I trained a demo ssd model using caffe-jacinto("voc0712od-ssd512x512_jdetnet21v2_iter_120000.caffemodel").
Because of some unsupported layers, i delete last few layers in deploy prototxt file("deploy_1024x512_delete_layers.prototxt")
Then i import it to TIDL. ("import.log")
Issues:
1、There are something like "Max PASS : -2147483648", the value is NOT right, why?
2、I matched the results layer by layer between TIDL and caffe-jacinto, BUT the results of last layers like "ctx_output1/relu_mbox_loc" or "ctx_output1/relu_mbox_conf" are wrong, the values are always "255" or "0".
I checked the input of "ctx_output1/relu_mbox_loc" or "ctx_output1/relu_mbox_conf" and it is right, BUT the output is wrong.
I don't know why TIDL produce this result.
deploy file:
name: "jdetnet21v2_deploy"
input: "data"
input_shape {
dim: 1
dim: 3
dim: 512
dim: 1024
}
layer {
name: "data/bias"
type: "Bias"
bottom: "data"
top: "data/bias"
param {
lr_mult: 0
decay_mult: 0
}
bias_param {
filler {
type: "constant"
value: -128
}
}
}
layer {
name: "conv1a"
type: "Convolution"
bottom: "data/bias"
top: "conv1a"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
bias_term: true
pad: 2
kernel_size: 5
group: 1
stride: 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
dilation: 1
}
}
layer {
name: "conv1a/bn"
type: "BatchNorm"
bottom: "conv1a"
top: "conv1a"
batch_norm_param {
moving_average_fraction: 0.99
eps: 0.0001
scale_bias: true
}
}
layer {
name: "conv1a/relu"
type: "ReLU"
bottom: "conv1a"
top: "conv1a"
}
layer {
name: "conv1b"
type: "Convolution"
bottom: "conv1a"
top: "conv1b"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
bias_term: true
pad: 1
kernel_size: 3
group: 4
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
dilation: 1
}
}
layer {
name: "conv1b/bn"
type: "BatchNorm"
bottom: "conv1b"
top: "conv1b"
batch_norm_param {
moving_average_fraction: 0.99
eps: 0.0001
scale_bias: true
}
}
layer {
name: "conv1b/relu"
type: "ReLU"
bottom: "conv1b"
top: "conv1b"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1b"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "res2a_branch2a"
type: "Convolution"
bottom: "pool1"
top: "res2a_branch2a"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
dilation: 1
}
}
layer {
name: "res2a_branch2a/bn"
type: "BatchNorm"
bottom: "res2a_branch2a"
top: "res2a_branch2a"
batch_norm_param {
moving_average_fraction: 0.99
eps: 0.0001
scale_bias: true
}
}
layer {
name: "res2a_branch2a/relu"
type: "ReLU"
bottom: "res2a_branch2a"
top: "res2a_branch2a"
}
layer {
name: "res2a_branch2b"
type: "Convolution"
bottom: "res2a_branch2a"
top: "res2a_branch2b"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
bias_term: true
pad: 1
kernel_size: 3
group: 4
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
dilation: 1
}
}
layer {
name: "res2a_branch2b/bn"
type: "BatchNorm"
bottom: "res2a_branch2b"
top: "res2a_branch2b"
batch_norm_param {
moving_average_fraction: 0.99
eps: 0.0001
scale_bias: true
}
}
layer {
