs
 */
enum cluster_mode {
	CLUSTER_MODE_SPLIT = 0,
	CLUSTER_MODE_LOCKSTEP,
	CLUSTER_MODE_SINGLECPU,
	CLUSTER_MODE_SINGLECORE
};

/**
 * struct k3_r5_soc_data - match data to handle SoC variations
 * @tcm_is_double: flag to denote the larger unified TCMs in certain modes
 * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC
 * @single_cpu_mode: flag to denote if SoC/IP supports Single-CPU mode
 * @is_single_core: flag to denote if SoC/IP has only single core R5
 */
struct k3_r5_soc_data {
	bool tcm_is_double;
	bool tcm_ecc_autoinit;
	bool single_cpu_mode;
	bool is_single_core;
};

/**
 * struct k3_r5_cluster - K3 R5F Cluster structure
 * @dev: cached device pointer
 * @mode: Mode to configure the Cluster - Split or LockStep
 * @cores: list of R5 cores within the cluster
 * @core_transition: wait queue to sync core state changes
 * @soc_data: SoC-specific feature data for a R5FSS
 */
struct k3_r5_cluster {
	struct device *dev;
	enum cluster_mode mode;
	struct list_head cores;
	wait_queue_head_t core_transition;
	const struct k3_r5_soc_data *soc_data;
};

/**
 * struct k3_r5_core - K3 R5 core structure
 * @elem: linked list item
 * @dev: cached device pointer
 * @rproc: rproc handle representing this core
 * @mem: internal memory regions data
 * @sram: on-chip SRAM memory regions data
 * @num_mems: number of internal memory regions
 * @num_sram: number of on-chip SRAM memory regions
 * @reset: reset control handle
 * @tsp: TI-SCI processor control handle
 * @ti_sci: TI-SCI handle
 * @ti_sci_id: TI-SCI device identifier
 * @atcm_enable: flag to control ATCM enablement
 * @btcm_enable: flag to control BTCM enablement
 * @loczrama: flag to dictate which TCM is at device address 0x0
 * @released_from_reset: flag to signal when core is out of reset
 */
struct k3_r5_core {
	struct list_head elem;
	struct device *dev;
	struct rproc *rproc;
	struct k3_r5_mem *mem;
	struct k3_r5_mem *sram;
	int num_mems;
	int num_sram;
	struct reset_control *reset;
	struct ti_sci_proc *tsp;
	const struct ti_sci_handle *ti_sci;
	u32 ti_sci_id;
	u32 atcm_enable;
	u32 btcm_enable;
	u32 loczrama;
	bool released_from_reset;
};

/**
 * struct k3_r5_rproc - K3 remote processor state
 * @dev: cached device pointer
 * @cluster: cached pointer to parent cluster structure
 * @mbox: mailbox channel handle
 * @client: mailbox client to request the mailbox channel
 * @rproc: rproc handle
 * @core: cached pointer to r5 core structure being used
 * @rmem: reserved memory regions data
 * @num_rmems: number of reserved memory regions
 */
struct k3_r5_rproc {
	struct device *dev;
	struct k3_r5_cluster *cluster;
	struct mbox_chan *mbox;
	struct mbox_client client;
	struct rproc *rproc;
	struct k3_r5_core *core;
	struct k3_r5_mem *rmem;
	int num_rmems;
	struct completion shut_comp;
	struct completion suspend_comp;
	struct notifier_block pm_notifier;
};

/**
 * is_core_in_wfi - local utility function to check core status
 * @core: remote core pointer used for checking core status
 *
 * This utility function is invoked by the shutdown sequence to ensure
 * the remote core is in wfi, before asserting a reset.
 */
static int is_core_in_wfi(struct k3_r5_core *core)
{
	int ret;
	u64 boot_vec = 0;
	u32 cfg = 0, ctrl = 0, stat = 0;

	ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat);

	if (ret < 0)
		return 0;

	return (stat & PROC_BOOT_STATUS_FLAG_R5_WFI);
}

/**
 * k3_r5_rproc_mbox_callback() - inbound mailbox message handler
 * @client: mailbox client pointer used for requesting the mailbox channel
 * @data: mailbox payload
 *
 * This handler is invoked by the OMAP mailbox driver whenever a mailbox
 * message is received. Usually, the mailbox payload simply contains
 * the index of the virtqueue that is kicked by the remote processor,
 * and we let remoteproc core handle it.
 *
 * In addition to virtqueue indices, we also have some out-of-band values
 * that indicate different events. Those values are deliberately very
 * large so they don't coincide with virtqueue indices.
 */
static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data)
{
	struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc,
						client);
	struct device *dev = kproc->rproc->dev.parent;
	const char *name = kproc->rproc->name;
	u32 msg = omap_mbox_message(data);

	/* Do not forward message from a detached core */
	if (kproc->rproc->state == RPROC_DETACHED)
		return;

	dev_dbg(dev, "mbox msg: 0x%x\n", msg);

	switch (msg) {
	case RP_MBOX_CRASH:
		/*
		 * remoteproc detected an exception, but error recovery is not
		 * supported. So, just log this for now
		 */
		dev_err(dev, "K3 R5F rproc %s crashed\n", name);
		break;
	case RP_MBOX_ECHO_REPLY:
		dev_info(dev, "received echo reply from %s\n", name);
		break;
	case RP_MBOX_SHUTDOWN_ACK:
		dev_dbg(dev, "received shutdown_ack from %s\n", name);
		complete(&kproc->shut_comp);
		break;
	case RP_MBOX_SUSPEND_ACK:
		dev_dbg(dev, "received suspend_ack from %s\n", name);
		complete(&kproc->suspend_comp);
		break;
	default:
		/* silently handle all other valid messages */
		if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
			return;
		if (msg > kproc->rproc->max_notifyid) {
			dev_dbg(dev, "dropping unknown message 0x%x", msg);
			return;
		}
		/* msg contains the index of the triggered vring */
		if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
			dev_dbg(dev, "no message was found in vqid %d\n", msg);
	}
}

/* kick a virtqueue */
static void k3_r5_rproc_kick(struct rproc *rproc, int vqid)
{
	struct k3_r5_rproc *kproc = rproc->priv;
	struct device *dev = rproc->dev.parent;
	mbox_msg_t msg = (mbox_msg_t)vqid;
	int ret;

	/* Do not forward message to a detached core */
	if (kproc->rproc->state == RPROC_DETACHED)
		return;

	/* send the index of the triggered virtqueue in the mailbox payload */
	ret = mbox_send_message(kproc->mbox, (void *)msg);
	if (ret < 0)
		dev_err(dev, "failed to send mailbox message, status = %d\n",
			ret);
}

static int k3_r5_split_reset(struct k3_r5_core *core)
{
	int ret;

	ret = reset_control_assert(core->reset);
	if (ret) {
		dev_err(core->dev, "local-reset assert failed, ret = %d\n",
			ret);
		return ret;
	}

	return ret;
}

static int k3_r5_split_release(struct k3_r5_core *core)
{
	int ret;

	ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
						   core->ti_sci_id);
	if (ret) {
		dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
			ret);
		return ret;
	}

	ret = reset_control_deassert(core->reset);
	if (ret) {
		dev_err(core->dev, "local-reset deassert failed, ret = %d\n",
			ret);
		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
							 core->ti_sci_id))
			dev_warn(core->dev, "module-reset assert back failed\n");
	}

	return ret;
}

static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster)
{
	struct k3_r5_core *core;
	int ret;

	/* assert local reset on all applicable cores */
	list_for_each_entry(core, &cluster->cores, elem) {
		ret = reset_control_assert(core->reset);
		if (ret) {
			dev_err(core->dev, "local-reset assert failed, ret = %d\n",
				ret);
			core = list_prev_entry(core, elem);
			goto unroll_local_reset;
		}
	}

