This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

UBIFS error on DM3730

Hi,

   My hardware custom borad is designed based on omapevm board. The linux kernel is 2.6.37,root filesystem is ubifs. Most of time, the linux run well.

  But,sometimes, when I finish updating some  files(actually is my application files) of rootfs via TFTP or FTP, then read or execute the application file,the error occurred.

  Error message  are :

....
[ 339.860931] UBIFS error (pid 2081): ubifs_check_node: bad CRC: calculated 0xa28267cf, read 0xe441ca4c
[ 339.870697] UBIFS error (pid 2081): ubifs_check_node: bad node at LEB 252:38912
[ 339.878387] UBIFS error (pid 2081): ubifs_read_node: expected node type 1
[ 339.885498] UBIFS error (pid 2081): do_readpage: cannot read page 132 of inode 2265, error -117
[ 339.962158] UBIFS error (pid 2085): ubifs_check_node: bad CRC: calculated 0xa28267cf, read 0xe441ca4c
[ 339.971923] UBIFS error (pid 2085): ubifs_check_node: bad node at LEB 252:38912
[ 339.979583] UBIFS error (pid 2085): ubifs_read_node: expected node type 1
[ 339.986724] UBIFS error (pid 2085): do_readpage: cannot read page 132 of inode 2265, error -117

...

Are there some bugs in Nand flash MTD driver ?

The  steps of creating my root filesystem are:

1./mkfs.ubifs -r /my_dir/ -F -o /my_dir/ubifs.img -m 2048 -e 126976 -c 1002

2../ubinize -o /my_dir/root_ubi.img -m 2048 -p 128KiB -s 512 -O 2048 ubinize.cfg

Content of ubinize.cfg file is:

[ubifs] 
mode=ubi 
image=/my_dir/ubifs.img 
vol_id=0 
vol_size=121MiB 
vol_type=dynamic
vol_name=rootfs
vol_flags=autoresize

I get my root filesystem MTD partition info via mtdinfo tool,the info is :

mtd5
Name: Root Filesystem
Type: nand
Eraseblock size: 131072 bytes, 128.0 KiB
Amount of eraseblocks: 1024 (134217728 bytes, 128.0 MiB)
Minimum input/output unit size: 2048 bytes
Sub-page size: 512 bytes
OOB size: 64 bytes
Character device major/minor: 90:10
Bad blocks are allowed: true
Device is writable: true

The steps of flashing my root filesystem are:

in u-boot stage using nand flash command,

u-boot# nand erase 0x780000 0xF880000

u-boot# nand write 0x82000000 0x780000 0xFC0000

  • Hi,

    The procedure for creating and flashing your root file system seems correct.

    There are various reasons for these errors but the most possible reason is some errors during transfer of the files of physical problem of the memory.

    It is important to note how often appears errors (what is the rate of unsuccessful attempt for flashing). Is it the same value of the read CRC 0xe441ca4c when error appears if you are flashing the same files several times?

    I look in the driver but it is not very possible to has some issue with the driver. You can see the sources in the /psp/linux-2.6.37/fs/ubifs folder io.c and file.c files and try to debug.

    BR

    Tsvetolin Shulev

  • Tsvetolin Shulev,

     It is not the same value of the read CRC 0xe441ca4c. The rate of unsuccessful attempt for flashing seems random, flashing several times continuous,ten times or more,the last time would have failed,

    Flashing the same files again then error appears,the linux system return  well.

    /*
     * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
     * Copyright © 2004 Micron Technology Inc.
     * Copyright © 2004 David Brownell
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License version 2 as
     * published by the Free Software Foundation.
     */
    
    #include <linux/platform_device.h>
    #include <linux/dma-mapping.h>
    #include <linux/delay.h>
    #include <linux/interrupt.h>
    #include <linux/jiffies.h>
    #include <linux/sched.h>
    #include <linux/mtd/mtd.h>
    #include <linux/mtd/nand.h>
    #include <linux/mtd/partitions.h>
    #include <linux/io.h>
    #include <linux/slab.h>
    
    #include <plat/dma.h>
    #include <plat/gpmc.h>
    #include <plat/nand.h>
    
    #define	DRIVER_NAME	"omap2-nand"
    #define	OMAP_NAND_TIMEOUT_MS	5000
    
    #define NAND_Ecc_P1e		(1 << 0)
    #define NAND_Ecc_P2e		(1 << 1)
    #define NAND_Ecc_P4e		(1 << 2)
    #define NAND_Ecc_P8e		(1 << 3)
    #define NAND_Ecc_P16e		(1 << 4)
    #define NAND_Ecc_P32e		(1 << 5)
    #define NAND_Ecc_P64e		(1 << 6)
    #define NAND_Ecc_P128e		(1 << 7)
    #define NAND_Ecc_P256e		(1 << 8)
    #define NAND_Ecc_P512e		(1 << 9)
    #define NAND_Ecc_P1024e		(1 << 10)
    #define NAND_Ecc_P2048e		(1 << 11)
    
    #define NAND_Ecc_P1o		(1 << 16)
    #define NAND_Ecc_P2o		(1 << 17)
    #define NAND_Ecc_P4o		(1 << 18)
    #define NAND_Ecc_P8o		(1 << 19)
    #define NAND_Ecc_P16o		(1 << 20)
    #define NAND_Ecc_P32o		(1 << 21)
    #define NAND_Ecc_P64o		(1 << 22)
    #define NAND_Ecc_P128o		(1 << 23)
    #define NAND_Ecc_P256o		(1 << 24)
    #define NAND_Ecc_P512o		(1 << 25)
    #define NAND_Ecc_P1024o		(1 << 26)
    #define NAND_Ecc_P2048o		(1 << 27)
    
    #define TF(value)	(value ? 1 : 0)
    
    #define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
    #define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
    #define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
    #define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
    #define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
    #define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
    #define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
    #define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)
    
    #define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
    #define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
    #define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
    #define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
    #define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
    #define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
    #define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
    #define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)
    
    #define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
    #define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
    #define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
    #define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
    #define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
    #define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
    #define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
    #define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)
    
    #define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
    #define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
    #define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
    #define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
    #define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
    #define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
    #define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
    #define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)
    
    #define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
    #define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)
    
    #ifdef CONFIG_MTD_PARTITIONS
    static const char *part_probes[] = { "cmdlinepart", NULL };
    #endif
    
    int decode_bch(int select_4_8, unsigned char *ecc, unsigned int *err_loc);
    
    /* oob info generated runtime depending on ecc algorithm and layout selected */
    static struct nand_ecclayout omap_oobinfo;
    /* Define some generic bad / good block scan pattern which are used
     * while scanning a device for factory marked good / bad blocks
     */
    static uint8_t scan_ff_pattern[] = { 0xff };
    static struct nand_bbt_descr bb_descrip_flashbased = {
    	.options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
    	.offs = 0,
    	.len = 1,
    	.pattern = scan_ff_pattern,
    };
    
    
    struct omap_nand_info {
    	struct nand_hw_control		controller;
    	struct omap_nand_platform_data	*pdata;
    	struct mtd_info			mtd;
    	struct mtd_partition		*parts;
    	struct nand_chip		nand;
    	struct platform_device		*pdev;
    
    	int				gpmc_cs;
    	unsigned long			phys_base;
    	struct completion		comp;
    	int				dma_ch;
    	int				gpmc_irq;
    	enum {
    		OMAP_NAND_IO_READ = 0,	/* read */
    		OMAP_NAND_IO_WRITE,	/* write */
    	} iomode;
    	u_char				*buf;
    	int				buf_len;
    	int				ecc_opt;
    };
    
    /**
     * omap_hwcontrol - hardware specific access to control-lines
     * @mtd: MTD device structure
     * @cmd: command to device
     * @ctrl:
     * NAND_NCE: bit 0 -> don't care
     * NAND_CLE: bit 1 -> Command Latch
     * NAND_ALE: bit 2 -> Address Latch
     *
     * NOTE: boards may use different bits for these!!
     */
    static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
    {
    	struct omap_nand_info *info = container_of(mtd,
    					struct omap_nand_info, mtd);
    
    	if (cmd != NAND_CMD_NONE) {
    		if (ctrl & NAND_CLE)
    			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
    
    		else if (ctrl & NAND_ALE)
    			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
    
    		else /* NAND_NCE */
    			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
    	}
    }
    
    /**
     * omap_read_buf8 - read data from NAND controller into buffer
     * @mtd: MTD device structure
     * @buf: buffer to store date
     * @len: number of bytes to read
     */
    static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
    {
    	struct nand_chip *nand = mtd->priv;
    
    	ioread8_rep(nand->IO_ADDR_R, buf, len);
    }
    
    /**
     * omap_write_buf8 - write buffer to NAND controller
     * @mtd: MTD device structure
     * @buf: data buffer
     * @len: number of bytes to write
     */
    static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
    {
    	struct omap_nand_info *info = container_of(mtd,
    						struct omap_nand_info, mtd);
    	u_char *p = (u_char *)buf;
    	u32	status = 0;
    
    	while (len--) {
    		iowrite8(*p++, info->nand.IO_ADDR_W);
    		/* wait until buffer is available for write */
    		do {
    			status = gpmc_read_status(GPMC_STATUS_BUFFER);
    		} while (!status);
    	}
    }
    
    /**
     * omap_read_buf16 - read data from NAND controller into buffer
     * @mtd: MTD device structure
     * @buf: buffer to store date
     * @len: number of bytes to read
     */
    static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
    {
    	struct nand_chip *nand = mtd->priv;
    
    	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
    }
    
    /**
     * omap_write_buf16 - write buffer to NAND controller
     * @mtd: MTD device structure
     * @buf: data buffer
     * @len: number of bytes to write
     */
    static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
    {
    	struct omap_nand_info *info = container_of(mtd,
    						struct omap_nand_info, mtd);
    	u16 *p = (u16 *) buf;
    	u32	status = 0;
    	/* FIXME try bursts of writesw() or DMA ... */
    	len >>= 1;
    
    	while (len--) {
    		iowrite16(*p++, info->nand.IO_ADDR_W);
    		/* wait until buffer is available for write */
    		do {
    			status = gpmc_read_status(GPMC_STATUS_BUFFER);
    		} while (!status);
    	}
    }
    
    /**
     * omap_read_buf_pref - read data from NAND controller into buffer
     * @mtd: MTD device structure
     * @buf: buffer to store date
     * @len: number of bytes to read
     */
    static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
    {
    	struct omap_nand_info *info = container_of(mtd,
    						struct omap_nand_info, mtd);
    	uint32_t r_count = 0;
    	int ret = 0;
    	u32 *p = (u32 *)buf;
    