name: "res2a_branch2b/relu"
type: "ReLU"
bottom: "res2a_branch2b"
top: "res2a_branch2b"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "res2a_branch2b"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "res3a_branch2a"
type: "Convolution"
bottom: "pool2"
top: "res3a_branch2a"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
dilation: 1
}
}
layer {
name: "res3a_branch2a/bn"
type: "BatchNorm"
bottom: "res3a_branch2a"
top: "res3a_branch2a"
batch_norm_param {
moving_average_fraction: 0.99
eps: 0.0001
scale_bias: true
}
}
layer {
name: "res3a_branch2a/relu"
type: "ReLU"
bottom: "res3a_branch2a"
top: "res3a_branch2a"
}
layer {
name: "res3a_branch2b"
type: "Convolution"
bottom: "res3a_branch2a"
top: "res3a_branch2b"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
bias_term: true
pad: 1
kernel_size: 3
group: 4
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
dilation: 1
}
}
layer {
name: "res3a_branch2b/bn"
type: "BatchNorm"
bottom: "res3a_branch2b"
top: "res3a_branch2b"
batch_norm_param {
moving_average_fraction: 0.99
eps: 0.0001
scale_bias: true
}
}
layer {
name: "res3a_branch2b/relu"
type: "ReLU"
bottom: "res3a_branch2b"
top: "res3a_branch2b"
}
layer {
name: "pool3"
type: "Pooling"
bottom: "res3a_branch2b"
top: "pool3"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "res4a_branch2a"
type: "Convolution"
bottom: "pool3"
top: "res4a_branch2a"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
dilation: 1
}
}
layer {
name: "res4a_branch2a/bn"
type: "BatchNorm"
bottom: "res4a_branch2a"
top: "res4a_branch2a"
batch_norm_param {
moving_average_fraction: 0.99
eps: 0.0001
scale_bias: true
}
}
layer {
name: "res4a_branch2a/relu"
type: "ReLU"
bottom: "res4a_branch2a"
top: "res4a_branch2a"
}
layer {
name: "res4a_branch2b"
type: "Convolution"
bottom: "res4a_branch2a"
top: "res4a_branch2b"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
bias_term: true
pad: 1
kernel_size: 3
group: 4
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
dilation: 1
}
}
layer {
name: "res4a_branch2b/bn"
type: "BatchNorm"
bottom: "res4a_branch2b"
top: "res4a_branch2b"
batch_norm_param {
moving_average_fraction: 0.99
eps: 0.0001
scale_bias: true
}
}
layer {
name: "res4a_branch2b/relu"
type: "ReLU"
bottom: "res4a_branch2b"
top: "res4a_branch2b"
}
layer {
name: "pool4"
type: "Pooling"
bottom: "res4a_branch2b"
top: "pool4"
pooling_param {
pool: MAX
kernel_size: 1
stride: 1
}
}
layer {
name: "res5a_branch2a"
type: "Convolution"
bottom: "pool4"
top: "res5a_branch2a"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
bias_term: true
pad: 2
kernel_size: 3
group: 1
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
dilation: 2
}
}
layer {
name: "res5a_branch2a/bn"
type: "BatchNorm"
bottom: "res5a_branch2a"
top: "res5a_branch2a"
batch_norm_param {
moving_average_fraction: 0.99
eps: 0.0001
scale_bias: true
}
}
layer {
name: "res5a_branch2a/relu"
type: "ReLU"
bottom: "res5a_branch2a"
top: "res5a_branch2a"
}
layer {