	/* disable PSC modules on all applicable cores */
	list_for_each_entry(core, &cluster->cores, elem) {
		ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
							   core->ti_sci_id);
		if (ret) {
			dev_err(core->dev, "module-reset assert failed, ret = %d\n",
				ret);
			goto unroll_module_reset;
		}
	}

	return 0;

unroll_module_reset:
	list_for_each_entry_continue_reverse(core, &cluster->cores, elem) {
		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
							 core->ti_sci_id))
			dev_warn(core->dev, "module-reset assert back failed\n");
	}
	core = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
unroll_local_reset:
	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
		if (reset_control_deassert(core->reset))
			dev_warn(core->dev, "local-reset deassert back failed\n");
	}

	return ret;
}

static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster)
{
	struct k3_r5_core *core;
	int ret;

	/* enable PSC modules on all applicable cores */
	list_for_each_entry_reverse(core, &cluster->cores, elem) {
		ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
							   core->ti_sci_id);
		if (ret) {
			dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
				ret);
			core = list_next_entry(core, elem);
			goto unroll_module_reset;
		}
	}

	/* deassert local reset on all applicable cores */
	list_for_each_entry_reverse(core, &cluster->cores, elem) {
		ret = reset_control_deassert(core->reset);
		if (ret) {
			dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
				ret);
			goto unroll_local_reset;
		}
	}

	return 0;

unroll_local_reset:
	list_for_each_entry_continue(core, &cluster->cores, elem) {
		if (reset_control_assert(core->reset))
			dev_warn(core->dev, "local-reset assert back failed\n");
	}
	core = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
unroll_module_reset:
	list_for_each_entry_from(core, &cluster->cores, elem) {
		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
							 core->ti_sci_id))
			dev_warn(core->dev, "module-reset assert back failed\n");
	}

	return ret;
}

static inline int k3_r5_core_halt(struct k3_r5_core *core)
{
	return ti_sci_proc_set_control(core->tsp,
				       PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0);
}

static inline int k3_r5_core_run(struct k3_r5_core *core)
{
	return ti_sci_proc_set_control(core->tsp,
				       0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT);
}

static int k3_r5_rproc_request_mbox(struct rproc *rproc)
{
	struct k3_r5_rproc *kproc = rproc->priv;
	struct mbox_client *client = &kproc->client;
	struct device *dev = kproc->dev;
	int ret;

	client->dev = dev;
	client->tx_done = NULL;
	client->rx_callback = k3_r5_rproc_mbox_callback;
	client->tx_block = false;
	client->knows_txdone = false;

	kproc->mbox = mbox_request_channel(client, 0);
	if (IS_ERR(kproc->mbox))
		return dev_err_probe(dev, PTR_ERR(kproc->mbox),
				     "mbox_request_channel failed\n");

	/*
	 * Ping the remote processor, this is only for sanity-sake for now;
	 * there is no functional effect whatsoever.
	 *
	 * Note that the reply will _not_ arrive immediately: this message
	 * will wait in the mailbox fifo until the remote processor is booted.
	 */
	ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
	if (ret < 0) {
		dev_err(dev, "mbox_send_message failed: %d\n", ret);
		mbox_free_channel(kproc->mbox);
		return ret;
	}

	return 0;
}


/* PM notifier call.
 * This is a callback function for PM notifications. On a resume completion
 * i.e after all the resume driver calls are handled on PM_POST_SUSPEND,
 * on a deep sleep the remote core is rebooted.
 */
static int r5f_pm_notifier_call(struct notifier_block *bl,
				unsigned long state, void *unused)
{
	struct k3_r5_rproc *kproc = container_of(bl, struct k3_r5_rproc, pm_notifier);
	unsigned long msg = RP_MBOX_SUSPEND_SYSTEM;
	unsigned long to = msecs_to_jiffies(5000);
	int ret;

	switch (state) {
	case PM_HIBERNATION_PREPARE:
	case PM_RESTORE_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (!device_may_wakeup(kproc->dev)) {
			rproc_shutdown(kproc->rproc);
			ret = kproc->core->ti_sci->ops.dev_ops.put_device(kproc->core->ti_sci,
									kproc->core->ti_sci_id);
			if (ret) {
				dev_err(kproc->core->dev, "module-reset assert failed, ret = %d\n",
						ret);
				if (reset_control_deassert(kproc->core->reset))
					dev_warn(kproc->core->dev, "local-reset deassert back failed\n");
			}

		} else {
			reinit_completion(&kproc->suspend_comp);
			ret = mbox_send_message(kproc->mbox, (void *)msg);
			if (ret < 0) {
				dev_err(kproc->dev, "PM mbox_send_message failed: %d\n", ret);
				return ret;
			}
			ret = wait_for_completion_timeout(&kproc->suspend_comp, to);
			if (ret == 0) {
				dev_err(kproc->dev,
					"%s: timedout waiting for rproc completion event\n", __func__);
				return -EBUSY;
			};
		}
		kproc->rproc->state = RPROC_SUSPENDED;
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_RESTORE:
	case PM_POST_SUSPEND:
		if (kproc->rproc->state == RPROC_SUSPENDED) {
			if (!device_may_wakeup(kproc->dev)) {
				rproc_boot(kproc->rproc);
			} else {
				msg = RP_MBOX_ECHO_REQUEST;
				ret = mbox_send_message(kproc->mbox, (void *)msg);
				if (ret < 0) {
					dev_err(kproc->dev,
						"PM mbox_send_message failed: %d\n", ret);
					return ret;
				}
			}
			kproc->rproc->state = RPROC_RUNNING;
		}
		break;
	}
	return 0;
}

/*
 * The R5F cores have controls for both a reset and a halt/run. The code
 * execution from DDR requires the initial boot-strapping code to be run
 * from the internal TCMs. This function is used to release the resets on
 * applicable cores to allow loading into the TCMs. The .prepare() ops is
 * invoked by remoteproc core before any firmware loading, and is followed
 * by the .start() ops after loading to actually let the R5 cores run.
 *
 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to
 * execute code, but combines the TCMs from both cores. The resets for both
 * cores need to be released to make this possible, as the TCMs are in general
 * private to each core. Only Core0 needs to be unhalted for running the
 * cluster in this mode. The function uses the same reset logic as LockStep
 * mode for this (though the behavior is agnostic of the reset release order).
 * This callback is invoked only in remoteproc mode.
 */
static int k3_r5_rproc_prepare(struct rproc *rproc)
{
	struct k3_r5_rproc *kproc = rproc->priv;
	struct k3_r5_cluster *cluster = kproc->cluster;
	struct k3_r5_core *core = kproc->core;
	struct device *dev = kproc->dev;
	u32 ctrl = 0, cfg = 0, stat = 0;
	u64 boot_vec = 0;
	bool mem_init_dis;
	int ret;

	ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat);
	if (ret < 0)
		return ret;
	mem_init_dis = !!(cfg & PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS);

	/* Re-use LockStep-mode reset logic for Single-CPU mode */
	ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
	       cluster->mode == CLUSTER_MODE_SINGLECPU) ?
		k3_r5_lockstep_release(cluster) : k3_r5_split_release(core);
	if (ret) {
		dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n",
			ret);
		return ret;
	}

	/*
	 * Newer IP revisions like on J7200 SoCs support h/w auto-initialization
	 * of TCMs, so there is no need to perform the s/w memzero. This bit is
	 * configurable through System Firmware, the default value does perform
	 * auto-init, but account for it in case it is disabled
	 */
	if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) {
		dev_dbg(dev, "leveraging h/w init for TCM memories\n");
		return 0;
	}