    	/* take care of subpage reads */
    	if (len % 4) {
    		if (info->nand.options & NAND_BUSWIDTH_16)
    			omap_read_buf16(mtd, buf, len % 4);
    		else
    			omap_read_buf8(mtd, buf, len % 4);
    		p = (u32 *) (buf + len % 4);
    		len -= len % 4;
    	}
    
    	/* configure and start prefetch transfer */
    	ret = gpmc_prefetch_enable(info->gpmc_cs,
    			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0);
    	if (ret) {
    		/* PFPW engine is busy, use cpu copy method */
    		if (info->nand.options & NAND_BUSWIDTH_16)
    			omap_read_buf16(mtd, buf, len);
    		else
    			omap_read_buf8(mtd, buf, len);
    	} else {
    		p = (u32 *) buf;
    		do {
    			r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
    			r_count = r_count >> 2;
    			ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
    			p += r_count;
    			len -= r_count << 2;
    		} while (len);
    		/* disable and stop the PFPW engine */
    		gpmc_prefetch_reset(info->gpmc_cs);
    	}
    }
    
    /**
     * omap_write_buf_pref - write buffer to NAND controller
     * @mtd: MTD device structure
     * @buf: data buffer
     * @len: number of bytes to write
     */
    static void omap_write_buf_pref(struct mtd_info *mtd,
    					const u_char *buf, int len)
    {
    	struct omap_nand_info *info = container_of(mtd,
    						struct omap_nand_info, mtd);
    	uint32_t w_count = 0;
    	int i = 0, ret = 0;
    	u16 *p;
    	unsigned long tim, limit;
    
    	/* take care of subpage writes */
    	if (len % 2 != 0) {
    		writeb(*buf, info->nand.IO_ADDR_W);
    		p = (u16 *)(buf + 1);
    		len--;
    	}
    
    	/*  configure and start prefetch transfer */
    	ret = gpmc_prefetch_enable(info->gpmc_cs,
    			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1);
    	if (ret) {
    		/* PFPW engine is busy, use cpu copy method */
    		if (info->nand.options & NAND_BUSWIDTH_16)
    			omap_write_buf16(mtd, buf, len);
    		else
    			omap_write_buf8(mtd, buf, len);
    	} else {
    		p = (u16 *) buf;
    		while (len) {
    			w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
    			w_count = w_count >> 1;
    			for (i = 0; (i < w_count) && len; i++, len -= 2)
    				iowrite16(*p++, info->nand.IO_ADDR_W);
    		}
    		/* wait for data to flushed-out before reset the prefetch */
    		tim = 0;
    		limit = (loops_per_jiffy *
    					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
    		while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
    			cpu_relax();
    
    		/* disable and stop the PFPW engine */
    		gpmc_prefetch_reset(info->gpmc_cs);
    	}
    }
    
    /*
     * omap_nand_dma_cb: callback on the completion of dma transfer
     * @lch: logical channel
     * @ch_satuts: channel status
     * @data: pointer to completion data structure
     */
    static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
    {
    	complete((struct completion *) data);
    }
    
    /*
     * omap_nand_dma_transfer: configer and start dma transfer
     * @mtd: MTD device structure
     * @addr: virtual address in RAM of source/destination
     * @len: number of data bytes to be transferred
     * @is_write: flag for read/write operation
     */
    static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
    					unsigned int len, int is_write)
    {
    	struct omap_nand_info *info = container_of(mtd,
    					struct omap_nand_info, mtd);
    	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
    							DMA_FROM_DEVICE;
    	dma_addr_t dma_addr;
    	int ret;
    	unsigned long tim, limit;
    
    	/* The fifo depth is 64 bytes max.
    	 * But configure the FIFO-threahold to 32 to get a sync at each frame
    	 * and frame length is 32 bytes.
    	 */
    	int buf_len = len >> 6;
    
    	if (addr >= high_memory) {
    		struct page *p1;
    
    		if (((size_t)addr & PAGE_MASK) !=
    			((size_t)(addr + len - 1) & PAGE_MASK))
    			goto out_copy;
    		p1 = vmalloc_to_page(addr);
    		if (!p1)
    			goto out_copy;
    		addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
    	}
    
    	dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
    	if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
    		dev_err(&info->pdev->dev,
    			"Couldn't DMA map a %d byte buffer\n", len);
    		goto out_copy;
    	}
    
    	if (is_write) {
    	    omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
    						info->phys_base, 0, 0);
    	    omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
    							dma_addr, 0, 0);
    	    omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
    					0x10, buf_len, OMAP_DMA_SYNC_FRAME,
    					OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
    	} else {
    	    omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
    						info->phys_base, 0, 0);
    	    omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
    							dma_addr, 0, 0);
    	    omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
    					0x10, buf_len, OMAP_DMA_SYNC_FRAME,
    					OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
    	}
    	/*  configure and start prefetch transfer */
    	ret = gpmc_prefetch_enable(info->gpmc_cs,
    			PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write);
    	if (ret)
    		/* PFPW engine is busy, use cpu copy method */
    		goto out_copy;
    
    	init_completion(&info->comp);
    
    	omap_start_dma(info->dma_ch);
    
    	/* setup and start DMA using dma_addr */
    	wait_for_completion(&info->comp);
    	tim = 0;
    	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
    	while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
    		cpu_relax();
    
    	/* disable and stop the PFPW engine */
    	gpmc_prefetch_reset(info->gpmc_cs);
    
    	dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
    	return 0;
    
    out_copy:
    	if (info->nand.options & NAND_BUSWIDTH_16)
    		is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
    			: omap_write_buf16(mtd, (u_char *) addr, len);
    	else
    		is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
    			: omap_write_buf8(mtd, (u_char *) addr, len);
    	return 0;
    }
    
    /**
     * omap_read_buf_dma_pref - read data from NAND controller into buffer
     * @mtd: MTD device structure
     * @buf: buffer to store date
     * @len: number of bytes to read
     */
    static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
    {
    	if (len <= mtd->oobsize)
    		omap_read_buf_pref(mtd, buf, len);
    	else
    		/* start transfer in DMA mode */
    		omap_nand_dma_transfer(mtd, buf, len, 0x0);
    }
    
    /**
     * omap_write_buf_dma_pref - write buffer to NAND controller
     * @mtd: MTD device structure
     * @buf: data buffer
     * @len: number of bytes to write
     */
    static void omap_write_buf_dma_pref(struct mtd_info *mtd,
    					const u_char *buf, int len)
    {
    	if (len <= mtd->oobsize)
    		omap_write_buf_pref(mtd, buf, len);
    	else
    		/* start transfer in DMA mode */
    		omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
    }
    
    /*
     * omap_nand_irq - GMPC irq handler
     * @this_irq: gpmc irq number
     * @dev: omap_nand_info structure pointer is passed here
     */
    static irqreturn_t omap_nand_irq(int this_irq, void *dev)
    {
    	struct omap_nand_info *info = (struct omap_nand_info *) dev;
    	u32 bytes;
    	u32 irq_stat;
    
    	irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS);
    	bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
    	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
    	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
    		if (irq_stat & 0x2)
    			goto done;
    
    		if (info->buf_len && (info->buf_len < bytes))
    			bytes = info->buf_len;
    		else if (!info->buf_len)
    			bytes = 0;
    		iowrite32_rep(info->nand.IO_ADDR_W,
    						(u32 *)info->buf, bytes >> 2);
    		info->buf = info->buf + bytes;
    		info->buf_len -= bytes;
    
    	} else {
    		ioread32_rep(info->nand.IO_ADDR_R,
    						(u32 *)info->buf, bytes >> 2);
    		info->buf = info->buf + bytes;
    
    		if (irq_stat & 0x2)
    			goto done;
    	}
    	gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
    
    	return IRQ_HANDLED;
    
    done:
    	complete(&info->comp);
    	/* disable irq */
    	gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0);
    
    	/* clear status */
    	gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
    
    	return IRQ_HANDLED;
    }
    
    /*
     * omap_read_buf_irq_pref - read data from NAND controller into buffer
     * @mtd: MTD device structure
     * @buf: buffer to store date
     * @len: number of bytes to read
     */
    static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
    {
    	struct omap_nand_info *info = container_of(mtd,
    						struct omap_nand_info, mtd);
    	int ret = 0;
    	if (len <= mtd->oobsize) {
    		omap_read_buf_pref(mtd, buf, len);
    		return;
    	}
    
    	info->iomode = OMAP_NAND_IO_READ;
    	info->buf = buf;
    	init_completion(&info->comp);
    
    	/*  configure and start prefetch transfer */
    	ret = gpmc_prefetch_enable(info->gpmc_cs,
    			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0);
    	if (ret)
    		/* PFPW engine is busy, use cpu copy method */
    		goto out_copy;
    
    	info->buf_len = len;
    	/* enable irq */
    	gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
    		(GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
    
    	/* waiting for read to complete */
    	wait_for_completion(&info->comp);
    
    	/* disable and stop the PFPW engine */
    	gpmc_prefetch_reset(info->gpmc_cs);
    	return;
    
    out_copy:
    	if (info->nand.options & NAND_BUSWIDTH_16)
    		omap_read_buf16(mtd, buf, len);
    	else
    		omap_read_buf8(mtd, buf, len);
    }
    
    /*
     * omap_write_buf_irq_pref - write buffer to NAND controller
     * @mtd: MTD device structure
     * @buf: data buffer
     * @len: number of bytes to write
     */
    static void omap_write_buf_irq_pref(struct mtd_info *mtd,
    					const u_char *buf, int len)
    {
    	struct omap_nand_info *info = container_of(mtd,
    						struct omap_nand_info, mtd);
    	int ret = 0;
    	unsigned long tim, limit;
    
    	if (len <= mtd->oobsize) {
    		omap_write_buf_pref(mtd, buf, len);
    		return;
    	}
    
    	info->iomode = OMAP_NAND_IO_WRITE;
    	info->buf = (u_char *) buf;
    	init_completion(&info->comp);
    
    	/* configure and start prefetch transfer : size=24 */
    	ret = gpmc_prefetch_enable(info->gpmc_cs,
    			(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1);
    	if (ret)
    		/* PFPW engine is busy, use cpu copy method */
    		goto out_copy;
    
    	info->buf_len = len;
    	/* enable irq */
    	gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
    			(GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
    
    	/* waiting for write to complete */
    	wait_for_completion(&info->comp);
    	/* wait for data to flushed-out before reset the prefetch */
    	tim = 0;
    	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
    	while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
    		cpu_relax();
    