name: "res5a_branch2b"
type: "Convolution"
bottom: "res5a_branch2a"
top: "res5a_branch2b"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
bias_term: true
pad: 2
kernel_size: 3
group: 4
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
dilation: 2
}
}
layer {
name: "res5a_branch2b/bn"
type: "BatchNorm"
bottom: "res5a_branch2b"
top: "res5a_branch2b"
batch_norm_param {
moving_average_fraction: 0.99
eps: 0.0001
scale_bias: true
}
}
layer {
name: "res5a_branch2b/relu"
type: "ReLU"
bottom: "res5a_branch2b"
top: "res5a_branch2b"
}
layer {
name: "pool6"
type: "Pooling"
bottom: "res5a_branch2b"
top: "pool6"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
pad: 1
}
}
layer {
name: "pool7"
type: "Pooling"
bottom: "pool6"
top: "pool7"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
pad: 1
}
}
layer {
name: "pool8"
type: "Pooling"
bottom: "pool7"
top: "pool8"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
pad: 1
}
}
layer {
name: "ctx_output1"
type: "Convolution"
bottom: "res5a_branch2b"
top: "ctx_output1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
bias_term: true
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
dilation: 1
}
}
layer {
name: "ctx_output1/bn"
type: "BatchNorm"
bottom: "ctx_output1"
top: "ctx_output1"
batch_norm_param {
moving_average_fraction: 0.99
eps: 0.0001
scale_bias: true
}
}
layer {
name: "ctx_output1/relu"
type: "ReLU"
bottom: "ctx_output1"
top: "ctx_output1"
}
layer {
name: "ctx_output2"
type: "Convolution"
bottom: "pool6"
top: "ctx_output2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
bias_term: true
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
dilation: 1
}
}
layer {
name: "ctx_output2/bn"
type: "BatchNorm"
bottom: "ctx_output2"
top: "ctx_output2"
batch_norm_param {
moving_average_fraction: 0.99
eps: 0.0001
scale_bias: true
}
}
layer {
name: "ctx_output2/relu"
type: "ReLU"
bottom: "ctx_output2"
top: "ctx_output2"
}
layer {
name: "ctx_output3"
type: "Convolution"
bottom: "pool7"
top: "ctx_output3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
bias_term: true
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
dilation: 1
}
}
layer {
name: "ctx_output3/bn"
type: "BatchNorm"
bottom: "ctx_output3"
top: "ctx_output3"
batch_norm_param {
moving_average_fraction: 0.99
eps: 0.0001
scale_bias: true
}
}
layer {
name: "ctx_output3/relu"
type: "ReLU"
bottom: "ctx_output3"
top: "ctx_output3"
}
layer {
name: "ctx_output4"
type: "Convolution"
bottom: "pool8"
top: "ctx_output4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
bias_term: true
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
dilation: 1
}
}
layer {
name: "ctx_output4/bn"
type: "BatchNorm"
bottom: "ctx_output4"
top: "ctx_output4"
batch_norm_param {
moving_average_fraction: 0.99
eps: 0.0001
scale_bias: true
}
}
layer {
name: "ctx_output4/relu"
type: "ReLU"
bottom: "ctx_output4"
top: "ctx_output4"
}
layer {
name: "ctx_output1/relu_mbox_loc"
type: "Convolution"
bottom: "ctx_output1"