	/*
	 * Zero out both TCMs unconditionally (access from v8 Arm core is not
	 * affected by ATCM & BTCM enable configuration values) so that ECC
	 * can be effective on all TCM addresses.
	 */
	dev_dbg(dev, "zeroing out ATCM memory\n");
	memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size);

	dev_dbg(dev, "zeroing out BTCM memory\n");
	memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size);

	return 0;
}

/*
 * This function implements the .unprepare() ops and performs the complimentary
 * operations to that of the .prepare() ops. The function is used to assert the
 * resets on all applicable cores for the rproc device (depending on LockStep
 * or Split mode). This completes the second portion of powering down the R5F
 * cores. The cores themselves are only halted in the .stop() ops, and the
 * .unprepare() ops is invoked by the remoteproc core after the remoteproc is
 * stopped.
 *
 * The Single-CPU mode on applicable SoCs (eg: AM64x) combines the TCMs from
 * both cores. The access is made possible only with releasing the resets for
 * both cores, but with only Core0 unhalted. This function re-uses the same
 * reset assert logic as LockStep mode for this mode (though the behavior is
 * agnostic of the reset assert order). This callback is invoked only in
 * remoteproc mode.
 */
static int k3_r5_rproc_unprepare(struct rproc *rproc)
{
	struct k3_r5_rproc *kproc = rproc->priv;
	struct k3_r5_cluster *cluster = kproc->cluster;
	struct k3_r5_core *core = kproc->core;
	struct device *dev = kproc->dev;
	int ret;

	/* Re-use LockStep-mode reset logic for Single-CPU mode */
	ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
	       cluster->mode == CLUSTER_MODE_SINGLECPU) ?
		k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core);
	if (ret)
		dev_err(dev, "unable to disable cores, ret = %d\n", ret);

	return ret;
}

/*
 * The R5F start sequence includes two different operations
 * 1. Configure the boot vector for R5F core(s)
 * 2. Unhalt/Run the R5F core(s)
 *
 * The sequence is different between LockStep and Split modes. The LockStep
 * mode requires the boot vector to be configured only for Core0, and then
 * unhalt both the cores to start the execution - Core1 needs to be unhalted
 * first followed by Core0. The Split-mode requires that Core0 to be maintained
 * always in a higher power state that Core1 (implying Core1 needs to be started
 * always only after Core0 is started).
 *
 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
 * code, so only Core0 needs to be unhalted. The function uses the same logic
 * flow as Split-mode for this. This callback is invoked only in remoteproc
 * mode.
 */
static int k3_r5_rproc_start(struct rproc *rproc)
{
	struct k3_r5_rproc *kproc = rproc->priv;
	struct k3_r5_cluster *cluster = kproc->cluster;
	struct device *dev = kproc->dev;
	struct k3_r5_core *core0, *core;
	u32 boot_addr;
	int ret;

	boot_addr = rproc->bootaddr;
	/* TODO: add boot_addr sanity checking */
	dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr);

	/* boot vector need not be programmed for Core1 in LockStep mode */
	core = kproc->core;
	ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0);
	if (ret)
		return ret;

	/* unhalt/run all applicable cores */
	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
		list_for_each_entry_reverse(core, &cluster->cores, elem) {
			ret = k3_r5_core_run(core);
			if (ret)
				goto unroll_core_run;
		}
	} else {
		/* do not allow core 1 to start before core 0 */
		core0 = list_first_entry(&cluster->cores, struct k3_r5_core,
					 elem);
		if (core != core0 && core0->rproc->state == RPROC_OFFLINE) {
			dev_err(dev, "%s: can not start core 1 before core 0\n",
				__func__);
			return -EPERM;
		}

		ret = k3_r5_core_run(core);
		if (ret)
			return ret;

		core->released_from_reset = true;
		wake_up_interruptible(&cluster->core_transition);
	}

	return 0;

unroll_core_run:
	list_for_each_entry_continue(core, &cluster->cores, elem) {
		if (k3_r5_core_halt(core))
			dev_warn(core->dev, "core halt back failed\n");
	}
	return ret;
}

/*
 * The R5F stop function includes the following operations
 * 1. Halt R5F core(s)
 *
 * The sequence is different between LockStep and Split modes, and the order
 * of cores the operations are performed are also in general reverse to that
 * of the start function. The LockStep mode requires each operation to be
 * performed first on Core0 followed by Core1. The Split-mode requires that
 * Core0 to be maintained always in a higher power state that Core1 (implying
 * Core1 needs to be stopped first before Core0).
 *
 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
 * code, so only Core0 needs to be halted. The function uses the same logic
 * flow as Split-mode for this.
 *
 * Note that the R5F halt operation in general is not effective when the R5F
 * core is running, but is needed to make sure the core won't run after
 * deasserting the reset the subsequent time. The asserting of reset can
 * be done here, but is preferred to be done in the .unprepare() ops - this
 * maintains the symmetric behavior between the .start(), .stop(), .prepare()
 * and .unprepare() ops, and also balances them well between sysfs 'state'
 * flow and device bind/unbind or module removal. This callback is invoked
 * only in remoteproc mode.
 */
static int k3_r5_rproc_stop(struct rproc *rproc)
{
	struct k3_r5_rproc *kproc = rproc->priv;
	struct k3_r5_cluster *cluster = kproc->cluster;
	struct device *dev = kproc->dev;
	struct k3_r5_core *core1, *core = kproc->core;
	int ret;

	/* halt all applicable cores */
	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
		list_for_each_entry(core, &cluster->cores, elem) {
			ret = k3_r5_core_halt(core);
			if (ret) {
				core = list_prev_entry(core, elem);
				goto unroll_core_halt;
			}
		}
	} else {
		/* do not allow core 0 to stop before core 1 */
		core1 = list_last_entry(&cluster->cores, struct k3_r5_core,
					elem);
		if (core != core1 && core1->rproc->state != RPROC_OFFLINE) {
			dev_err(dev, "%s: can not stop core 0 before core 1\n",
				__func__);
			ret = -EPERM;
			goto out;
		}

		ret = k3_r5_core_halt(core);
		if (ret)
			goto out;
	}

	return 0;

unroll_core_halt:
	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
		if (k3_r5_core_run(core))
			dev_warn(core->dev, "core run back failed\n");
	}
out:
	return ret;
}

/*
 * Attach to a running R5F remote processor (IPC-only mode)
 *
 * The R5F attach callback is a NOP. The remote processor is already booted, and
 * all required resources have been acquired during probe routine, so there is
 * no need to issue any TI-SCI commands to boot the R5F cores in IPC-only mode.
 * This callback is invoked only in IPC-only mode and exists because
 * rproc_validate() checks for its existence.
 */
static int k3_r5_rproc_attach(struct rproc *rproc) { return 0; }

/*
 * Detach from a running R5F remote processor (IPC-only mode)
 *
 * The R5F detach callback is a NOP. The R5F cores are not stopped and will be
 * left in booted state in IPC-only mode. This callback is invoked only in
 * IPC-only mode and exists for sanity sake.
 */
static int k3_r5_rproc_detach(struct rproc *rproc) { return 0; }