    	/* disable and stop the PFPW engine */
    	gpmc_prefetch_reset(info->gpmc_cs);
    	return;
    
    out_copy:
    	if (info->nand.options & NAND_BUSWIDTH_16)
    		omap_write_buf16(mtd, buf, len);
    	else
    		omap_write_buf8(mtd, buf, len);
    }
    
    /**
     * omap_verify_buf - Verify chip data against buffer
     * @mtd: MTD device structure
     * @buf: buffer containing the data to compare
     * @len: number of bytes to compare
     */
    static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
    {
    	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
    							mtd);
    	u16 *p = (u16 *) buf;
    
    	len >>= 1;
    	while (len--) {
    		if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
    			return -EFAULT;
    	}
    
    	return 0;
    }
    
    /**
     * gen_true_ecc - This function will generate true ECC value
     * @ecc_buf: buffer to store ecc code
     *
     * This generated true ECC value can be used when correcting
     * data read from NAND flash memory core
     */
    static void gen_true_ecc(u8 *ecc_buf)
    {
    	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
    		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
    
    	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
    			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
    	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
    			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
    	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
    			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
    }
    
    /**
     * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
     * @ecc_data1:  ecc code from nand spare area
     * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
     * @page_data:  page data
     *
     * This function compares two ECC's and indicates if there is an error.
     * If the error can be corrected it will be corrected to the buffer.
     */
    static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
    			    u8 *ecc_data2,	/* read from register */
    			    u8 *page_data)
    {
    	uint	i;
    	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
    	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
    	u8	ecc_bit[24];
    	u8	ecc_sum = 0;
    	u8	find_bit = 0;
    	uint	find_byte = 0;
    	int	isEccFF;
    
    	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
    
    	gen_true_ecc(ecc_data1);
    	gen_true_ecc(ecc_data2);
    
    	for (i = 0; i <= 2; i++) {
    		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
    		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
    	}
    
    	for (i = 0; i < 8; i++) {
    		tmp0_bit[i]     = *ecc_data1 % 2;
    		*ecc_data1	= *ecc_data1 / 2;
    	}
    
    	for (i = 0; i < 8; i++) {
    		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
    		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
    	}
    
    	for (i = 0; i < 8; i++) {
    		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
    		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
    	}
    
    	for (i = 0; i < 8; i++) {
    		comp0_bit[i]     = *ecc_data2 % 2;
    		*ecc_data2       = *ecc_data2 / 2;
    	}
    
    	for (i = 0; i < 8; i++) {
    		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
    		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
    	}
    
    	for (i = 0; i < 8; i++) {
    		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
    		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
    	}
    
    	for (i = 0; i < 6; i++)
    		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
    
    	for (i = 0; i < 8; i++)
    		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
    
    	for (i = 0; i < 8; i++)
    		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
    
    	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
    	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
    
    	for (i = 0; i < 24; i++)
    		ecc_sum += ecc_bit[i];
    
    	switch (ecc_sum) {
    	case 0:
    		/* Not reached because this function is not called if
    		 *  ECC values are equal
    		 */
    		return 0;
    
    	case 1:
    		/* Uncorrectable error */
    		DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
    		return -1;
    
    	case 11:
    		/* UN-Correctable error */
    		DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
    		return -1;
    
    	case 12:
    		/* Correctable error */
    		find_byte = (ecc_bit[23] << 8) +
    			    (ecc_bit[21] << 7) +
    			    (ecc_bit[19] << 6) +
    			    (ecc_bit[17] << 5) +
    			    (ecc_bit[15] << 4) +
    			    (ecc_bit[13] << 3) +
    			    (ecc_bit[11] << 2) +
    			    (ecc_bit[9]  << 1) +
    			    ecc_bit[7];
    
    		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
    
    		DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
    				"offset: %d, bit: %d\n", find_byte, find_bit);
    
    		page_data[find_byte] ^= (1 << find_bit);
    
    		return 0;
    	default:
    		if (isEccFF) {
    			if (ecc_data2[0] == 0 &&
    			    ecc_data2[1] == 0 &&
    			    ecc_data2[2] == 0)
    				return 0;
    		}
    		DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
    		return -1;
    	}
    }
    
    /**
     * omap_correct_data - Compares the ECC read with HW generated ECC
     * @mtd: MTD device structure
     * @dat: page data
     * @read_ecc: ecc read from nand flash
     * @calc_ecc: ecc read from HW ECC registers
     *
     * Compares the ecc read from nand spare area with ECC registers values
     * and if ECC's mismached, it will call 'omap_compare_ecc' for error detection
     * and correction.
     */
    static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
    				u_char *read_ecc, u_char *calc_ecc)
    {
    	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
    							mtd);
    	int blockCnt = 0, i = 0, ret = 0;
    	int j, eccsize, eccflag, count;
    	unsigned int err_loc[8];
    
    	/* Ex NAND_ECC_HW12_2048 */
    	if ((info->nand.ecc.mode == NAND_ECC_HW) &&
    			(info->nand.ecc.size  == 2048))
    		blockCnt = 4;
    	else
    		blockCnt = 1;
    
    	switch (info->ecc_opt) {
    	case OMAP_ECC_HAMMING_CODE_HW:
    	case OMAP_ECC_HAMMING_CODE_HW_ROMCODE:
    		for (i = 0; i < blockCnt; i++) {
    			if (memcmp(read_ecc, calc_ecc, 3) != 0) {
    				ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
    				if (ret < 0)
    					return ret;
    			}
    			read_ecc += 3;
    			calc_ecc += 3;
    			dat      += 512;
    		}
    		break;
    
    	case OMAP_ECC_BCH4_CODE_HW:
    		eccsize = 7;
    		gpmc_calculate_ecc(info->ecc_opt, info->gpmc_cs, dat, calc_ecc);
    		for (i = 0; i < blockCnt; i++) {
    			/* check if any ecc error */
    			eccflag = 0;
    			for (j = 0; (j < eccsize) && (eccflag == 0); j++)
    				if (calc_ecc[j] != 0)
    					eccflag = 1;
    
    			if (eccflag == 1) {
    				eccflag = 0;
    				for (j = 0; (j < eccsize) &&
    						(eccflag == 0); j++)
    					if (read_ecc[j] != 0xFF)
    						eccflag = 1;
    			}
    
    			count = 0;
    			if (eccflag == 1)
    				count = decode_bch(0, calc_ecc, err_loc);
    
    			for (j = 0; j < count; j++) {
    				if (err_loc[j] < 4096)
    					dat[err_loc[j] >> 3] ^=
    							1 << (err_loc[j] & 7);
    				/* else, not interested to correct ecc */
    			}
    
    			calc_ecc = calc_ecc + eccsize;
    			read_ecc = read_ecc + eccsize;
    			dat += 512;
    		}
    		break;
    	}
    
    	return 0;
    }
    
    /**
     * omap_calcuate_ecc - Generate non-inverted ECC bytes.
     * @mtd: MTD device structure
     * @dat: The pointer to data on which ecc is computed
     * @ecc_code: The ecc_code buffer
     *
     * Using noninverted ECC can be considered ugly since writing a blank
     * page ie. padding will clear the ECC bytes. This is no problem as long
     * nobody is trying to write data on the seemingly unused page. Reading
     * an erased page will produce an ECC mismatch between generated and read
     * ECC bytes that has to be dealt with separately.
     */
    static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
    				u_char *ecc_code)
    {
    	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
    							mtd);
    	return gpmc_calculate_ecc(info->ecc_opt, info->gpmc_cs, dat, ecc_code);
    }
    
    /**
     * omap_enable_hwecc - This function enables the hardware ecc functionality
     * @mtd: MTD device structure
     * @mode: Read/Write mode
     */
    static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
    {
    	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
    							mtd);
    	struct nand_chip *chip = mtd->priv;
    	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
    
    	gpmc_enable_hwecc(info->ecc_opt, info->gpmc_cs, mode,
    				dev_width, info->nand.ecc.size);
    }
    
    /**
     * omap_wait - wait until the command is done
     * @mtd: MTD device structure
     * @chip: NAND Chip structure
     *
     * Wait function is called during Program and erase operations and
     * the way it is called from MTD layer, we should wait till the NAND
     * chip is ready after the programming/erase operation has completed.
     *
     * Erase can take up to 400ms and program up to 20ms according to
     * general NAND and SmartMedia specs
     */
    static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
    {
    	struct nand_chip *this = mtd->priv;
    	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
    							mtd);
    	unsigned long timeo = jiffies;
    	int status = NAND_STATUS_FAIL, state = this->state;
    
    	if (state == FL_ERASING)
    		timeo += (HZ * 400) / 1000;
    	else
    		timeo += (HZ * 20) / 1000;
    
    	gpmc_nand_write(info->gpmc_cs,
    			GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
    	while (time_before(jiffies, timeo)) {
    		status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
    		if (status & NAND_STATUS_READY)
    			break;
    		cond_resched();
    	}
    	return status;
    }
    
    /**
     * omap_dev_ready - calls the platform specific dev_ready function
     * @mtd: MTD device structure
     */
    static int omap_dev_ready(struct mtd_info *mtd)
    {
    	unsigned int val = 0;
    	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
    							mtd);
    
    	val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
    	if ((val & 0x100) == 0x100) {
    		/* Clear IRQ Interrupt */
    		val |= 0x100;
    		val &= ~(0x0);
    		gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
    	} else {
    		unsigned int cnt = 0;
    		while (cnt++ < 0x1FF) {
    			if  ((val & 0x100) == 0x100)
    				return 0;
    			val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
    		}
    	}
    
    	return 1;
    }
    
    static int __devinit omap_nand_probe(struct platform_device *pdev)
    {
    	struct omap_nand_info		*info;
    	struct omap_nand_platform_data	*pdata;
    	int				err;
    	int				i, offset;
    
    	pdata = pdev->dev.platform_data;
    	if (pdata == NULL) {
    		dev_err(&pdev->dev, "platform data missing\n");
    		return -ENODEV;
    	}
    
    	info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
    	if (!info)
    		return -ENOMEM;
    
    	platform_set_drvdata(pdev, info);
    
    	spin_lock_init(&info->controller.lock);
    	init_waitqueue_head(&info->controller.wq);
    
    	info->pdev = pdev;
    
    	info->gpmc_cs		= pdata->cs;
    	info->phys_base		= pdata->phys_base;
    
    	info->mtd.priv		= &info->nand;
    	info->mtd.name		= dev_name(&pdev->dev);
    	info->mtd.owner		= THIS_MODULE;
    	pdata->ecc_opt		= OMAP_ECC_HAMMING_CODE_HW;
    	info->ecc_opt		= pdata->ecc_opt;
    
    	info->nand.options	= pdata->devsize;
    	info->nand.options	|= NAND_SKIP_BBTSCAN;
    
    	info->nand.badblockbits = 8;
    