top: "ctx_output1/relu_mbox_loc"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 16
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
dilation: 1
}
}
layer {
name: "ctx_output1/relu_mbox_conf"
type: "Convolution"
bottom: "ctx_output1"
top: "ctx_output1/relu_mbox_conf"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 84
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
dilation: 1
}
}
layer {
name: "ctx_output2/relu_mbox_loc"
type: "Convolution"
bottom: "ctx_output2"
top: "ctx_output2/relu_mbox_loc"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 16
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
dilation: 1
}
}
layer {
name: "ctx_output2/relu_mbox_conf"
type: "Convolution"
bottom: "ctx_output2"
top: "ctx_output2/relu_mbox_conf"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 84
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
dilation: 1
}
}
layer {
name: "ctx_output3/relu_mbox_loc"
type: "Convolution"
bottom: "ctx_output3"
top: "ctx_output3/relu_mbox_loc"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 16
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
dilation: 1
}
}
layer {
name: "ctx_output3/relu_mbox_conf"
type: "Convolution"
bottom: "ctx_output3"
top: "ctx_output3/relu_mbox_conf"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 84
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
dilation: 1
}
}
layer {
name: "ctx_output4/relu_mbox_loc"
type: "Convolution"
bottom: "ctx_output4"
top: "ctx_output4/relu_mbox_loc"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 16
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
dilation: 1
}
}
layer {
name: "ctx_output4/relu_mbox_conf"
type: "Convolution"
bottom: "ctx_output4"
top: "ctx_output4/relu_mbox_conf"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 84
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
dilation: 1
}
}
import file:
Caffe Network File : deploy_1024x512_delete_layers.prototxt
Caffe Model File : voc0712od-ssd512x512_jdetnet21v2_iter_120000.caffemodel
TIDL Network File : NET.BIN
TIDL Model File : PRM.BIN
Name of the Network : jdetnet21v2_deploy
Num Inputs : 1
Num of Layer Detected : 28
0, TIDL_DataLayer , data 0, -1 , 1 , x , x , x , x , x , x , x , x , 0 , 0 , 0 , 0 , 0 , 1 , 3 , 512 , 1024 , 0 ,
1, TIDL_BatchNormLayer , data/bias 1, 1 , 1 , 0 , x , x , x , x , x , x , x , 1 , 1 , 3 , 512 , 1024 , 1 , 3 , 512 , 1024 , 1572864 ,
2, TIDL_ConvolutionLayer , conv1a 1, 1 , 1 , 1 , x , x , x , x , x , x , x , 2 , 1 , 3 , 512 , 1024 , 1 , 32 , 256 , 512 , 314572800 ,
3, TIDL_ConvolutionLayer , conv1b 1, 1 , 1 , 2 , x , x , x , x , x , x , x , 3 , 1 , 32 , 256 , 512 , 1 , 32 , 128 , 256 , 301989888 ,
4, TIDL_ConvolutionLayer , res2a_branch2a 1, 1 , 1 , 3 , x , x , x , x , x , x , x , 4 , 1 , 32 , 128 , 256 , 1 , 64 , 128 , 256 , 603979776 ,
5, TIDL_ConvolutionLayer , res2a_branch2b 1, 1 , 1 , 4 , x , x , x , x , x , x , x , 5 , 1 , 64 , 128 , 256 , 1 , 64 , 64 , 128 , 301989888 ,