/*
 * This function implements the .get_loaded_rsc_table() callback and is used
 * to provide the resource table for the booted R5F in IPC-only mode. The K3 R5F
 * firmwares follow a design-by-contract approach and are expected to have the
 * resource table at the base of the DDR region reserved for firmware usage.
 * This provides flexibility for the remote processor to be booted by different
 * bootloaders that may or may not have the ability to publish the resource table
 * address and size through a DT property. This callback is invoked only in
 * IPC-only mode.
 */
static struct resource_table *k3_r5_get_loaded_rsc_table(struct rproc *rproc,
							 size_t *rsc_table_sz)
{
	struct k3_r5_rproc *kproc = rproc->priv;
	struct device *dev = kproc->dev;

	if (!kproc->rmem[0].cpu_addr) {
		dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
		return ERR_PTR(-ENOMEM);
	}

	/*
	 * NOTE: The resource table size is currently hard-coded to a maximum
	 * of 256 bytes. The most common resource table usage for K3 firmwares
	 * is to only have the vdev resource entry and an optional trace entry.
	 * The exact size could be computed based on resource table address, but
	 * the hard-coded value suffices to support the IPC-only mode.
	 */
	*rsc_table_sz = 256;
	return (struct resource_table *)kproc->rmem[0].cpu_addr;
}

/*
 * Internal Memory translation helper
 *
 * Custom function implementing the rproc .da_to_va ops to provide address
 * translation (device address to kernel virtual address) for internal RAMs
 * present in a DSP or IPU device). The translated addresses can be used
 * either by the remoteproc core for loading, or by any rpmsg bus drivers.
 */
static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
{
	struct k3_r5_rproc *kproc = rproc->priv;
	struct k3_r5_core *core = kproc->core;
	void __iomem *va = NULL;
	phys_addr_t bus_addr;
	u32 dev_addr, offset;
	size_t size;
	int i;

	if (len == 0)
		return NULL;

	/* handle both R5 and SoC views of ATCM and BTCM */
	for (i = 0; i < core->num_mems; i++) {
		bus_addr = core->mem[i].bus_addr;
		dev_addr = core->mem[i].dev_addr;
		size = core->mem[i].size;

		/* handle R5-view addresses of TCMs */
		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
			offset = da - dev_addr;
			va = core->mem[i].cpu_addr + offset;
			return (__force void *)va;
		}

		/* handle SoC-view addresses of TCMs */
		if (da >= bus_addr && ((da + len) <= (bus_addr + size))) {
			offset = da - bus_addr;
			va = core->mem[i].cpu_addr + offset;
			return (__force void *)va;
		}
	}

	/* handle any SRAM regions using SoC-view addresses */
	for (i = 0; i < core->num_sram; i++) {
		dev_addr = core->sram[i].dev_addr;
		size = core->sram[i].size;

		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
			offset = da - dev_addr;
			va = core->sram[i].cpu_addr + offset;
			return (__force void *)va;
		}
	}

	/* handle static DDR reserved memory regions */
	for (i = 0; i < kproc->num_rmems; i++) {
		dev_addr = kproc->rmem[i].dev_addr;
		size = kproc->rmem[i].size;

		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
			offset = da - dev_addr;
			va = kproc->rmem[i].cpu_addr + offset;
			return (__force void *)va;
		}
	}

	return NULL;
}

static const struct rproc_ops k3_r5_rproc_ops = {
	.prepare	= k3_r5_rproc_prepare,
	.unprepare	= k3_r5_rproc_unprepare,
	.start		= k3_r5_rproc_start,
	.stop		= k3_r5_rproc_stop,
	.kick		= k3_r5_rproc_kick,
	.da_to_va	= k3_r5_rproc_da_to_va,
};

/*
 * Internal R5F Core configuration
 *
 * Each R5FSS has a cluster-level setting for configuring the processor
 * subsystem either in a safety/fault-tolerant LockStep mode or a performance
 * oriented Split mode on most SoCs. A fewer SoCs support a non-safety mode
 * as an alternate for LockStep mode that exercises only a single R5F core
 * called Single-CPU mode. Each R5F core has a number of settings to either
 * enable/disable each of the TCMs, control which TCM appears at the R5F core's
 * address 0x0. These settings need to be configured before the resets for the
 * corresponding core are released. These settings are all protected and managed
 * by the System Processor.
 *
 * This function is used to pre-configure these settings for each R5F core, and
 * the configuration is all done through various ti_sci_proc functions that
 * communicate with the System Processor. The function also ensures that both
 * the cores are halted before the .prepare() step.
 *
 * The function is called from k3_r5_cluster_rproc_init() and is invoked either
 * once (in LockStep mode or Single-CPU modes) or twice (in Split mode). Support
 * for LockStep-mode is dictated by an eFUSE register bit, and the config
 * settings retrieved from DT are adjusted accordingly as per the permitted
 * cluster mode. Another eFUSE register bit dictates if the R5F cluster only
 * supports a Single-CPU mode. All cluster level settings like Cluster mode and
 * TEINIT (exception handling state dictating ARM or Thumb mode) can only be set
 * and retrieved using Core0.
 *
 * The function behavior is different based on the cluster mode. The R5F cores
 * are configured independently as per their individual settings in Split mode.
 * They are identically configured in LockStep mode using the primary Core0
 * settings. However, some individual settings cannot be set in LockStep mode.
 * This is overcome by switching to Split-mode initially and then programming
 * both the cores with the same settings, before reconfiguing again for
 * LockStep mode.
 */
static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc)
{
	struct k3_r5_cluster *cluster = kproc->cluster;
	struct device *dev = kproc->dev;
	struct k3_r5_core *core0, *core, *temp;
	u32 ctrl = 0, cfg = 0, stat = 0;
	u32 set_cfg = 0, clr_cfg = 0;
	u64 boot_vec = 0;
	bool lockstep_en;
	bool single_cpu;
	int ret;

	core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
	if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
	    cluster->mode == CLUSTER_MODE_SINGLECPU ||
	    cluster->mode == CLUSTER_MODE_SINGLECORE) {
		core = core0;
	} else {
		core = kproc->core;
	}

	ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
				     &stat);
	if (ret < 0)
		return ret;

	dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n",
		boot_vec, cfg, ctrl, stat);

	single_cpu = !!(stat & PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY);
	lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED);

	/* Override to single CPU mode if set in status flag */
	if (single_cpu && cluster->mode == CLUSTER_MODE_SPLIT) {
		dev_err(cluster->dev, "split-mode not permitted, force configuring for single-cpu mode\n");
		cluster->mode = CLUSTER_MODE_SINGLECPU;
	}

	/* Override to split mode if lockstep enable bit is not set in status flag */
	if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) {
		dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n");
		cluster->mode = CLUSTER_MODE_SPLIT;
	}

	/* always enable ARM mode and set boot vector to 0 */
	boot_vec = 0x0;
	if (core == core0) {
		clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT;
		/*
		 * Single-CPU configuration bit can only be configured
		 * on Core0 and system firmware will NACK any requests
		 * with the bit configured, so program it only on
		 * permitted cores
		 */
		if (cluster->mode == CLUSTER_MODE_SINGLECPU ||
		    cluster->mode == CLUSTER_MODE_SINGLECORE) {
			set_cfg = PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE;
		} else {
			/*
			 * LockStep configuration bit is Read-only on Split-mode
			 * _only_ devices and system firmware will NACK any
			 * requests with the bit configured, so program it only
			 * on permitted devices
			 */
			if (lockstep_en)
				clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
		}
	}

	if (core->atcm_enable)
		set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
	else
		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;

	if (core->btcm_enable)
		set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
	else
		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;

	if (core->loczrama)
		set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
	else
		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;