    	/* NAND write protect off */
    	gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
    
    	if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
    				pdev->dev.driver->name)) {
    		err = -EBUSY;
    		goto out_free_info;
    	}
    
    	info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
    	if (!info->nand.IO_ADDR_R) {
    		err = -ENOMEM;
    		goto out_release_mem_region;
    	}
    
    	info->nand.controller = &info->controller;
    
    	info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
    	info->nand.cmd_ctrl  = omap_hwcontrol;
    
    	/*
    	 * If RDY/BSY line is connected to OMAP then use the omap ready
    	 * funcrtion and the generic nand_wait function which reads the status
    	 * register after monitoring the RDY/BSY line.Otherwise use a standard
    	 * chip delay which is slightly more than tR (AC Timing) of the NAND
    	 * device and read status register until you get a failure or success
    	 */
    	if (pdata->dev_ready) {
    		info->nand.dev_ready = omap_dev_ready;
    		info->nand.chip_delay = 0;
    	} else {
    		info->nand.waitfunc = omap_wait;
    		info->nand.chip_delay = 50;
    	}
    	switch (pdata->xfer_type) {
    	case NAND_OMAP_PREFETCH_POLLED:
    		info->nand.read_buf   = omap_read_buf_pref;
    		info->nand.write_buf  = omap_write_buf_pref;
    		break;
    
    	case NAND_OMAP_POLLED:
    		if (info->nand.options & NAND_BUSWIDTH_16) {
    			info->nand.read_buf   = omap_read_buf16;
    			info->nand.write_buf  = omap_write_buf16;
    		} else {
    			info->nand.read_buf   = omap_read_buf8;
    			info->nand.write_buf  = omap_write_buf8;
    		}
    		break;
    
    	case NAND_OMAP_PREFETCH_DMA:
    		err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
    				omap_nand_dma_cb, &info->comp, &info->dma_ch);
    		if (err < 0) {
    			info->dma_ch = -1;
    			dev_err(&pdev->dev, "DMA request failed!\n");
    			goto out_release_mem_region;
    		} else {
    			omap_set_dma_dest_burst_mode(info->dma_ch,
    					OMAP_DMA_DATA_BURST_16);
    			omap_set_dma_src_burst_mode(info->dma_ch,
    					OMAP_DMA_DATA_BURST_16);
    
    			info->nand.read_buf   = omap_read_buf_dma_pref;
    			info->nand.write_buf  = omap_write_buf_dma_pref;
    		}
    		break;
    
    	case NAND_OMAP_PREFETCH_IRQ:
    		err = request_irq(pdata->gpmc_irq,
    				omap_nand_irq, IRQF_SHARED, "gpmc-nand", info);
    		if (err) {
    			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
    							pdata->gpmc_irq, err);
    			goto out_release_mem_region;
    		} else {
    			info->gpmc_irq	     = pdata->gpmc_irq;
    			info->nand.read_buf  = omap_read_buf_irq_pref;
    			info->nand.write_buf = omap_write_buf_irq_pref;
    		}
    		break;
    
    	default:
    		dev_err(&pdev->dev,
    			"xfer_type(%d) not supported!\n", pdata->xfer_type);
    		err = -EINVAL;
    		goto out_release_mem_region;
    	}
    
    	info->nand.verify_buf = omap_verify_buf;
    
    	/* selsect the ecc type */
    	if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
    		info->nand.ecc.mode = NAND_ECC_SOFT;
    	else {
    		if (pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) {
    			info->nand.ecc.bytes    = 4*7;
    			info->nand.ecc.size     = 4*512;
    		} else if (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW) {
    			info->nand.ecc.bytes    = 13;
    			info->nand.ecc.size     = 4*512;
    		} else {
    			info->nand.ecc.bytes    = 3;
    			info->nand.ecc.size     = 512;
    		}
    		info->nand.ecc.calculate        = omap_calculate_ecc;
    		info->nand.ecc.hwctl            = omap_enable_hwecc;
    		info->nand.ecc.correct          = omap_correct_data;
    		info->nand.ecc.mode             = NAND_ECC_HW;
    	}
    
    	/* DIP switches on some boards change between 8 and 16 bit
    	 * bus widths for flash.  Try the other width if the first try fails.
    	 */
    	if (nand_scan_ident(&info->mtd, 1, NULL)) {
    		info->nand.options ^= NAND_BUSWIDTH_16;
    		if (nand_scan_ident(&info->mtd, 1, NULL)) {
    			err = -ENXIO;
    			goto out_release_mem_region;
    		}
    	}
    
    	/* select ecc lyout */
    	if (info->nand.ecc.mode != NAND_ECC_SOFT) {
    
    		if (info->nand.options & NAND_BUSWIDTH_16)
    			offset = 2;
    		else {
    			offset = 1;
    			info->nand.badblock_pattern = &bb_descrip_flashbased;
    		}
    
    		if (info->mtd.oobsize == 64)
    			omap_oobinfo.eccbytes = info->nand.ecc.bytes *
    						2048/info->nand.ecc.size;
    		else
    			omap_oobinfo.eccbytes = info->nand.ecc.bytes;
    
    		if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
    			for (i = 0; i < omap_oobinfo.eccbytes; i++)
    				omap_oobinfo.eccpos[i] = i + offset;
    			omap_oobinfo.oobfree->offset =
    						offset + omap_oobinfo.eccbytes;
    			omap_oobinfo.oobfree->length = info->mtd.oobsize -
    						offset - omap_oobinfo.eccbytes;
    		} else {
    
    			omap_oobinfo.oobfree->offset = offset;
    			omap_oobinfo.oobfree->length = info->mtd.oobsize -
    						offset - omap_oobinfo.eccbytes;
    			offset = info->mtd.oobsize - omap_oobinfo.eccbytes;
    			for (i = 0; i < omap_oobinfo.eccbytes; i++)
    				omap_oobinfo.eccpos[i] = i + offset;
    		}
    		info->nand.ecc.layout = &omap_oobinfo;
    
    	}
    
    	/* second phase scan */
    	if (nand_scan_tail(&info->mtd)) {
    			err = -ENXIO;
    			goto out_release_mem_region;
    	}
    
    #ifdef CONFIG_MTD_PARTITIONS
    	err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
    	if (err > 0)
    		add_mtd_partitions(&info->mtd, info->parts, err);
    	else if (pdata->parts)
    		add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts);
    	else
    #endif
    		add_mtd_device(&info->mtd);
    
    	platform_set_drvdata(pdev, &info->mtd);
    
    	return 0;
    
    out_release_mem_region:
    	release_mem_region(info->phys_base, NAND_IO_SIZE);
    out_free_info:
    	kfree(info);
    
    	return err;
    }
    
    static int omap_nand_remove(struct platform_device *pdev)
    {
    	struct mtd_info *mtd = platform_get_drvdata(pdev);
    	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
    							mtd);
    
    	platform_set_drvdata(pdev, NULL);
    	if (info->dma_ch != -1)
    		omap_free_dma(info->dma_ch);
    
    	if (info->gpmc_irq)
    		free_irq(info->gpmc_irq, info);
    
    	/* Release NAND device, its internal structures and partitions */
    	nand_release(&info->mtd);
    	iounmap(info->nand.IO_ADDR_R);
    	kfree(&info->mtd);
    	return 0;
    }
    
    static struct platform_driver omap_nand_driver = {
    	.probe		= omap_nand_probe,
    	.remove		= omap_nand_remove,
    	.driver		= {
    		.name	= DRIVER_NAME,
    		.owner	= THIS_MODULE,
    	},
    };
    
    static int __init omap_nand_init(void)
    {
    	pr_info("%s driver initializing\n", DRIVER_NAME);
    
    	return platform_driver_register(&omap_nand_driver);
    }
    
    static void __exit omap_nand_exit(void)
    {
    	platform_driver_unregister(&omap_nand_driver);
    }
    
    module_init(omap_nand_init);
    module_exit(omap_nand_exit);
    
    MODULE_ALIAS(DRIVER_NAME);
    MODULE_LICENSE("GPL");
    MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
    


    The file uploaded is my nand driver. Refer to http://arago-project.org/git/projects/?p=linux-omap3.git;a=summary ,there are some patchs for nand driver, Does it means the 

    nand driver may need  to  be modified ?

    BR 

    Vincent

  • Tsvetolin Shulev,

     It is not the same value of the read CRC 0xe441ca4c. The rate of unsuccessful attempt for flashing seems random, flashing several times continuous,ten times or more,the last time would have failed,

    Flashing the same files again when error appears,the linux system return  well.

    /*
     * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
     * Copyright © 2004 Micron Technology Inc.
     * Copyright © 2004 David Brownell
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License version 2 as
     * published by the Free Software Foundation.
     */
    
    #include <linux/platform_device.h>
    #include <linux/dma-mapping.h>
    #include <linux/delay.h>
    #include <linux/interrupt.h>
    #include <linux/jiffies.h>
    #include <linux/sched.h>
    #include <linux/mtd/mtd.h>
    #include <linux/mtd/nand.h>
    #include <linux/mtd/partitions.h>
    #include <linux/io.h>
    #include <linux/slab.h>
    
    #include <plat/dma.h>
    #include <plat/gpmc.h>
    #include <plat/nand.h>
    
    #define	DRIVER_NAME	"omap2-nand"
    #define	OMAP_NAND_TIMEOUT_MS	5000
    
    #define NAND_Ecc_P1e		(1 << 0)
    #define NAND_Ecc_P2e		(1 << 1)
    #define NAND_Ecc_P4e		(1 << 2)
    #define NAND_Ecc_P8e		(1 << 3)
    #define NAND_Ecc_P16e		(1 << 4)
    #define NAND_Ecc_P32e		(1 << 5)
    #define NAND_Ecc_P64e		(1 << 6)
    #define NAND_Ecc_P128e		(1 << 7)
    #define NAND_Ecc_P256e		(1 << 8)
    #define NAND_Ecc_P512e		(1 << 9)
    #define NAND_Ecc_P1024e		(1 << 10)
    #define NAND_Ecc_P2048e		(1 << 11)
    