6, TIDL_ConvolutionLayer , res3a_branch2a 1, 1 , 1 , 5 , x , x , x , x , x , x , x , 6 , 1 , 64 , 64 , 128 , 1 , 128 , 64 , 128 , 603979776 ,
7, TIDL_ConvolutionLayer , res3a_branch2b 1, 1 , 1 , 6 , x , x , x , x , x , x , x , 7 , 1 , 128 , 64 , 128 , 1 , 128 , 32 , 64 , 301989888 ,
8, TIDL_ConvolutionLayer , res4a_branch2a 1, 1 , 1 , 7 , x , x , x , x , x , x , x , 8 , 1 , 128 , 32 , 64 , 1 , 256 , 32 , 64 , 603979776 ,
9, TIDL_ConvolutionLayer , res4a_branch2b 1, 1 , 1 , 8 , x , x , x , x , x , x , x , 9 , 1 , 256 , 32 , 64 , 1 , 256 , 32 , 64 , 301989888 ,
10, TIDL_PoolingLayer , pool4 1, 1 , 1 , 9 , x , x , x , x , x , x , x , 10 , 1 , 256 , 32 , 64 , 1 , 256 , 32 , 64 , 524288 ,
11, TIDL_ConvolutionLayer , res5a_branch2a 1, 1 , 1 , 10 , x , x , x , x , x , x , x , 11 , 1 , 256 , 32 , 64 , 1 , 512 , 32 , 64 ,2415919104 ,
12, TIDL_ConvolutionLayer , res5a_branch2b 1, 1 , 1 , 11 , x , x , x , x , x , x , x , 12 , 1 , 512 , 32 , 64 , 1 , 512 , 32 , 64 ,1207959552 ,
13, TIDL_PoolingLayer , pool6 1, 1 , 1 , 12 , x , x , x , x , x , x , x , 13 , 1 , 512 , 32 , 64 , 1 , 512 , 17 , 33 , 2585088 ,
14, TIDL_PoolingLayer , pool7 1, 1 , 1 , 13 , x , x , x , x , x , x , x , 14 , 1 , 512 , 17 , 33 , 1 , 512 , 9 , 17 , 705024 ,
15, TIDL_PoolingLayer , pool8 1, 1 , 1 , 14 , x , x , x , x , x , x , x , 15 , 1 , 512 , 9 , 17 , 1 , 512 , 5 , 9 , 207360 ,
16, TIDL_ConvolutionLayer , ctx_output1 1, 1 , 1 , 12 , x , x , x , x , x , x , x , 16 , 1 , 512 , 32 , 64 , 1 , 512 , 32 , 64 , 536870912 ,
17, TIDL_ConvolutionLayer , ctx_output2 1, 1 , 1 , 13 , x , x , x , x , x , x , x , 17 , 1 , 512 , 17 , 33 , 1 , 512 , 17 , 33 , 147062784 ,
18, TIDL_ConvolutionLayer , ctx_output3 1, 1 , 1 , 14 , x , x , x , x , x , x , x , 18 , 1 , 512 , 9 , 17 , 1 , 512 , 9 , 17 , 40108032 ,
19, TIDL_ConvolutionLayer , ctx_output4 1, 1 , 1 , 15 , x , x , x , x , x , x , x , 19 , 1 , 512 , 5 , 9 , 1 , 512 , 5 , 9 , 11796480 ,
20, TIDL_ConvolutionLayer , ctx_output1/relu_mbox_loc 1, 1 , 1 , 16 , x , x , x , x , x , x , x , 20 , 1 , 512 , 32 , 64 , 1 , 16 , 32 , 64 , 150994944 ,
21, TIDL_ConvolutionLayer , ctx_output1/relu_mbox_conf 1, 1 , 1 , 16 , x , x , x , x , x , x , x , 21 , 1 , 512 , 32 , 64 , 1 , 84 , 32 , 64 , 792723456 ,
22, TIDL_ConvolutionLayer , ctx_output2/relu_mbox_loc 1, 1 , 1 , 17 , x , x , x , x , x , x , x , 22 , 1 , 512 , 17 , 33 , 1 , 16 , 17 , 33 , 41361408 ,
23, TIDL_ConvolutionLayer , ctx_output2/relu_mbox_conf 1, 1 , 1 , 17 , x , x , x , x , x , x , x , 23 , 1 , 512 , 17 , 33 , 1 , 84 , 17 , 33 , 217147392 ,
24, TIDL_ConvolutionLayer , ctx_output3/relu_mbox_loc 1, 1 , 1 , 18 , x , x , x , x , x , x , x , 24 , 1 , 512 , 9 , 17 , 1 , 16 , 9 , 17 , 11280384 ,
25, TIDL_ConvolutionLayer , ctx_output3/relu_mbox_conf 1, 1 , 1 , 18 , x , x , x , x , x , x , x , 25 , 1 , 512 , 9 , 17 , 1 , 84 , 9 , 17 , 59222016 ,
26, TIDL_ConvolutionLayer , ctx_output4/relu_mbox_loc 1, 1 , 1 , 19 , x , x , x , x , x , x , x , 26 , 1 , 512 , 5 , 9 , 1 , 16 , 5 , 9 , 3317760 ,
