This thread has been locked.
If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.
Hello everyone,
I have performed non-real time FFT program in LCDKC6748. Is it possible to perform real time FFT in LCDKC6748?
*=============================================================* * DESCRIPTION * * * * * * * * Number of points for FFT (PTS) 256 * * * * * * * * * ============================================================*/ #define PTS 256 //# of points for FFT typedef struct {float real,imag;} COMPLEX; extern COMPLEX w[PTS]; //twiddle constants stored in w void FFT(COMPLEX *Y, int N) //input sample array, # of points { COMPLEX temp1,temp2; //temporary storage variables int i,j,k; //loop counter variables int upper_leg, lower_leg; //index of upper/lower butterfly leg int leg_diff; //difference between upper/lower leg int num_stages = 0; //number of FFT stages (iterations) int index, step; //index/step through twiddle constant i = 1; //log(base2) of N points= # of stages do { num_stages +=1; i = i*2; }while (i!=N); leg_diff = N/2; //difference between upper&lower legs step = (PTS*2)/N; //step between values in twiddle.h // 512 for (i = 0;i < num_stages; i++) //for N-point FFT { index = 0; for (j = 0; j < leg_diff; j++) { for (upper_leg = j; upper_leg < N; upper_leg += (2*leg_diff)) { lower_leg = upper_leg+leg_diff; temp1.real = (Y[upper_leg]).real + (Y[lower_leg]).real; temp1.imag = (Y[upper_leg]).imag + (Y[lower_leg]).imag; temp2.real = (Y[upper_leg]).real - (Y[lower_leg]).real; temp2.imag = (Y[upper_leg]).imag - (Y[lower_leg]).imag; (Y[lower_leg]).real = temp2.real*(w[index]).real -temp2.imag*(w[index]).imag; (Y[lower_leg]).imag = temp2.real*(w[index]).imag +temp2.imag*(w[index]).real; (Y[upper_leg]).real = temp1.real; (Y[upper_leg]).imag = temp1.imag; } index += step; } leg_diff = leg_diff/2; step *= 2; } j = 0; for (i = 1; i < (N-1); i++) //bit reversal for resequencing data { k = N/2; while (k <= j) { j = j - k; k = k/2; } j = j + k; if (i<j) { temp1.real = (Y[j]).real; temp1.imag = (Y[j]).imag; (Y[j]).real = (Y[i]).real; (Y[j]).imag = (Y[i]).imag; (Y[i]).real = temp1.real; (Y[i]).imag = temp1.imag; } } return; }
******************************************************************************* *=============================================================* * DESCRIPTION * * * * * * * * Number of points for FFT (PTS) 256 * * * * * iobuffer --> input signal * * sample --> output of FFT function (don't use on graoh window) * x1 --> use in graph window * * ============================================================*/ //FFT256c.c FFT implementation calling a C-coded FFT function #include <math.h> #define PTS 256 //# of points for FFT #define PI 3.14159265358979 typedef struct {float real,imag;} COMPLEX; void FFT(COMPLEX *Y, int n); //FFT prototype float iobuffer[PTS]; //as input and output buffer float x1[PTS]; //intermediate buffer short i; //general purpose index variable short buffercount = 0; //number of new samples in iobuffer short flag = 0; //set to 1 by ISR when iobuffer full COMPLEX w[PTS]; //twiddle constants stored in w COMPLEX samples[PTS]; //primary working buffer main() { for (i = 0 ; i<PTS ; i++) // set up twiddle constants in w { w[i].real = cos(2*PI*i/(PTS*2.0)); //Re component of twiddle constants w[i].imag =-sin(2*PI*i/(PTS*2.0)); //Im component of twiddle constants } for (i = 0 ; i < PTS ; i++) //swap buffers { iobuffer[i] = sin(2*PI*30*i/PTS);/*10- > freq,100 -> sampling freq*/ samples[i].real=0.0; samples[i].imag=0.0; } for (i = 0 ; i < PTS ; i++) //swap buffers { samples[i].real=iobuffer[i]; //buffer with new data /* iobuffer[i] = x1[i]; //processed frame to iobuffer*/ } for (i = 0 ; i < PTS ; i++) samples[i].imag = 0.0; //imag components = 0 FFT(samples,PTS); //call function FFT.c for (i = 0 ; i < PTS ; i++) //compute magnitude { x1[i] = sqrt(samples[i].real*samples[i].real + samples[i].imag*samples[i].imag);///32; } } //end of main