    #define NAND_Ecc_P1o		(1 << 16)
    #define NAND_Ecc_P2o		(1 << 17)
    #define NAND_Ecc_P4o		(1 << 18)
    #define NAND_Ecc_P8o		(1 << 19)
    #define NAND_Ecc_P16o		(1 << 20)
    #define NAND_Ecc_P32o		(1 << 21)
    #define NAND_Ecc_P64o		(1 << 22)
    #define NAND_Ecc_P128o		(1 << 23)
    #define NAND_Ecc_P256o		(1 << 24)
    #define NAND_Ecc_P512o		(1 << 25)
    #define NAND_Ecc_P1024o		(1 << 26)
    #define NAND_Ecc_P2048o		(1 << 27)
    
    #define TF(value)	(value ? 1 : 0)
    
    #define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
    #define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
    #define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
    #define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
    #define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
    #define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
    #define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
    #define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)
    
    #define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
    #define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
    #define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
    #define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
    #define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
    #define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
    #define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
    #define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)
    
    #define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
    #define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
    #define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
    #define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
    #define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
    #define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
    #define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
    #define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)
    
    #define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
    #define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
    #define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
    #define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
    #define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
    #define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
    #define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
    #define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)
    
    #define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
    #define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)
    
    #ifdef CONFIG_MTD_PARTITIONS
    static const char *part_probes[] = { "cmdlinepart", NULL };
    #endif
    
    int decode_bch(int select_4_8, unsigned char *ecc, unsigned int *err_loc);
    
    /* oob info generated runtime depending on ecc algorithm and layout selected */
    static struct nand_ecclayout omap_oobinfo;
    /* Define some generic bad / good block scan pattern which are used
     * while scanning a device for factory marked good / bad blocks
     */
    static uint8_t scan_ff_pattern[] = { 0xff };
    static struct nand_bbt_descr bb_descrip_flashbased = {
    	.options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
    	.offs = 0,
    	.len = 1,
    	.pattern = scan_ff_pattern,
    };
    
    
    struct omap_nand_info {
    	struct nand_hw_control		controller;
    	struct omap_nand_platform_data	*pdata;
    	struct mtd_info			mtd;
    	struct mtd_partition		*parts;
    	struct nand_chip		nand;
    	struct platform_device		*pdev;
    
    	int				gpmc_cs;
    	unsigned long			phys_base;
    	struct completion		comp;
    	int				dma_ch;
    	int				gpmc_irq;
    	enum {
    		OMAP_NAND_IO_READ = 0,	/* read */
    		OMAP_NAND_IO_WRITE,	/* write */
    	} iomode;
    	u_char				*buf;
    	int				buf_len;
    	int				ecc_opt;
    };
    
    /**
     * omap_hwcontrol - hardware specific access to control-lines
     * @mtd: MTD device structure
     * @cmd: command to device
     * @ctrl:
     * NAND_NCE: bit 0 -> don't care
     * NAND_CLE: bit 1 -> Command Latch
     * NAND_ALE: bit 2 -> Address Latch
     *
     * NOTE: boards may use different bits for these!!
     */
    static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
    {
    	struct omap_nand_info *info = container_of(mtd,
    					struct omap_nand_info, mtd);
    
    	if (cmd != NAND_CMD_NONE) {
    		if (ctrl & NAND_CLE)
    			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
    
    		else if (ctrl & NAND_ALE)
    			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
    
    		else /* NAND_NCE */
    			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
    	}
    }
    
    /**
     * omap_read_buf8 - read data from NAND controller into buffer
     * @mtd: MTD device structure
     * @buf: buffer to store date
     * @len: number of bytes to read
     */
    static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
    {
    	struct nand_chip *nand = mtd->priv;
    
    	ioread8_rep(nand->IO_ADDR_R, buf, len);
    }
    
    /**
     * omap_write_buf8 - write buffer to NAND controller
     * @mtd: MTD device structure
     * @buf: data buffer
     * @len: number of bytes to write
     */
    static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
    {
    	struct omap_nand_info *info = container_of(mtd,
    						struct omap_nand_info, mtd);
    	u_char *p = (u_char *)buf;
    	u32	status = 0;
    
    	while (len--) {
    		iowrite8(*p++, info->nand.IO_ADDR_W);
    		/* wait until buffer is available for write */
    		do {
    			status = gpmc_read_status(GPMC_STATUS_BUFFER);
    		} while (!status);
    	}
    }
    
    /**
     * omap_read_buf16 - read data from NAND controller into buffer
     * @mtd: MTD device structure
     * @buf: buffer to store date
     * @len: number of bytes to read
     */
    static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
    {
    	struct nand_chip *nand = mtd->priv;
    
    	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
    }
    
    /**
     * omap_write_buf16 - write buffer to NAND controller
     * @mtd: MTD device structure
     * @buf: data buffer
     * @len: number of bytes to write
     */
    static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
    {
    	struct omap_nand_info *info = container_of(mtd,
    						struct omap_nand_info, mtd);
    	u16 *p = (u16 *) buf;
    	u32	status = 0;
    	/* FIXME try bursts of writesw() or DMA ... */
    	len >>= 1;
    
    	while (len--) {
    		iowrite16(*p++, info->nand.IO_ADDR_W);
    		/* wait until buffer is available for write */
    		do {
    			status = gpmc_read_status(GPMC_STATUS_BUFFER);
    		} while (!status);
    	}
    }
    
    /**
     * omap_read_buf_pref - read data from NAND controller into buffer
     * @mtd: MTD device structure
     * @buf: buffer to store date
     * @len: number of bytes to read
     */
    static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
    {
    	struct omap_nand_info *info = container_of(mtd,
    						struct omap_nand_info, mtd);
    	uint32_t r_count = 0;
    	int ret = 0;
    	u32 *p = (u32 *)buf;
    
    	/* take care of subpage reads */
    	if (len % 4) {
    		if (info->nand.options & NAND_BUSWIDTH_16)
    			omap_read_buf16(mtd, buf, len % 4);
    		else
    			omap_read_buf8(mtd, buf, len % 4);
    		p = (u32 *) (buf + len % 4);
    		len -= len % 4;
    	}
    
    	/* configure and start prefetch transfer */
    	ret = gpmc_prefetch_enable(info->gpmc_cs,
    			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0);
    	if (ret) {
    		/* PFPW engine is busy, use cpu copy method */
    		if (info->nand.options & NAND_BUSWIDTH_16)
    			omap_read_buf16(mtd, buf, len);
    		else
    			omap_read_buf8(mtd, buf, len);
    	} else {
    		p = (u32 *) buf;
    		do {
    			r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
    			r_count = r_count >> 2;
    			ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
    			p += r_count;
    			len -= r_count << 2;
    		} while (len);
    		/* disable and stop the PFPW engine */
    		gpmc_prefetch_reset(info->gpmc_cs);
    	}
    }
    
    /**
     * omap_write_buf_pref - write buffer to NAND controller
     * @mtd: MTD device structure
     * @buf: data buffer
     * @len: number of bytes to write
     */
    static void omap_write_buf_pref(struct mtd_info *mtd,
    					const u_char *buf, int len)
    {
    	struct omap_nand_info *info = container_of(mtd,
    						struct omap_nand_info, mtd);
    	uint32_t w_count = 0;
    	int i = 0, ret = 0;
    	u16 *p;
    	unsigned long tim, limit;
    
    	/* take care of subpage writes */
    	if (len % 2 != 0) {
    		writeb(*buf, info->nand.IO_ADDR_W);
    		p = (u16 *)(buf + 1);
    		len--;
    	}
    
    	/*  configure and start prefetch transfer */
    	ret = gpmc_prefetch_enable(info->gpmc_cs,
    			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1);
    	if (ret) {
    		/* PFPW engine is busy, use cpu copy method */
    		if (info->nand.options & NAND_BUSWIDTH_16)
    			omap_write_buf16(mtd, buf, len);
    		else
    			omap_write_buf8(mtd, buf, len);
    	} else {
    		p = (u16 *) buf;
    		while (len) {
    			w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
    			w_count = w_count >> 1;
    			for (i = 0; (i < w_count) && len; i++, len -= 2)
    				iowrite16(*p++, info->nand.IO_ADDR_W);
    		}
    		/* wait for data to flushed-out before reset the prefetch */
    		tim = 0;
    		limit = (loops_per_jiffy *
    					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
    		while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
    			cpu_relax();
    
    		/* disable and stop the PFPW engine */
    		gpmc_prefetch_reset(info->gpmc_cs);
    	}
    }
    
    /*
     * omap_nand_dma_cb: callback on the completion of dma transfer
     * @lch: logical channel
     * @ch_satuts: channel status
     * @data: pointer to completion data structure
     */
    static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
    {
    	complete((struct completion *) data);
    }
    
    /*
     * omap_nand_dma_transfer: configer and start dma transfer
     * @mtd: MTD device structure
     * @addr: virtual address in RAM of source/destination
     * @len: number of data bytes to be transferred
     * @is_write: flag for read/write operation
     */
    static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
    					unsigned int len, int is_write)
    {
    	struct omap_nand_info *info = container_of(mtd,
    					struct omap_nand_info, mtd);
    	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
    							DMA_FROM_DEVICE;
    	dma_addr_t dma_addr;
    	int ret;
    	unsigned long tim, limit;
    
    	/* The fifo depth is 64 bytes max.
    	 * But configure the FIFO-threahold to 32 to get a sync at each frame
    	 * and frame length is 32 bytes.
    	 */
    	int buf_len = len >> 6;
    
    	if (addr >= high_memory) {
    		struct page *p1;
    
    		if (((size_t)addr & PAGE_MASK) !=
    			((size_t)(addr + len - 1) & PAGE_MASK))
    			goto out_copy;
    		p1 = vmalloc_to_page(addr);
    		if (!p1)
    			goto out_copy;
    		addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
    	}
    
    	dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
    	if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
    		dev_err(&info->pdev->dev,
    			"Couldn't DMA map a %d byte buffer\n", len);
    		goto out_copy;
    	}
    
    	if (is_write) {
    	    omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
    						info->phys_base, 0, 0);
    	    omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
    							dma_addr, 0, 0);
    	    omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
    					0x10, buf_len, OMAP_DMA_SYNC_FRAME,
    					OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
    	} else {
    	    omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
    						info->phys_base, 0, 0);
    	    omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
    							dma_addr, 0, 0);
    	    omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
    					0x10, buf_len, OMAP_DMA_SYNC_FRAME,
    					OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
    	}
    	/*  configure and start prefetch transfer */
    	ret = gpmc_prefetch_enable(info->gpmc_cs,
    			PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write);
    	if (ret)
    		/* PFPW engine is busy, use cpu copy method */
    		goto out_copy;
    
    	init_completion(&info->comp);
    
    	omap_start_dma(info->dma_ch);
    