27, TIDL_ConvolutionLayer , ctx_output4/relu_mbox_conf 1, 1 , 1 , 19 , x , x , x , x , x , x , x , 27 , 1 , 512 , 5 , 9 , 1 , 84 , 5 , 9 , 17418240 ,
Processing config file .\tempDir\qunat_stats_config.txt !
0, TIDL_DataLayer , 0, -1 , 1 , x , x , x , x , x , x , x , x , 0 , 0 , 0 , 0 , 0 , 1 , 3 , 512 , 1024 ,
1, TIDL_BatchNormLayer , 1, 1 , 1 , 0 , x , x , x , x , x , x , x , 1 , 1 , 3 , 512 , 1024 , 1 , 3 , 512 , 1024 ,
2, TIDL_ConvolutionLayer , 1, 1 , 1 , 1 , x , x , x , x , x , x , x , 2 , 1 , 3 , 512 , 1024 , 1 , 32 , 256 , 512 ,
3, TIDL_ConvolutionLayer , 1, 1 , 1 , 2 , x , x , x , x , x , x , x , 3 , 1 , 32 , 256 , 512 , 1 , 32 , 128 , 256 ,
4, TIDL_ConvolutionLayer , 1, 1 , 1 , 3 , x , x , x , x , x , x , x , 4 , 1 , 32 , 128 , 256 , 1 , 64 , 128 , 256 ,
5, TIDL_ConvolutionLayer , 1, 1 , 1 , 4 , x , x , x , x , x , x , x , 5 , 1 , 64 , 128 , 256 , 1 , 64 , 64 , 128 ,
6, TIDL_ConvolutionLayer , 1, 1 , 1 , 5 , x , x , x , x , x , x , x , 6 , 1 , 64 , 64 , 128 , 1 , 128 , 64 , 128 ,
7, TIDL_ConvolutionLayer , 1, 1 , 1 , 6 , x , x , x , x , x , x , x , 7 , 1 , 128 , 64 , 128 , 1 , 128 , 32 , 64 ,
8, TIDL_ConvolutionLayer , 1, 1 , 1 , 7 , x , x , x , x , x , x , x , 8 , 1 , 128 , 32 , 64 , 1 , 256 , 32 , 64 ,
9, TIDL_ConvolutionLayer , 1, 1 , 1 , 8 , x , x , x , x , x , x , x , 9 , 1 , 256 , 32 , 64 , 1 , 256 , 32 , 64 ,
10, TIDL_PoolingLayer , 1, 1 , 1 , 9 , x , x , x , x , x , x , x , 10 , 1 , 256 , 32 , 64 , 1 , 256 , 32 , 64 ,
11, TIDL_ConvolutionLayer , 1, 1 , 1 , 10 , x , x , x , x , x , x , x , 11 , 1 , 256 , 32 , 64 , 1 , 512 , 32 , 64 ,
12, TIDL_ConvolutionLayer , 1, 1 , 1 , 11 , x , x , x , x , x , x , x , 12 , 1 , 512 , 32 , 64 , 1 , 512 , 32 , 64 ,
13, TIDL_PoolingLayer , 1, 1 , 1 , 12 , x , x , x , x , x , x , x , 13 , 1 , 512 , 32 , 64 , 1 , 512 , 17 , 33 ,
14, TIDL_PoolingLayer , 1, 1 , 1 , 13 , x , x , x , x , x , x , x , 14 , 1 , 512 , 17 , 33 , 1 , 512 , 9 , 17 ,
15, TIDL_PoolingLayer , 1, 1 , 1 , 14 , x , x , x , x , x , x , x , 15 , 1 , 512 , 9 , 17 , 1 , 512 , 5 , 9 ,
16, TIDL_ConvolutionLayer , 1, 1 , 1 , 12 , x , x , x , x , x , x , x , 16 , 1 , 512 , 32 , 64 , 1 , 512 , 32 , 64 ,
17, TIDL_ConvolutionLayer , 1, 1 , 1 , 13 , x , x , x , x , x , x , x , 17 , 1 , 512 , 17 , 33 , 1 , 512 , 17 , 33 ,
18, TIDL_ConvolutionLayer , 1, 1 , 1 , 14 , x , x , x , x , x , x , x , 18 , 1 , 512 , 9 , 17 , 1 , 512 , 9 , 17 ,
19, TIDL_ConvolutionLayer , 1, 1 , 1 , 15 , x , x , x , x , x , x , x , 19 , 1 , 512 , 5 , 9 , 1 , 512 , 5 , 9 ,
20, TIDL_ConvolutionLayer , 1, 1 , 1 , 16 , x , x , x , x , x , x , x , 20 , 1 , 512 , 32 , 64 , 1 , 16 , 32 , 64 ,
21, TIDL_ConvolutionLayer , 1, 1 , 1 , 16 , x , x , x , x , x , x , x , 21 , 1 , 512 , 32 , 64 , 1 , 84 , 32 , 64 ,
22, TIDL_ConvolutionLayer , 1, 1 , 1 , 17 , x , x , x , x , x , x , x , 22 , 1 , 512 , 17 , 33 , 1 , 16 , 17 , 33 ,
23, TIDL_ConvolutionLayer , 1, 1 , 1 , 17 , x , x , x , x , x , x , x , 23 , 1 , 512 , 17 , 33 , 1 , 84 , 17 , 33 ,