	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
		/*
		 * work around system firmware limitations to make sure both
		 * cores are programmed symmetrically in LockStep. LockStep
		 * and TEINIT config is only allowed with Core0.
		 */
		list_for_each_entry(temp, &cluster->cores, elem) {
			ret = k3_r5_core_halt(temp);
			if (ret)
				goto out;

			if (temp != core) {
				clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
				clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT;
			}
			ret = ti_sci_proc_set_config(temp->tsp, boot_vec,
						     set_cfg, clr_cfg);
			if (ret)
				goto out;
		}

		set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
		clr_cfg = 0;
		ret = ti_sci_proc_set_config(core->tsp, boot_vec,
					     set_cfg, clr_cfg);
	} else {
		ret = k3_r5_core_halt(core);
		if (ret)
			goto out;

		ret = ti_sci_proc_set_config(core->tsp, boot_vec,
					     set_cfg, clr_cfg);
	}

out:
	return ret;
}

static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc)
{
	struct device *dev = kproc->dev;
	struct device_node *np = dev_of_node(dev);
	struct device_node *rmem_np;
	struct reserved_mem *rmem;
	int num_rmems;
	int ret, i;

	num_rmems = of_property_count_elems_of_size(np, "memory-region",
						    sizeof(phandle));
	if (num_rmems <= 0) {
		dev_err(dev, "device does not have reserved memory regions, ret = %d\n",
			num_rmems);
		return -EINVAL;
	}
	if (num_rmems < 2) {
		dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
			num_rmems);
		return -EINVAL;
	}

	/* use reserved memory region 0 for vring DMA allocations */
	ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
	if (ret) {
		dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
			ret);
		return ret;
	}

	num_rmems--;
	kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
	if (!kproc->rmem) {
		ret = -ENOMEM;
		goto release_rmem;
	}

	/* use remaining reserved memory regions for static carveouts */
	for (i = 0; i < num_rmems; i++) {
		rmem_np = of_parse_phandle(np, "memory-region", i + 1);
		if (!rmem_np) {
			ret = -EINVAL;
			goto unmap_rmem;
		}

		rmem = of_reserved_mem_lookup(rmem_np);
		if (!rmem) {
			of_node_put(rmem_np);
			ret = -EINVAL;
			goto unmap_rmem;
		}
		of_node_put(rmem_np);

		kproc->rmem[i].bus_addr = rmem->base;
		/*
		 * R5Fs do not have an MMU, but have a Region Address Translator
		 * (RAT) module that provides a fixed entry translation between
		 * the 32-bit processor addresses to 64-bit bus addresses. The
		 * RAT is programmable only by the R5F cores. Support for RAT
		 * is currently not supported, so 64-bit address regions are not
		 * supported. The absence of MMUs implies that the R5F device
		 * addresses/supported memory regions are restricted to 32-bit
		 * bus addresses, and are identical
		 */
		kproc->rmem[i].dev_addr = (u32)rmem->base;
		kproc->rmem[i].size = rmem->size;
		kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
		if (!kproc->rmem[i].cpu_addr) {
			dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
				i + 1, &rmem->base, &rmem->size);
			ret = -ENOMEM;
			goto unmap_rmem;
		}

		dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
			i + 1, &kproc->rmem[i].bus_addr,
			kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
			kproc->rmem[i].dev_addr);
	}
	kproc->num_rmems = num_rmems;

	return 0;

unmap_rmem:
	for (i--; i >= 0; i--)
		iounmap(kproc->rmem[i].cpu_addr);
	kfree(kproc->rmem);
release_rmem:
	of_reserved_mem_device_release(dev);
	return ret;
}

static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc)
{
	int i;

	for (i = 0; i < kproc->num_rmems; i++)
		iounmap(kproc->rmem[i].cpu_addr);
	kfree(kproc->rmem);

	of_reserved_mem_device_release(kproc->dev);
}

/*
 * Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs,
 * split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both
 * cores are usable in Split-mode, but only the Core0 TCMs can be used in
 * LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by
 * leveraging the Core1 TCMs as well in certain modes where they would have
 * otherwise been unusable (Eg: LockStep-mode on J7200 SoCs, Single-CPU mode on
 * AM64x SoCs). This is done by making a Core1 TCM visible immediately after the
 * corresponding Core0 TCM. The SoC memory map uses the larger 64 KB sizes for
 * the Core0 TCMs, and the dts representation reflects this increased size on
 * supported SoCs. The Core0 TCM sizes therefore have to be adjusted to only
 * half the original size in Split mode.
 */
static void k3_r5_adjust_tcm_sizes(struct k3_r5_rproc *kproc)
{
	struct k3_r5_cluster *cluster = kproc->cluster;
	struct k3_r5_core *core = kproc->core;
	struct device *cdev = core->dev;
	struct k3_r5_core *core0;

	if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
	    cluster->mode == CLUSTER_MODE_SINGLECPU ||
	    cluster->mode == CLUSTER_MODE_SINGLECORE ||
	    !cluster->soc_data->tcm_is_double)
		return;

	core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
	if (core == core0) {
		WARN_ON(core->mem[0].size != SZ_64K);
		WARN_ON(core->mem[1].size != SZ_64K);

		core->mem[0].size /= 2;
		core->mem[1].size /= 2;

		dev_dbg(cdev, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n",
			core->mem[0].size, core->mem[1].size);
	}
}

/*
 * This function checks and configures a R5F core for IPC-only or remoteproc
 * mode. The driver is configured to be in IPC-only mode for a R5F core when
 * the core has been loaded and started by a bootloader. The IPC-only mode is
 * detected by querying the System Firmware for reset, power on and halt status
 * and ensuring that the core is running. Any incomplete steps at bootloader
 * are validated and errored out.
 *
 * In IPC-only mode, the driver state flags for ATCM, BTCM and LOCZRAMA settings
 * and cluster mode parsed originally from kernel DT are updated to reflect the
 * actual values configured by bootloader. The driver internal device memory
 * addresses for TCMs are also updated.
 */
static int k3_r5_rproc_configure_mode(struct k3_r5_rproc *kproc)
{
	struct k3_r5_cluster *cluster = kproc->cluster;
	struct k3_r5_core *core = kproc->core;
	struct device *cdev = core->dev;
	bool r_state = false, c_state = false, lockstep_en = false, single_cpu = false;
	u32 ctrl = 0, cfg = 0, stat = 0, halted = 0;
	u64 boot_vec = 0;
	u32 atcm_enable, btcm_enable, loczrama;
	struct k3_r5_core *core0;
	enum cluster_mode mode = cluster->mode;
	int ret;

	core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);

	ret = core->ti_sci->ops.dev_ops.is_on(core->ti_sci, core->ti_sci_id,
					      &r_state, &c_state);
	if (ret) {
		dev_err(cdev, "failed to get initial state, mode cannot be determined, ret = %d\n",
			ret);
		return ret;
	}
	if (r_state != c_state) {
		dev_warn(cdev, "R5F core may have been powered on by a different host, programmed state (%d) != actual state (%d)\n",
			 r_state, c_state);
	}

	ret = reset_control_status(core->reset);
	if (ret < 0) {
		dev_err(cdev, "failed to get initial local reset status, ret = %d\n",
			ret);
		return ret;
	}

	/*
	 * Skip the waiting mechanism for sequential power-on of cores if the
	 * core has already been booted by another entity.
	 */
	core->released_from_reset = c_state;

	ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
				     &stat);
	if (ret < 0) {
		dev_err(cdev, "failed to get initial processor status, ret = %d\n",
			ret);
		return ret;
	}
	atcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_ATCM_EN ?  1 : 0;
	btcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_BTCM_EN ?  1 : 0;
	loczrama = cfg & PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE ?  1 : 0;
	single_cpu = cfg & PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE ? 1 : 0;
	lockstep_en = cfg & PROC_BOOT_CFG_FLAG_R5_LOCKSTEP ? 1 : 0;

	if (single_cpu && mode != CLUSTER_MODE_SINGLECORE)
		mode = CLUSTER_MODE_SINGLECPU;
	if (lockstep_en)
		mode = CLUSTER_MODE_LOCKSTEP;

	halted = ctrl & PROC_BOOT_CTRL_FLAG_R5_CORE_HALT;