    	/* setup and start DMA using dma_addr */
    	wait_for_completion(&info->comp);
    	tim = 0;
    	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
    	while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
    		cpu_relax();
    
    	/* disable and stop the PFPW engine */
    	gpmc_prefetch_reset(info->gpmc_cs);
    
    	dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
    	return 0;
    
    out_copy:
    	if (info->nand.options & NAND_BUSWIDTH_16)
    		is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
    			: omap_write_buf16(mtd, (u_char *) addr, len);
    	else
    		is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
    			: omap_write_buf8(mtd, (u_char *) addr, len);
    	return 0;
    }
    
    /**
     * omap_read_buf_dma_pref - read data from NAND controller into buffer
     * @mtd: MTD device structure
     * @buf: buffer to store date
     * @len: number of bytes to read
     */
    static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
    {
    	if (len <= mtd->oobsize)
    		omap_read_buf_pref(mtd, buf, len);
    	else
    		/* start transfer in DMA mode */
    		omap_nand_dma_transfer(mtd, buf, len, 0x0);
    }
    
    /**
     * omap_write_buf_dma_pref - write buffer to NAND controller
     * @mtd: MTD device structure
     * @buf: data buffer
     * @len: number of bytes to write
     */
    static void omap_write_buf_dma_pref(struct mtd_info *mtd,
    					const u_char *buf, int len)
    {
    	if (len <= mtd->oobsize)
    		omap_write_buf_pref(mtd, buf, len);
    	else
    		/* start transfer in DMA mode */
    		omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
    }
    
    /*
     * omap_nand_irq - GMPC irq handler
     * @this_irq: gpmc irq number
     * @dev: omap_nand_info structure pointer is passed here
     */
    static irqreturn_t omap_nand_irq(int this_irq, void *dev)
    {
    	struct omap_nand_info *info = (struct omap_nand_info *) dev;
    	u32 bytes;
    	u32 irq_stat;
    
    	irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS);
    	bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
    	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
    	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
    		if (irq_stat & 0x2)
    			goto done;
    
    		if (info->buf_len && (info->buf_len < bytes))
    			bytes = info->buf_len;
    		else if (!info->buf_len)
    			bytes = 0;
    		iowrite32_rep(info->nand.IO_ADDR_W,
    						(u32 *)info->buf, bytes >> 2);
    		info->buf = info->buf + bytes;
    		info->buf_len -= bytes;
    
    	} else {
    		ioread32_rep(info->nand.IO_ADDR_R,
    						(u32 *)info->buf, bytes >> 2);
    		info->buf = info->buf + bytes;
    
    		if (irq_stat & 0x2)
    			goto done;
    	}
    	gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
    
    	return IRQ_HANDLED;
    
    done:
    	complete(&info->comp);
    	/* disable irq */
    	gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0);
    
    	/* clear status */
    	gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
    
    	return IRQ_HANDLED;
    }
    
    /*
     * omap_read_buf_irq_pref - read data from NAND controller into buffer
     * @mtd: MTD device structure
     * @buf: buffer to store date
     * @len: number of bytes to read
     */
    static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
    {
    	struct omap_nand_info *info = container_of(mtd,
    						struct omap_nand_info, mtd);
    	int ret = 0;
    	if (len <= mtd->oobsize) {
    		omap_read_buf_pref(mtd, buf, len);
    		return;
    	}
    
    	info->iomode = OMAP_NAND_IO_READ;
    	info->buf = buf;
    	init_completion(&info->comp);
    
    	/*  configure and start prefetch transfer */
    	ret = gpmc_prefetch_enable(info->gpmc_cs,
    			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0);
    	if (ret)
    		/* PFPW engine is busy, use cpu copy method */
    		goto out_copy;
    
    	info->buf_len = len;
    	/* enable irq */
    	gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
    		(GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
    
    	/* waiting for read to complete */
    	wait_for_completion(&info->comp);
    
    	/* disable and stop the PFPW engine */
    	gpmc_prefetch_reset(info->gpmc_cs);
    	return;
    
    out_copy:
    	if (info->nand.options & NAND_BUSWIDTH_16)
    		omap_read_buf16(mtd, buf, len);
    	else
    		omap_read_buf8(mtd, buf, len);
    }
    
    /*
     * omap_write_buf_irq_pref - write buffer to NAND controller
     * @mtd: MTD device structure
     * @buf: data buffer
     * @len: number of bytes to write
     */
    static void omap_write_buf_irq_pref(struct mtd_info *mtd,
    					const u_char *buf, int len)
    {
    	struct omap_nand_info *info = container_of(mtd,
    						struct omap_nand_info, mtd);
    	int ret = 0;
    	unsigned long tim, limit;
    
    	if (len <= mtd->oobsize) {
    		omap_write_buf_pref(mtd, buf, len);
    		return;
    	}
    
    	info->iomode = OMAP_NAND_IO_WRITE;
    	info->buf = (u_char *) buf;
    	init_completion(&info->comp);
    
    	/* configure and start prefetch transfer : size=24 */
    	ret = gpmc_prefetch_enable(info->gpmc_cs,
    			(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1);
    	if (ret)
    		/* PFPW engine is busy, use cpu copy method */
    		goto out_copy;
    
    	info->buf_len = len;
    	/* enable irq */
    	gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
    			(GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
    
    	/* waiting for write to complete */
    	wait_for_completion(&info->comp);
    	/* wait for data to flushed-out before reset the prefetch */
    	tim = 0;
    	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
    	while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
    		cpu_relax();
    
    	/* disable and stop the PFPW engine */
    	gpmc_prefetch_reset(info->gpmc_cs);
    	return;
    
    out_copy:
    	if (info->nand.options & NAND_BUSWIDTH_16)
    		omap_write_buf16(mtd, buf, len);
    	else
    		omap_write_buf8(mtd, buf, len);
    }
    
    /**
     * omap_verify_buf - Verify chip data against buffer
     * @mtd: MTD device structure
     * @buf: buffer containing the data to compare
     * @len: number of bytes to compare
     */
    static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
    {
    	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
    							mtd);
    	u16 *p = (u16 *) buf;
    
    	len >>= 1;
    	while (len--) {
    		if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
    			return -EFAULT;
    	}
    
    	return 0;
    }
    
    /**
     * gen_true_ecc - This function will generate true ECC value
     * @ecc_buf: buffer to store ecc code
     *
     * This generated true ECC value can be used when correcting
     * data read from NAND flash memory core
     */
    static void gen_true_ecc(u8 *ecc_buf)
    {
    	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
    		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
    
    	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
    			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
    	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
    			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
    	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
    			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
    }
    
    /**
     * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
     * @ecc_data1:  ecc code from nand spare area
     * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
     * @page_data:  page data
     *
     * This function compares two ECC's and indicates if there is an error.
     * If the error can be corrected it will be corrected to the buffer.
     */
    static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
    			    u8 *ecc_data2,	/* read from register */
    			    u8 *page_data)
    {
    	uint	i;
    	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
    	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
    	u8	ecc_bit[24];
    	u8	ecc_sum = 0;
    	u8	find_bit = 0;
    	uint	find_byte = 0;
    	int	isEccFF;
    
    	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
    
    	gen_true_ecc(ecc_data1);
    	gen_true_ecc(ecc_data2);
    
    	for (i = 0; i <= 2; i++) {
    		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
    		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
    	}
    
    	for (i = 0; i < 8; i++) {
    		tmp0_bit[i]     = *ecc_data1 % 2;
    		*ecc_data1	= *ecc_data1 / 2;
    	}
    
    	for (i = 0; i < 8; i++) {
    		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
    		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
    	}
    
    	for (i = 0; i < 8; i++) {
    		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
    		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
    	}
    
    	for (i = 0; i < 8; i++) {
    		comp0_bit[i]     = *ecc_data2 % 2;
    		*ecc_data2       = *ecc_data2 / 2;
    	}
    
    	for (i = 0; i < 8; i++) {
    		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
    		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
    	}
    
    	for (i = 0; i < 8; i++) {
    		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
    		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
    	}
    
    	for (i = 0; i < 6; i++)
    		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
    
    	for (i = 0; i < 8; i++)
    		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
    
    	for (i = 0; i < 8; i++)
    		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
    
    	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
    	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
    
    	for (i = 0; i < 24; i++)
    		ecc_sum += ecc_bit[i];
    
    	switch (ecc_sum) {
    	case 0:
    		/* Not reached because this function is not called if
    		 *  ECC values are equal
    		 */
    		return 0;
    
    	case 1:
    		/* Uncorrectable error */
    		DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
    		return -1;
    
    	case 11:
    		/* UN-Correctable error */
    		DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
    		return -1;
    
    	case 12:
    		/* Correctable error */
    		find_byte = (ecc_bit[23] << 8) +
    			    (ecc_bit[21] << 7) +
    			    (ecc_bit[19] << 6) +
    			    (ecc_bit[17] << 5) +
    			    (ecc_bit[15] << 4) +
    			    (ecc_bit[13] << 3) +
    			    (ecc_bit[11] << 2) +
    			    (ecc_bit[9]  << 1) +
    			    ecc_bit[7];
    
    		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
    
    		DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
    				"offset: %d, bit: %d\n", find_byte, find_bit);
    
    		page_data[find_byte] ^= (1 << find_bit);
    
    		return 0;
    	default:
    		if (isEccFF) {
    			if (ecc_data2[0] == 0 &&
    			    ecc_data2[1] == 0 &&
    			    ecc_data2[2] == 0)
    				return 0;
    		}
    		DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
    		return -1;
    	}
    }
    
    /**
     * omap_correct_data - Compares the ECC read with HW generated ECC
     * @mtd: MTD device structure
     * @dat: page data
     * @read_ecc: ecc read from nand flash
     * @calc_ecc: ecc read from HW ECC registers
     *
     * Compares the ecc read from nand spare area with ECC registers values
     * and if ECC's mismached, it will call 'omap_compare_ecc' for error detection
     * and correction.
     */
    static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
    				u_char *read_ecc, u_char *calc_ecc)
    {
    	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
    							mtd);
    	int blockCnt = 0, i = 0, ret = 0;
    	int j, eccsize, eccflag, count;
    	unsigned int err_loc[8];
    