24, TIDL_ConvolutionLayer , 1, 1 , 1 , 18 , x , x , x , x , x , x , x , 24 , 1 , 512 , 9 , 17 , 1 , 16 , 9 , 17 ,
25, TIDL_ConvolutionLayer , 1, 1 , 1 , 18 , x , x , x , x , x , x , x , 25 , 1 , 512 , 9 , 17 , 1 , 84 , 9 , 17 ,
26, TIDL_ConvolutionLayer , 1, 1 , 1 , 19 , x , x , x , x , x , x , x , 26 , 1 , 512 , 5 , 9 , 1 , 16 , 5 , 9 ,
27, TIDL_ConvolutionLayer , 1, 1 , 1 , 19 , x , x , x , x , x , x , x , 27 , 1 , 512 , 5 , 9 , 1 , 84 , 5 , 9 ,
28, TIDL_DataLayer , 0, 1 , -1 , 27 , x , x , x , x , x , x , x , 0 , 1 , 84 , 5 , 9 , 0 , 0 , 0 , 0 ,
Layer ID ,inBlkWidth ,inBlkHeight ,inBlkPitch ,outBlkWidth ,outBlkHeight,outBlkPitch ,numInChs ,numOutChs ,numProcInChs,numLclInChs ,numLclOutChs,numProcItrs ,numAccItrs ,numHorBlock ,numVerBlock ,inBlkChPitch,outBlkChPitc,alignOrNot
2 72 72 72 32 32 32 3 32 3 1 8 1 3 16 8 5184 1024 1
3 40 34 40 32 32 32 8 8 8 4 8 1 2 16 8 1360 1024 1
4 40 34 40 32 32 32 32 64 32 6 8 1 6 8 4 1360 1024 1
5 40 34 40 32 32 32 16 16 16 6 8 1 3 8 4 1360 1024 1
6 40 34 40 32 32 32 64 128 64 6 8 1 11 4 2 1360 1024 1
7 40 34 40 32 32 32 32 32 32 6 8 1 6 4 2 1360 1024 1
8 40 34 40 32 32 32 128 256 128 6 8 1 22 2 1 1360 1024 1
9 40 34 40 32 32 32 64 64 64 6 8 1 11 2 1 1360 1024 1
11 40 20 40 32 16 32 256 512 256 8 8 1 32 2 2 800 512 1
12 40 36 40 32 32 32 128 128 128 5 8 1 26 2 1 1440 1024 1
16 32 16 32 32 16 32 512 512 512 8 8 1 64 2 2 512 512 1
17 32 17 32 32 17 32 512 512 512 8 8 1 64 2 1 544 544 1
18 32 9 32 32 9 32 512 512 512 8 8 1 64 1 1 288 288 1
19 16 5 16 16 5 16 512 512 512 8 8 1 64 1 1 80 80 1
20 40 18 40 32 16 32 512 16 256 8 2 2 32 2 2 720 512 1
21 40 18 40 32 16 32 512 84 256 8 2 2 32 2 2 720 512 1
22 40 18 40 32 16 32 512 16 256 8 2 2 32 2 2 720 512 1
23 40 18 40 32 16 32 512 84 256 8 2 2 32 2 2 720 512 1
24 40 11 40 32 9 32 512 16 512 8 8 1 64 1 1 440 288 1
25 40 11 40 32 9 32 512 84 512 8 8 1 64 1 1 440 288 1
26 24 7 24 16 5 16 512 16 512 8 8 1 64 1 1 168 80 1
27 24 7 24 16 5 16 512 84 512 8 8 1 64 1 1 168 80 1
Processing Frame Number : 0
Layer 1 : Max PASS : -2147483648 : 15301 Out Q : 254 , 43861, TIDL_BatchNormLayer, PASSED #MMACs = 1.57, 0.00, 1.57, Sparsity : 0.00, 100.00
Layer 2 : Max PASS : -2147483648 : 105994 Out Q : 11467 , 106410, TIDL_ConvolutionLayer, PASSED #MMACs = 314.57, 279.97, 300.94, Sparsity : 4.33, 11.00
Layer 3 : Max PASS : -2147483648 : 19171 Out Q : 11355 , 19246, TIDL_ConvolutionLayer, PASSED #MMACs = 301.99, 261.88, 272.63, Sparsity : 9.72, 13.28
Layer 4 : Max PASS : -2147483648 : 48257 Out Q : 22744 , 48446, TIDL_ConvolutionLayer, PASSED #MMACs = 603.98, 558.43, 578.81, Sparsity : 4.17, 7.54
Layer 5 : Max PASS : -2147483648 : 41123 Out Q : 15555 , 41284, TIDL_ConvolutionLayer, PASSED #MMACs = 301.99, 284.26, 292.16, Sparsity : 3.26, 5.87
Layer 6 : Max PASS : -2147483648 : 71895 Out Q : 19140 , 72177, TIDL_ConvolutionLayer, PASSED #MMACs = 603.98, 563.72, 581.21, Sparsity : 3.77, 6.67