	/*
	 * IPC-only mode detection requires both local and module resets to
	 * be deasserted and R5F core to be unhalted. Local reset status is
	 * irrelevant if module reset is asserted (POR value has local reset
	 * deasserted), and is deemed as remoteproc mode
	 */
	if (c_state && !ret && !halted) {
		dev_info(cdev, "configured R5F for IPC-only mode\n");
		kproc->rproc->state = RPROC_DETACHED;
		ret = 1;
		/* override rproc ops with only required IPC-only mode ops */
		kproc->rproc->ops->prepare = NULL;
		kproc->rproc->ops->unprepare = NULL;
		kproc->rproc->ops->start = NULL;
		kproc->rproc->ops->stop = NULL;
		kproc->rproc->ops->attach = k3_r5_rproc_attach;
		kproc->rproc->ops->detach = k3_r5_rproc_detach;
		kproc->rproc->ops->get_loaded_rsc_table =
						k3_r5_get_loaded_rsc_table;
	} else if (!c_state) {
		dev_info(cdev, "configured R5F for remoteproc mode\n");
		ret = 0;
	} else {
		dev_err(cdev, "mismatched mode: local_reset = %s, module_reset = %s, core_state = %s\n",
			!ret ? "deasserted" : "asserted",
			c_state ? "deasserted" : "asserted",
			halted ? "halted" : "unhalted");
		ret = -EINVAL;
	}

	/* fixup TCMs, cluster & core flags to actual values in IPC-only mode */
	if (ret > 0) {
		if (core == core0)
			cluster->mode = mode;
		core->atcm_enable = atcm_enable;
		core->btcm_enable = btcm_enable;
		core->loczrama = loczrama;
		core->mem[0].dev_addr = loczrama ? 0 : K3_R5_TCM_DEV_ADDR;
		core->mem[1].dev_addr = loczrama ? K3_R5_TCM_DEV_ADDR : 0;
	}

	return ret;
}

static int k3_r5_cluster_rproc_init(struct platform_device *pdev)
{
	struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
	struct device *dev = &pdev->dev;
	struct k3_r5_rproc *kproc;
	struct k3_r5_core *core, *core1;
	struct device *cdev;
	const char *fw_name;
	struct rproc *rproc;
	int ret, ret1;

	core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
	list_for_each_entry(core, &cluster->cores, elem) {
		cdev = core->dev;
		ret = rproc_of_parse_firmware(cdev, 0, &fw_name);
		if (ret) {
			dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
				ret);
			goto out;
		}

		rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops,
				    fw_name, sizeof(*kproc));
		if (!rproc) {
			ret = -ENOMEM;
			goto out;
		}

		/*
		 * Implement the auto_boot feature. The default fw is only loaded
		 * if the auto_boot property is set in the dts of the R5F core.
		 */
		if (of_property_present(pdev->dev.of_node, "ti,auto-boot")){
			rproc->auto_boot = true;
		} else {
			rproc->auto_boot = false;
			dev_info(dev, "auto-boot not set, no firmware is loaded\n");
		}


		/* K3 R5s have a Region Address Translator (RAT) but no MMU */
		rproc->has_iommu = false;
		/* error recovery is not supported at present */
		rproc->recovery_disabled = true;

		kproc = rproc->priv;
		kproc->cluster = cluster;
		kproc->core = core;
		kproc->dev = cdev;
		kproc->rproc = rproc;
		core->rproc = rproc;

		ret = k3_r5_rproc_request_mbox(rproc);
		if (ret)
			return ret;

		ret = k3_r5_rproc_configure_mode(kproc);
		if (ret < 0)
			goto err_config;
		if (ret)
			goto init_rmem;

		ret = k3_r5_rproc_configure(kproc);
		if (ret) {
			dev_err(dev, "initial configure failed, ret = %d\n",
				ret);
			goto err_config;
		}

		init_completion(&kproc->shut_comp);
		init_completion(&kproc->suspend_comp);
init_rmem:
		k3_r5_adjust_tcm_sizes(kproc);

		ret = k3_r5_reserved_mem_init(kproc);
		if (ret) {
			dev_err(dev, "reserved memory init failed, ret = %d\n",
				ret);
			goto err_config;
		}

		ret = rproc_add(rproc);
		if (ret) {
			dev_err(dev, "rproc_add failed, ret = %d\n", ret);
			goto err_add;
		}

		kproc->pm_notifier.notifier_call = r5f_pm_notifier_call;
		register_pm_notifier(&kproc->pm_notifier);

		/* create only one rproc in lockstep, single-cpu or
		 * single core mode
		 */
		if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
		    cluster->mode == CLUSTER_MODE_SINGLECPU ||
		    cluster->mode == CLUSTER_MODE_SINGLECORE)
			break;

		/* R5 cores require to be powered on sequentially, core0
		 * should be in higher power state than core1 in a cluster
		 * So, wait for current core to power up before proceeding
		 * to next core and put timeout of 2sec for each core.
		 *
		 * This waiting mechanism is necessary because
		 * rproc_auto_boot_callback() for core1 can be called before
		 * core0 due to thread execution order.
		 */
		if (rproc->auto_boot){
			/* We only check if core status if auto-boot is enabled,
			 * otherwise the remotproc endpoints are removed.
			*/
			ret = wait_event_interruptible_timeout(cluster->core_transition,
										core->released_from_reset,
										msecs_to_jiffies(2000));
			if (ret <= 0) {
				dev_err(dev,
					"Timed out waiting for %s core to power up!\n",
					rproc->name);
				goto err_powerup;
			}
		}
	}

	return 0;

err_split:
	if (rproc->state == RPROC_ATTACHED) {
		ret1 = rproc_detach(rproc);
		if (ret1) {
			dev_err(kproc->dev, "failed to detach rproc, ret = %d\n",
				ret1);
			return ret1;
		}
	}

err_powerup:
	rproc_del(rproc);
err_add:
	k3_r5_reserved_mem_exit(kproc);
err_config:
	rproc_free(rproc);
	core->rproc = NULL;
out:
	/* undo core0 upon any failures on core1 in split-mode */
	if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) {
		core = list_prev_entry(core, elem);
		rproc = core->rproc;
		kproc = rproc->priv;
		goto err_split;
	}
	return ret;
}

static void k3_r5_cluster_rproc_exit(void *data)
{
	struct k3_r5_cluster *cluster = platform_get_drvdata(data);
	struct k3_r5_rproc *kproc;
	struct k3_r5_core *core;
	struct rproc *rproc;
	int ret;

	/*
	 * lockstep mode and single-cpu modes have only one rproc associated
	 * with first core, whereas split-mode has two rprocs associated with
	 * each core, and requires that core1 be powered down first
	 */
	core = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
		cluster->mode == CLUSTER_MODE_SINGLECPU) ?
		list_first_entry(&cluster->cores, struct k3_r5_core, elem) :
		list_last_entry(&cluster->cores, struct k3_r5_core, elem);