    	/* Ex NAND_ECC_HW12_2048 */
    	if ((info->nand.ecc.mode == NAND_ECC_HW) &&
    			(info->nand.ecc.size  == 2048))
    		blockCnt = 4;
    	else
    		blockCnt = 1;
    
    	switch (info->ecc_opt) {
    	case OMAP_ECC_HAMMING_CODE_HW:
    	case OMAP_ECC_HAMMING_CODE_HW_ROMCODE:
    		for (i = 0; i < blockCnt; i++) {
    			if (memcmp(read_ecc, calc_ecc, 3) != 0) {
    				ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
    				if (ret < 0)
    					return ret;
    			}
    			read_ecc += 3;
    			calc_ecc += 3;
    			dat      += 512;
    		}
    		break;
    
    	case OMAP_ECC_BCH4_CODE_HW:
    		eccsize = 7;
    		gpmc_calculate_ecc(info->ecc_opt, info->gpmc_cs, dat, calc_ecc);
    		for (i = 0; i < blockCnt; i++) {
    			/* check if any ecc error */
    			eccflag = 0;
    			for (j = 0; (j < eccsize) && (eccflag == 0); j++)
    				if (calc_ecc[j] != 0)
    					eccflag = 1;
    
    			if (eccflag == 1) {
    				eccflag = 0;
    				for (j = 0; (j < eccsize) &&
    						(eccflag == 0); j++)
    					if (read_ecc[j] != 0xFF)
    						eccflag = 1;
    			}
    
    			count = 0;
    			if (eccflag == 1)
    				count = decode_bch(0, calc_ecc, err_loc);
    
    			for (j = 0; j < count; j++) {
    				if (err_loc[j] < 4096)
    					dat[err_loc[j] >> 3] ^=
    							1 << (err_loc[j] & 7);
    				/* else, not interested to correct ecc */
    			}
    
    			calc_ecc = calc_ecc + eccsize;
    			read_ecc = read_ecc + eccsize;
    			dat += 512;
    		}
    		break;
    	}
    
    	return 0;
    }
    
    /**
     * omap_calcuate_ecc - Generate non-inverted ECC bytes.
     * @mtd: MTD device structure
     * @dat: The pointer to data on which ecc is computed
     * @ecc_code: The ecc_code buffer
     *
     * Using noninverted ECC can be considered ugly since writing a blank
     * page ie. padding will clear the ECC bytes. This is no problem as long
     * nobody is trying to write data on the seemingly unused page. Reading
     * an erased page will produce an ECC mismatch between generated and read
     * ECC bytes that has to be dealt with separately.
     */
    static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
    				u_char *ecc_code)
    {
    	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
    							mtd);
    	return gpmc_calculate_ecc(info->ecc_opt, info->gpmc_cs, dat, ecc_code);
    }
    
    /**
     * omap_enable_hwecc - This function enables the hardware ecc functionality
     * @mtd: MTD device structure
     * @mode: Read/Write mode
     */
    static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
    {
    	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
    							mtd);
    	struct nand_chip *chip = mtd->priv;
    	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
    
    	gpmc_enable_hwecc(info->ecc_opt, info->gpmc_cs, mode,
    				dev_width, info->nand.ecc.size);
    }
    
    /**
     * omap_wait - wait until the command is done
     * @mtd: MTD device structure
     * @chip: NAND Chip structure
     *
     * Wait function is called during Program and erase operations and
     * the way it is called from MTD layer, we should wait till the NAND
     * chip is ready after the programming/erase operation has completed.
     *
     * Erase can take up to 400ms and program up to 20ms according to
     * general NAND and SmartMedia specs
     */
    static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
    {
    	struct nand_chip *this = mtd->priv;
    	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
    							mtd);
    	unsigned long timeo = jiffies;
    	int status = NAND_STATUS_FAIL, state = this->state;
    
    	if (state == FL_ERASING)
    		timeo += (HZ * 400) / 1000;
    	else
    		timeo += (HZ * 20) / 1000;
    
    	gpmc_nand_write(info->gpmc_cs,
    			GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
    	while (time_before(jiffies, timeo)) {
    		status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
    		if (status & NAND_STATUS_READY)
    			break;
    		cond_resched();
    	}
    	return status;
    }
    
    /**
     * omap_dev_ready - calls the platform specific dev_ready function
     * @mtd: MTD device structure
     */
    static int omap_dev_ready(struct mtd_info *mtd)
    {
    	unsigned int val = 0;
    	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
    							mtd);
    
    	val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
    	if ((val & 0x100) == 0x100) {
    		/* Clear IRQ Interrupt */
    		val |= 0x100;
    		val &= ~(0x0);
    		gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
    	} else {
    		unsigned int cnt = 0;
    		while (cnt++ < 0x1FF) {
    			if  ((val & 0x100) == 0x100)
    				return 0;
    			val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
    		}
    	}
    
    	return 1;
    }
    
    static int __devinit omap_nand_probe(struct platform_device *pdev)
    {
    	struct omap_nand_info		*info;
    	struct omap_nand_platform_data	*pdata;
    	int				err;
    	int				i, offset;
    
    	pdata = pdev->dev.platform_data;
    	if (pdata == NULL) {
    		dev_err(&pdev->dev, "platform data missing\n");
    		return -ENODEV;
    	}
    
    	info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
    	if (!info)
    		return -ENOMEM;
    
    	platform_set_drvdata(pdev, info);
    
    	spin_lock_init(&info->controller.lock);
    	init_waitqueue_head(&info->controller.wq);
    
    	info->pdev = pdev;
    
    	info->gpmc_cs		= pdata->cs;
    	info->phys_base		= pdata->phys_base;
    
    	info->mtd.priv		= &info->nand;
    	info->mtd.name		= dev_name(&pdev->dev);
    	info->mtd.owner		= THIS_MODULE;
    	pdata->ecc_opt		= OMAP_ECC_HAMMING_CODE_HW;
    	info->ecc_opt		= pdata->ecc_opt;
    
    	info->nand.options	= pdata->devsize;
    	info->nand.options	|= NAND_SKIP_BBTSCAN;
    
    	info->nand.badblockbits = 8;
    
    	/* NAND write protect off */
    	gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
    
    	if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
    				pdev->dev.driver->name)) {
    		err = -EBUSY;
    		goto out_free_info;
    	}
    
    	info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
    	if (!info->nand.IO_ADDR_R) {
    		err = -ENOMEM;
    		goto out_release_mem_region;
    	}
    
    	info->nand.controller = &info->controller;
    
    	info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
    	info->nand.cmd_ctrl  = omap_hwcontrol;
    
    	/*
    	 * If RDY/BSY line is connected to OMAP then use the omap ready
    	 * funcrtion and the generic nand_wait function which reads the status
    	 * register after monitoring the RDY/BSY line.Otherwise use a standard
    	 * chip delay which is slightly more than tR (AC Timing) of the NAND
    	 * device and read status register until you get a failure or success
    	 */
    	if (pdata->dev_ready) {
    		info->nand.dev_ready = omap_dev_ready;
    		info->nand.chip_delay = 0;
    	} else {
    		info->nand.waitfunc = omap_wait;
    		info->nand.chip_delay = 50;
    	}
    	switch (pdata->xfer_type) {
    	case NAND_OMAP_PREFETCH_POLLED:
    		info->nand.read_buf   = omap_read_buf_pref;
    		info->nand.write_buf  = omap_write_buf_pref;
    		break;
    
    	case NAND_OMAP_POLLED:
    		if (info->nand.options & NAND_BUSWIDTH_16) {
    			info->nand.read_buf   = omap_read_buf16;
    			info->nand.write_buf  = omap_write_buf16;
    		} else {
    			info->nand.read_buf   = omap_read_buf8;
    			info->nand.write_buf  = omap_write_buf8;
    		}
    		break;
    
    	case NAND_OMAP_PREFETCH_DMA:
    		err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
    				omap_nand_dma_cb, &info->comp, &info->dma_ch);
    		if (err < 0) {
    			info->dma_ch = -1;
    			dev_err(&pdev->dev, "DMA request failed!\n");
    			goto out_release_mem_region;
    		} else {
    			omap_set_dma_dest_burst_mode(info->dma_ch,
    					OMAP_DMA_DATA_BURST_16);
    			omap_set_dma_src_burst_mode(info->dma_ch,
    					OMAP_DMA_DATA_BURST_16);
    
    			info->nand.read_buf   = omap_read_buf_dma_pref;
    			info->nand.write_buf  = omap_write_buf_dma_pref;
    		}
    		break;
    
    	case NAND_OMAP_PREFETCH_IRQ:
    		err = request_irq(pdata->gpmc_irq,
    				omap_nand_irq, IRQF_SHARED, "gpmc-nand", info);
    		if (err) {
    			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
    							pdata->gpmc_irq, err);
    			goto out_release_mem_region;
    		} else {
    			info->gpmc_irq	     = pdata->gpmc_irq;
    			info->nand.read_buf  = omap_read_buf_irq_pref;
    			info->nand.write_buf = omap_write_buf_irq_pref;
    		}
    		break;
    
    	default:
    		dev_err(&pdev->dev,
    			"xfer_type(%d) not supported!\n", pdata->xfer_type);
    		err = -EINVAL;
    		goto out_release_mem_region;
    	}
    
    	info->nand.verify_buf = omap_verify_buf;
    
    	/* selsect the ecc type */
    	if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
    		info->nand.ecc.mode = NAND_ECC_SOFT;
    	else {
    		if (pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) {
    			info->nand.ecc.bytes    = 4*7;
    			info->nand.ecc.size     = 4*512;
    		} else if (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW) {
    			info->nand.ecc.bytes    = 13;
    			info->nand.ecc.size     = 4*512;
    		} else {
    			info->nand.ecc.bytes    = 3;
    			info->nand.ecc.size     = 512;
    		}
    		info->nand.ecc.calculate        = omap_calculate_ecc;
    		info->nand.ecc.hwctl            = omap_enable_hwecc;
    		info->nand.ecc.correct          = omap_correct_data;
    		info->nand.ecc.mode             = NAND_ECC_HW;
    	}
    
    	/* DIP switches on some boards change between 8 and 16 bit
    	 * bus widths for flash.  Try the other width if the first try fails.
    	 */
    	if (nand_scan_ident(&info->mtd, 1, NULL)) {
    		info->nand.options ^= NAND_BUSWIDTH_16;
    		if (nand_scan_ident(&info->mtd, 1, NULL)) {
    			err = -ENXIO;
    			goto out_release_mem_region;
    		}
    	}
    