Layer 7 : Max PASS : -2147483648 : 57803 Out Q : 18455 , 58030, TIDL_ConvolutionLayer, PASSED #MMACs = 301.99, 288.17, 298.35, Sparsity : 1.20, 4.58
Layer 8 : Max PASS : -2147483648 : 112088 Out Q : 20457 , 112528, TIDL_ConvolutionLayer, PASSED #MMACs = 603.98, 571.37, 588.81, Sparsity : 2.51, 5.40
Layer 9 : Max PASS : -2147483648 : 57972 Out Q : 22662 , 58199, TIDL_ConvolutionLayer, PASSED #MMACs = 301.99, 287.32, 296.04, Sparsity : 1.97, 4.86
Layer 10 :TIDL_PoolingLayer, PASSED #MMACs = 0.52, 0.00, 0.52, Sparsity : 0.00, 100.00
Layer 11 : Max PASS : -2147483648 : 52315 Out Q : 39664 , 52520, TIDL_ConvolutionLayer, PASSED #MMACs = 2415.92, 2246.56, 2297.30, Sparsity : 4.91, 7.01
Layer 12 : Max PASS : -2147483648 : 50735 Out Q : 3152 , 50934, TIDL_ConvolutionLayer, PASSED #MMACs = 1207.96, 1094.96, 1135.71, Sparsity : 5.98, 9.35
Layer 13 :TIDL_PoolingLayer, PASSED #MMACs = 0.29, 0.00, 0.29, Sparsity : 0.00, 100.00
Layer 14 :TIDL_PoolingLayer, PASSED #MMACs = 0.08, 0.00, 0.08, Sparsity : 0.00, 100.00
Layer 15 :TIDL_PoolingLayer, PASSED #MMACs = 0.02, 0.00, 0.02, Sparsity : 0.00, 100.00
Layer 16 : Max PASS : -2147483648 : 42410 Out Q : 22305 , 42576, TIDL_ConvolutionLayer, PASSED #MMACs = 536.87, 512.22, 536.80, Sparsity : 0.01, 4.59
Layer 17 : Max PASS : -2147483648 : 51785 Out Q : 28329 , 51988, TIDL_ConvolutionLayer, PASSED #MMACs = 147.06, 140.29, 147.03, Sparsity : 0.02, 4.61
Layer 18 : Max PASS : -2147483648 : 54221 Out Q : 25702 , 54434, TIDL_ConvolutionLayer, PASSED #MMACs = 40.11, 38.12, 40.10, Sparsity : 0.02, 4.95
Layer 19 : Max PASS : -2147483648 : 63420 Out Q : 24673 , 63669, TIDL_ConvolutionLayer, PASSED #MMACs = 11.80, 11.33, 11.80, Sparsity : 0.01, 3.92
Layer 20 : Max PASS : -2147483648 : 93195 Out Q : 3094 , 353782, TIDL_ConvolutionLayer, PASSED #MMACs = 150.99, 126.10, 129.25, Sparsity : 14.40, 16.49
Layer 21 : Max PASS : -2147483648 : 717460 Out Q : 1965 , 1446219, TIDL_ConvolutionLayer, PASSED #MMACs = 792.72, 734.32, 750.56, Sparsity : 5.32, 7.37
Layer 22 : Max PASS : -2147483648 : 100259 Out Q : 7823 , 302286, TIDL_ConvolutionLayer, PASSED #MMACs = 41.36, 36.99, 37.83, Sparsity : 8.53, 10.57
Layer 23 : Max PASS : -2147483648 : 661541 Out Q : 2025 , 1333500, TIDL_ConvolutionLayer, PASSED #MMACs = 217.15, 197.41, 201.89, Sparsity : 7.03, 9.09
Layer 24 : Max PASS : -2147483648 : 132514 Out Q : 9805 , 267115, TIDL_ConvolutionLayer, PASSED #MMACs = 11.28, 10.32, 10.56, Sparsity : 6.39, 8.51
Layer 25 : Max PASS : -2147483648 : 618447 Out Q : 2022 , 1246633, TIDL_ConvolutionLayer, PASSED #MMACs = 59.22, 57.15, 58.45, Sparsity : 1.30, 3.50
Layer 26 : Max PASS : -2147483648 : 186789 Out Q : 10431 , 376520, TIDL_ConvolutionLayer, PASSED #MMACs = 3.32, 3.08, 3.15, Sparsity : 5.03, 7.15
Layer 27 : Max PASS : -2147483648 : 837833 Out Q : 1679 , 1688860, TIDL_ConvolutionLayer, PASSED #MMACs = 17.42, 16.92, 17.28, Sparsity : 0.78, 2.87
End of config list found !
Total Giga Macs : 8.9932
Total Giga Macs : 134.8987 @15 fps
Total Giga Macs : 269.7975 @30 fps