	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
		rproc = core->rproc;
		kproc = rproc->priv;

		if (rproc->state == RPROC_ATTACHED) {
			ret = rproc_detach(rproc);
			if (ret) {
				dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", ret);
				return;
			}
		}

		mbox_free_channel(kproc->mbox);

		rproc_del(rproc);
		k3_r5_reserved_mem_exit(kproc);
		unregister_pm_notifier(&kproc->pm_notifier);
		rproc_free(rproc);
		core->rproc = NULL;
	}
}

static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev,
					       struct k3_r5_core *core)
{
	static const char * const mem_names[] = {"atcm", "btcm"};
	struct device *dev = &pdev->dev;
	struct resource *res;
	int num_mems;
	int i;

	num_mems = ARRAY_SIZE(mem_names);
	core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL);
	if (!core->mem)
		return -ENOMEM;

	for (i = 0; i < num_mems; i++) {
		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
						   mem_names[i]);
		if (!res) {
			dev_err(dev, "found no memory resource for %s\n",
				mem_names[i]);
			return -EINVAL;
		}
		if (!devm_request_mem_region(dev, res->start,
					     resource_size(res),
					     dev_name(dev))) {
			dev_err(dev, "could not request %s region for resource\n",
				mem_names[i]);
			return -EBUSY;
		}

		/*
		 * TCMs are designed in general to support RAM-like backing
		 * memories. So, map these as Normal Non-Cached memories. This
		 * also avoids/fixes any potential alignment faults due to
		 * unaligned data accesses when using memcpy() or memset()
		 * functions (normally seen with device type memory).
		 */
		core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
							resource_size(res));
		if (!core->mem[i].cpu_addr) {
			dev_err(dev, "failed to map %s memory\n", mem_names[i]);
			return -ENOMEM;
		}
		core->mem[i].bus_addr = res->start;

		/*
		 * TODO:
		 * The R5F cores can place ATCM & BTCM anywhere in its address
		 * based on the corresponding Region Registers in the System
		 * Control coprocessor. For now, place ATCM and BTCM at
		 * addresses 0 and 0x41010000 (same as the bus address on AM65x
		 * SoCs) based on loczrama setting
		 */
		if (!strcmp(mem_names[i], "atcm")) {
			core->mem[i].dev_addr = core->loczrama ?
							0 : K3_R5_TCM_DEV_ADDR;
		} else {
			core->mem[i].dev_addr = core->loczrama ?
							K3_R5_TCM_DEV_ADDR : 0;
		}
		core->mem[i].size = resource_size(res);

		dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
			mem_names[i], &core->mem[i].bus_addr,
			core->mem[i].size, core->mem[i].cpu_addr,
			core->mem[i].dev_addr);
	}
	core->num_mems = num_mems;

	return 0;
}

static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev,
					   struct k3_r5_core *core)
{
	struct device_node *np = pdev->dev.of_node;
	struct device *dev = &pdev->dev;
	struct device_node *sram_np;
	struct resource res;
	int num_sram;
	int i, ret;

	num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle));
	if (num_sram <= 0) {
		dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n",
			num_sram);
		return 0;
	}

	core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL);
	if (!core->sram)
		return -ENOMEM;

	for (i = 0; i < num_sram; i++) {
		sram_np = of_parse_phandle(np, "sram", i);
		if (!sram_np)
			return -EINVAL;

		if (!of_device_is_available(sram_np)) {
			of_node_put(sram_np);
			return -EINVAL;
		}

		ret = of_address_to_resource(sram_np, 0, &res);
		of_node_put(sram_np);
		if (ret)
			return -EINVAL;

		core->sram[i].bus_addr = res.start;
		core->sram[i].dev_addr = res.start;
		core->sram[i].size = resource_size(&res);
		core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start,
							 resource_size(&res));
		if (!core->sram[i].cpu_addr) {
			dev_err(dev, "failed to parse and map sram%d memory at %pad\n",
				i, &res.start);
			return -ENOMEM;
		}

		dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
			i, &core->sram[i].bus_addr,
			core->sram[i].size, core->sram[i].cpu_addr,
			core->sram[i].dev_addr);
	}
	core->num_sram = num_sram;

	return 0;
}

static
struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev,
					  const struct ti_sci_handle *sci)
{
	struct ti_sci_proc *tsp;
	u32 temp[2];
	int ret;

	ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids",
					 temp, 2);
	if (ret < 0)
		return ERR_PTR(ret);

	tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL);
	if (!tsp)
		return ERR_PTR(-ENOMEM);

	tsp->dev = dev;
	tsp->sci = sci;
	tsp->ops = &sci->ops.proc_ops;
	tsp->proc_id = temp[0];
	tsp->host_id = temp[1];

	return tsp;
}

static int k3_r5_core_of_init(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct device_node *np = dev_of_node(dev);
	struct k3_r5_core *core;
	int ret;

	if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL))
		return -ENOMEM;

	core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL);
	if (!core) {
		ret = -ENOMEM;
		goto err;
	}

	core->dev = dev;
	/*
	 * Use SoC Power-on-Reset values as default if no DT properties are
	 * used to dictate the TCM configurations
	 */
	core->atcm_enable = 0;
	core->btcm_enable = 1;
	core->loczrama = 1;

	ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable);
	if (ret < 0 && ret != -EINVAL) {
		dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n",
			ret);
		goto err;
	}

	ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable);
	if (ret < 0 && ret != -EINVAL) {
		dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n",
			ret);
		goto err;
	}

	ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama);
	if (ret < 0 && ret != -EINVAL) {
		dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret);
		goto err;
	}

	core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci");
	if (IS_ERR(core->ti_sci)) {
		ret = PTR_ERR(core->ti_sci);
		if (ret != -EPROBE_DEFER) {
			dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
				ret);
		}
		core->ti_sci = NULL;
		goto err;
	}

	ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id);
	if (ret) {
		dev_err(dev, "missing 'ti,sci-dev-id' property\n");
		goto err;
	}

	if (device_property_present(dev, "wakeup-source")) {
		dev_dbg(dev, "registering as wakeup source\n");
		device_set_wakeup_capable(dev, true);
	}

	core->reset = devm_reset_control_get_exclusive(dev, NULL);
	if (IS_ERR_OR_NULL(core->reset)) {
		ret = PTR_ERR_OR_ZERO(core->reset);
		if (!ret)
			ret = -ENODEV;
		if (ret != -EPROBE_DEFER) {
			dev_err(dev, "failed to get reset handle, ret = %d\n",
				ret);
		}
		goto err;
	}

	core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci);
	if (IS_ERR(core->tsp)) {
		ret = PTR_ERR(core->tsp);
		dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
			ret);
		goto err;
	}

	ret = k3_r5_core_of_get_internal_memories(pdev, core);
	if (ret) {
		dev_err(dev, "failed to get internal memories, ret = %d\n",
			ret);
		goto err;
	}

	ret = k3_r5_core_of_get_sram_memories(pdev, core);
	if (ret) {
		dev_err(dev, "failed to get sram memories, ret = %d\n", ret);
		goto err;
	}

	ret = ti_sci_proc_request(core->tsp);
	if (ret < 0) {
		dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
		goto err;
	}

	platform_set_drvdata(pdev, core);
	devres_close_group(dev, k3_r5_core_of_init);

	return 0;

err:
	devres_release_group(dev, k3_r5_core_of_init);
	return ret;
}

/*
 * free the resources explicitly since driver model is not being used
 * for the child R5F devices
 */
static void k3_r5_core_of_exit(struct platform_device *pdev)
{
	struct k3_r5_core *core = platform_get_drvdata(pdev);
	struct device *dev = &pdev->dev;
	int ret;

	ret = ti_sci_proc_release(core->tsp);
	if (ret)
		dev_err(dev, "failed to release proc, ret = %d\n", ret);

	platform_set_drvdata(pdev, NULL);
	devres_release_group(dev, k3_r5_core_of_init);
}

static void k3_r5_cluster_of_exit(void *data)
{
	struct k3_r5_cluster *cluster = platform_get_drvdata(data);
	struct platform_device *cpdev;
	struct k3_r5_core *core, *temp;