    	/* select ecc lyout */
    	if (info->nand.ecc.mode != NAND_ECC_SOFT) {
    
    		if (info->nand.options & NAND_BUSWIDTH_16)
    			offset = 2;
    		else {
    			offset = 1;
    			info->nand.badblock_pattern = &bb_descrip_flashbased;
    		}
    
    		if (info->mtd.oobsize == 64)
    			omap_oobinfo.eccbytes = info->nand.ecc.bytes *
    						2048/info->nand.ecc.size;
    		else
    			omap_oobinfo.eccbytes = info->nand.ecc.bytes;
    
    		if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
    			for (i = 0; i < omap_oobinfo.eccbytes; i++)
    				omap_oobinfo.eccpos[i] = i + offset;
    			omap_oobinfo.oobfree->offset =
    						offset + omap_oobinfo.eccbytes;
    			omap_oobinfo.oobfree->length = info->mtd.oobsize -
    						offset - omap_oobinfo.eccbytes;
    		} else {
    
    			omap_oobinfo.oobfree->offset = offset;
    			omap_oobinfo.oobfree->length = info->mtd.oobsize -
    						offset - omap_oobinfo.eccbytes;
    			offset = info->mtd.oobsize - omap_oobinfo.eccbytes;
    			for (i = 0; i < omap_oobinfo.eccbytes; i++)
    				omap_oobinfo.eccpos[i] = i + offset;
    		}
    		info->nand.ecc.layout = &omap_oobinfo;
    
    	}
    
    	/* second phase scan */
    	if (nand_scan_tail(&info->mtd)) {
    			err = -ENXIO;
    			goto out_release_mem_region;
    	}
    
    #ifdef CONFIG_MTD_PARTITIONS
    	err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
    	if (err > 0)
    		add_mtd_partitions(&info->mtd, info->parts, err);
    	else if (pdata->parts)
    		add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts);
    	else
    #endif
    		add_mtd_device(&info->mtd);
    
    	platform_set_drvdata(pdev, &info->mtd);
    
    	return 0;
    
    out_release_mem_region:
    	release_mem_region(info->phys_base, NAND_IO_SIZE);
    out_free_info:
    	kfree(info);
    
    	return err;
    }
    
    static int omap_nand_remove(struct platform_device *pdev)
    {
    	struct mtd_info *mtd = platform_get_drvdata(pdev);
    	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
    							mtd);
    
    	platform_set_drvdata(pdev, NULL);
    	if (info->dma_ch != -1)
    		omap_free_dma(info->dma_ch);
    
    	if (info->gpmc_irq)
    		free_irq(info->gpmc_irq, info);
    
    	/* Release NAND device, its internal structures and partitions */
    	nand_release(&info->mtd);
    	iounmap(info->nand.IO_ADDR_R);
    	kfree(&info->mtd);
    	return 0;
    }
    
    static struct platform_driver omap_nand_driver = {
    	.probe		= omap_nand_probe,
    	.remove		= omap_nand_remove,
    	.driver		= {
    		.name	= DRIVER_NAME,
    		.owner	= THIS_MODULE,
    	},
    };
    
    static int __init omap_nand_init(void)
    {
    	pr_info("%s driver initializing\n", DRIVER_NAME);
    
    	return platform_driver_register(&omap_nand_driver);
    }
    
    static void __exit omap_nand_exit(void)
    {
    	platform_driver_unregister(&omap_nand_driver);
    }
    
    module_init(omap_nand_init);
    module_exit(omap_nand_exit);
    
    MODULE_ALIAS(DRIVER_NAME);
    MODULE_LICENSE("GPL");
    MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
    

    The file uploaded is my nand driver. Refer to http://arago-project.org/git/projects/?p=linux-omap3.git;a=summary ,there are some patchs for nand driver, Does it means the 

    nand driver may need  to  be modified ?

    BR 

    Vincent

  • I think the problem is not in the nand driver. As the CRC in not same each time therefor the reason of the problem in not corruption of image file but it is possible to has some problem with the nand or could appears errors during copying but this is not very possible.

    BR

    Tsvetolin Shulev

  • Vincent,

    Can you send the following files to my email id mentioned in my e2e profile? 

    arch/arm/mach-omap2/board-omap3evm.c or your corresponding board file.

    arch/arm/mach-omap2/board-flash.c

    arch/arm/mach-omap2/gpmc.c

    drivers/mtd/nand/nand_base.c

    drivers/mtd/nand/omap2.c

  • Thomas,

       I have sent files to your email ID .

    BR

    Vincent

  • Cvetolin,

    I think  the CRC value each time is dependent on the files copied when errors appear.

    For example,

    I copy file1,file2,...file N each time,may be the physical problem of the memory appears when finish coping file 2 this time,but another time,problem appears when finish coping file3 or the other file.  So the CRC value may be different each time. 

    It is still possible that problem is in the nand driver.

    BR 

    Vincent


  • Hi

    I also encountered the same problem.Now the problem is solved?

  • Hi, Is this issue is resolved? I got the same issue on the AM335x processor. Can anyone gives pointers whr to be the issue to debug more... NIT: version 2.86 booting Please wait: booting... Starting udev [ 4.630859] UBIFS error (pid 829): ubifs_check_node: bad CRC: calculated 0x9763d47f, read 0x38274638 [ 4.640441] UBIFS error (pid 829): ubifs_check_node: bad node at LEB 979:121200 [ 4.648071] UBIFS error (pid 829): ubifs_read_node: expected node type 9 [ 4.655059] UBIFS error (pid 829): ubifs_readdir: cannot find next direntry, error -117 [ 4.663543] UBIFS error (pid 829): ubifs_check_node: bad CRC: calculated 0x9763d47f, read 0x38274638 [ 4.673065] UBIFS error (pid 829): ubifs_check_node: bad node at LEB 979:121200 [ 4.680694] UBIFS error (pid 829): ubifs_read_node: expected node type 9 [ 4.687713] UBIFS error (pid 829): ubifs_readdir: cannot find next direntry, error -117 [ 4.696075] UBIFS error (pid 829): ubifs_check_node: bad CRC: calculated 0x9763d47f, read 0x38274638 [ 4.705596] UBIFS error (pid 829): ubifs_check_node: bad node at LEB 979:121200 [ 4.713226] UBIFS error (pid 829): ubifs_read_node: expected node type 9 [ 4.720245] UBIFS error (pid 829): ubifs_readdir: cannot find next direntry, error -117 [ 4.728607] UBIFS error (pid 829): ubifs_check_node: bad CRC: calculated 0x9763d47f, read 0x38274638 [ 4.738159] UBIFS error (pid 829): ubifs_check_node: bad node at LEB 979:121200 [ 4.745758] UBIFS error (pid 829): ubifs_read_node: expected node type 9 [ 4.752777] UBIFS error (pid 829): ubifs_readdir: cannot find next direntry, error -117 [ 4.761138] UBIFS error (pid 829): ubifs_check_node: bad CRC: calculated 0x9763d47f, read 0x38274638 [ 4.770660] UBIFS error (pid 829): ubifs_check_node: bad node at LEB 979:121200 [ 4.778289] UBIFS error (pid 829): ubifs_read_node: expected node type 9 [ 4.785278] UBIFS error (pid 829): ubifs_readdir: cannot find next direntry, error -117 [ 4.793670] UBIFS error (pid 829): ubifs_check_node: bad CRC: calculated 0x9763d47f, read 0x38274638 [ 4.803192] UBIFS error (pid 829): ubifs_check_node: bad node at LEB 979:121200 [ 4.810821] UBIFS error (pid 829): ubifs_read_node: expected node type 9 [ 4.817810] UBIFS error (pid 829): ubifs_readdir: cannot find next direntry, error -117 [ 4.826202] UBIFS error (pid 829): ubifs_check_node: bad CRC: calculated 0x9763d47f, read 0x38274638 [ 4.835723] UBIFS error (pid 829): ubifs_check_node: bad node at LEB 979:121200 [ 4.843353] UBIFS error (pid 829): ubifs_read_node: expected node type 9 [ 4.850341] UBIFS error (pid 829): ubifs_readdir: cannot find next direntry, error -117 [ 4.858734] UBIFS error (pid 829): ubifs_check_node: bad CRC: calculated 0x9763d47f, read 0x38274638 [ 4.868255] UBIFS error (pid 829): ubifs_check_node: bad node at LEB 979:121200

  • was this issue solved? If yes can you help me the steps to solve this issue.
  • Hi Surendra,

    Is the issue is resolved?
  • I'm having the same issues.  Most of the time tftp copying of files works without a hitch but then, randomly, I get an error like this:

    UBIFS error (pid 1909): ubifs_check_node: bad CRC: calculated 0x37e3ece4, read 0x3f38392f
    UBIFS error (pid 1909): ubifs_check_node: bad node at LEB 1191:99768
    UBIFS error (pid 1909): ubifs_read_node: expected node type 9
    UBIFS warning (pid 1909): ubifs_ro_mode: switched to read-only mode, error -117
    Backtrace:
    [<c004b03c>] (dump_backtrace+0x0/0x110) from [<c0337704>] (dump_stack+0x18/0x1c)
     r7:c6817164 r6:ffffff8b r5:00000000 r4:c6817000
    [<c03376ec>] (dump_stack+0x0/0x1c) from [<c01709d4>] (ubifs_ro_mode+0x74/0x80)
    [<c0170960>] (ubifs_ro_mode+0x0/0x80) from [<c0167b7c>] (ubifs_jnl_delete_inode+0x9c/0xbc)
     r7:c6817164 r6:ffffff8b r5:c0683300 r4:c6817000
    [<c0167ae0>] (ubifs_jnl_delete_inode+0x0/0xbc) from [<c016ca08>] (ubifs_evict_inode+0x74/0xe8)
     r7:c6817000 r6:c0683300 r5:00000000 r4:00000000
    [<c016c994>] (ubifs_evict_inode+0x0/0xe8) from [<c00d9408>] (evict+0x28/0x9c)
     r7:0000000a r6:c64ee300 r5:c569a200 r4:c0683300
    [<c00d93e0>] (evict+0x0/0x9c) from [<c00d9de4>] (iput+0x1dc/0x220)
     r5:c569a200 r4:c0683300
    [<c00d9c08>] (iput+0x0/0x220) from [<c00d1db8>] (do_unlinkat+0xe4/0x138)
     r5:c0683300 r4:00000000
    [<c00d1cd4>] (do_unlinkat+0x0/0x138) from [<c00d1e24>] (sys_unlink+0x18/0x1c)
     r6:00000001 r5:00000000 r4:000b1008
    [<c00d1e0c>] (sys_unlink+0x0/0x1c) from [<c0047340>] (ret_fast_syscall+0x0/0x30)
    UBIFS error (pid 1909): ubifs_evict_inode: can't delete inode 4661, error -117 

    Did anyone solve this issue?  Is TI still looking at this problem?

    Also, is there a way to check the ubifs to see if there are any errors before writing to the filesystem?  And if there are errors, then what can I do?

    Thanks,

    Kim