	list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) {
		list_del(&core->elem);
		cpdev = to_platform_device(core->dev);
		k3_r5_core_of_exit(cpdev);
	}
}

static int k3_r5_cluster_of_init(struct platform_device *pdev)
{
	struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
	struct device *dev = &pdev->dev;
	struct device_node *np = dev_of_node(dev);
	struct platform_device *cpdev;
	struct device_node *child;
	struct k3_r5_core *core;
	int ret;

	for_each_available_child_of_node(np, child) {
		cpdev = of_find_device_by_node(child);
		if (!cpdev) {
			ret = -ENODEV;
			dev_err(dev, "could not get R5 core platform device\n");
			of_node_put(child);
			goto fail;
		}

		ret = k3_r5_core_of_init(cpdev);
		if (ret) {
			dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n",
				ret);
			put_device(&cpdev->dev);
			of_node_put(child);
			goto fail;
		}

		core = platform_get_drvdata(cpdev);
		put_device(&cpdev->dev);
		list_add_tail(&core->elem, &cluster->cores);
	}

	return 0;

fail:
	k3_r5_cluster_of_exit(pdev);
	return ret;
}

static int k3_r5_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct device_node *np = dev_of_node(dev);
	struct k3_r5_cluster *cluster;
	const struct k3_r5_soc_data *data;
	int ret;
	int num_cores;

	data = of_device_get_match_data(&pdev->dev);
	if (!data) {
		dev_err(dev, "SoC-specific data is not defined\n");
		return -ENODEV;
	}

	cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL);
	if (!cluster)
		return -ENOMEM;

	cluster->dev = dev;
	cluster->soc_data = data;
	INIT_LIST_HEAD(&cluster->cores);
	init_waitqueue_head(&cluster->core_transition);

	ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode);
	if (ret < 0 && ret != -EINVAL) {
		dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n",
			ret);
		return ret;
	}

	if (ret == -EINVAL) {
		/*
		 * default to most common efuse configurations - Split-mode on AM64x
		 * and LockStep-mode on all others
		 * default to most common efuse configurations -
		 * Split-mode on AM64x
		 * Single core on AM62x
		 * LockStep-mode on all others
		 */
		if (!data->is_single_core)
			cluster->mode = data->single_cpu_mode ?
					CLUSTER_MODE_SPLIT : CLUSTER_MODE_LOCKSTEP;
		else
			cluster->mode = CLUSTER_MODE_SINGLECORE;
	}

	if  ((cluster->mode == CLUSTER_MODE_SINGLECPU && !data->single_cpu_mode) ||
	     (cluster->mode == CLUSTER_MODE_SINGLECORE && !data->is_single_core)) {
		dev_err(dev, "Cluster mode = %d is not supported on this SoC\n", cluster->mode);
		return -EINVAL;
	}

	num_cores = of_get_available_child_count(np);
	if (num_cores != 2 && !data->is_single_core) {
		dev_err(dev, "MCU cluster requires both R5F cores to be enabled but num_cores is set to = %d\n",
			num_cores);
		return -ENODEV;
	}

	if (num_cores != 1 && data->is_single_core) {
		dev_err(dev, "SoC supports only single core R5 but num_cores is set to %d\n",
			num_cores);
		return -ENODEV;
	}

	platform_set_drvdata(pdev, cluster);

	ret = devm_of_platform_populate(dev);
	if (ret) {
		dev_err(dev, "devm_of_platform_populate failed, ret = %d\n",
			ret);
		return ret;
	}

	ret = k3_r5_cluster_of_init(pdev);
	if (ret) {
		dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret);
		return ret;
	}

	ret = devm_add_action_or_reset(dev, k3_r5_cluster_of_exit, pdev);
	if (ret)
		return ret;

	ret = k3_r5_cluster_rproc_init(pdev);
	if (ret) {
		dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n",
			ret);
		return ret;
	}

	ret = devm_add_action_or_reset(dev, k3_r5_cluster_rproc_exit, pdev);
	if (ret)
		return ret;

	return 0;
}

static const struct k3_r5_soc_data am65_j721e_soc_data = {
	.tcm_is_double = false,
	.tcm_ecc_autoinit = false,
	.single_cpu_mode = false,
	.is_single_core = false,
};

static const struct k3_r5_soc_data j7200_j721s2_soc_data = {
	.tcm_is_double = true,
	.tcm_ecc_autoinit = true,
	.single_cpu_mode = false,
	.is_single_core = false,
};

static const struct k3_r5_soc_data am64_soc_data = {
	.tcm_is_double = true,
	.tcm_ecc_autoinit = true,
	.single_cpu_mode = true,
	.is_single_core = false,
};

static const struct k3_r5_soc_data am62_soc_data = {
	.tcm_is_double = false,
	.tcm_ecc_autoinit = true,
	.single_cpu_mode = false,
	.is_single_core = true,
};

static const struct of_device_id k3_r5_of_match[] = {
	{ .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, },
	{ .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, },
	{ .compatible = "ti,j7200-r5fss", .data = &j7200_j721s2_soc_data, },
	{ .compatible = "ti,am64-r5fss",  .data = &am64_soc_data, },
	{ .compatible = "ti,am62-r5fss",  .data = &am62_soc_data, },
	{ .compatible = "ti,j721s2-r5fss",  .data = &j7200_j721s2_soc_data, },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, k3_r5_of_match);

static struct platform_driver k3_r5_rproc_driver = {
	.probe = k3_r5_probe,
	.driver = {
		.name = "k3_r5_rproc",
		.of_match_table = k3_r5_of_match,
	},
};

module_platform_driver(k3_r5_rproc_driver);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("TI K3 R5F remote processor driver");
MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
remoteproc_internal.homap_remoteproc.h

  • Hello Stefan,

    1) Is there any other useful terminal output before the OOPs log?

    In general from looking at the trace log, it seems like the remote processor probably has the appropriate graceful shutdown code, and like Linux is successfully shutting down the R5F core and de-initializing the RPMsg infrastructure before it hangs somewhere later in the process.

    2) Have you validated whether the issue is specific to the firmware running on the R5F? Or (for example) do you see the same behavior with the ipc_rpmsg_echo_linux project?

    Regards,

    Nick

  • Hello Nick,

    1) there is no more terminal output

    2) We tested with different R5 binaries and always see the kernel panic. With that binaries the core can be stopped with our "old" kernel based on 6.1.94 but not with the version Stefan mentioned above.

    BR

    Kai

  • Hello Kai,

    Terminal output

    For terminal output, I was curious to see the output from when the remoteproc and rpmsg drivers were attaching to the remote core, as well as any other interesting output. Something like this:

    dmesg | grep -e remoteproc -e rproc -e r5 -e virtio -e rpmsg

    Next steps for debug

    I am glad to hear that you have a working version of kernel 6.1! That makes debug much simpler.

    Since the issue is seen regardless of the R5F firmware, (and based on yall's kernel log), I am assuming this is an issue with Linux, instead of an issue with the R5F firmware.

    I am going to be limited in the assistance that I can offer, since yall are not using the ti-linux-kernel branch, and I have not seen a customer complain about this specific issue before. But this is the general approach I would suggest:

    Look at the patches that are different between the working kernel version and the broken kernel version to see where the issue might be introduced. It could be caused by something in the remoteproc driver, but perhaps it is caused by something that changed in the kernel itself.

    It might be easiest to start by bisecting the issue. Test a commit about in the middle. If it works, test in the middle of that commit and the broken kernel version. If it does not work, test in the middle of that commit and the working kernel version. etc.

    Regards,

    Nick