This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

TDA2: ssd model import problem

Part Number: TDA2

Hi All,

I have already confirmed that it works well on TDA2p EVM  as below when running tidl usecase using the already converted model bin(NET_OD/PRM_OD)

   -. bbox : ok,   display fps : ok(16fps) 

However, I confirmed that the bin(NET_OD, PRM_OD) changed through tild_model_import.out does not work as it did before.

  -. bbox: no, display fps : fail(8.4fps)

Below is the problem log and import file file. Can you help me with what is wrong?

 modelImportIssue.zip    

My development environment is as follows.

   VSDK :  3.3.0.0

   TIDLSRC:  1.1.1.0

   bootmode ; SDBOOT

   EVM: tda2p

   protobuf ver : 3.2.0rc2

   model: JDetNet

   

Thank you in advance.

 BR,

 Khethan

  • Hi Khethan,

    Can you please check with new vision SDK release version 03.05.00.00, if you still face the issue please share the generated NET.bin and PARAM.bin from import tool for verification.

    Thanks,
    Praveen
  • Hi all

    I am sorry, It's take a long time  to write back.

    I downloaded  the version(3.5.0.0) you mentioned, but which is does not have a TIDL.

    The stats_tool_out.bin file created using my import tool has been confirmed to work normally as below.

    please refer my environment file.

    I would appreciate any help on what is wrong.

    modelImportIssue_2.zip

    BR,

    Khethan

  • Hi Khethan,

    I did not see any issue with your import tool files, because I just now imported and verified that it is detecting objects properly. I used the import executable (tidl_model_import.out.exe) from latest TIDL 01.01.02.00 release.

    Can you please check with latest TIDL release?

    Thanks,
    Praveen
  • Hi Praveen,

    I've  just checked with the new version(1.1.2.0) you mentioned, but I still have problems.

    please refer my log file.

    Microsoft Windows [Version 6.1.7601]
    Copyright (c) 2009 Microsoft Corporation. All rights reserved.
    
    c:\PROCESSOR_SDK_VISION_03_03_00_00\ti_components\algorithms\REL.TIDLSRC.01.01.02.00\modules\ti_dl\utils\tidlModel
    Import>tidl_model_import.out.exe c:\PROCESSOR_SDK_VISION_03_03_00_00\ti_components\algorithms\REL.TIDLSRC.01.01.02
    .00\modules\ti_dl\test\testvecs\config\import\tidl_import_JDetNet.txt
    Caffe Network File : d:\work\adas\TI\work_space\tidl\model\caffe_jacinto_models\trained\object_detection\voc0712\J
    DetNet\ssd768x320_ds_PSP_dsFac_32_hdDS8_0\sparse\deploy.prototxt
    Caffe Model File   : d:\work\adas\TI\work_space\tidl\model\caffe_jacinto_models\trained\object_detection\voc0712\J
    DetNet\ssd768x320_ds_PSP_dsFac_32_hdDS8_0\sparse\voc0712_ssdJacintoNetV2_iter_120000.caffemodel
    TIDL Network File  : ..\..\test\testvecs\config\tidl_models\jdetnet\tidl_net_jdetNet_ssd.bin
    TIDL Model File    : ..\..\test\testvecs\config\tidl_models\jdetnet\tidl_param_jdetNet_ssd.bin
    Name of the Network : ssdJacintoNetV2_deploy
    Num Inputs :               1
    Could not find detection_out Params
     Num of Layer Detected :  50
      0, TIDL_DataLayer                , data                                      0,  -1 ,  1 ,   x ,  x ,  x ,  x ,
     x ,  x ,  x ,  x ,  0 ,       0 ,       0 ,       0 ,       0 ,       1 ,       3 ,     320 ,     768 ,         0
     ,
      1, TIDL_BatchNormLayer           , data/bias                                 1,   1 ,  1 ,   0 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x ,  1 ,       1 ,       3 ,     320 ,     768 ,       1 ,       3 ,     320 ,     768 ,    737280
     ,
      2, TIDL_ConvolutionLayer         , conv1a                                    1,   1 ,  1 ,   1 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x ,  2 ,       1 ,       3 ,     320 ,     768 ,       1 ,      32 ,     160 ,     384 , 147456000
     ,
      3, TIDL_ConvolutionLayer         , conv1b                                    1,   1 ,  1 ,   2 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x ,  3 ,       1 ,      32 ,     160 ,     384 ,       1 ,      32 ,      80 ,     192 , 141557760
     ,
      4, TIDL_ConvolutionLayer         , res2a_branch2a                            1,   1 ,  1 ,   3 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x ,  4 ,       1 ,      32 ,      80 ,     192 ,       1 ,      64 ,      80 ,     192 , 283115520
     ,
      5, TIDL_ConvolutionLayer         , res2a_branch2b                            1,   1 ,  1 ,   4 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x ,  5 ,       1 ,      64 ,      80 ,     192 ,       1 ,      64 ,      40 ,      96 , 141557760
     ,
      6, TIDL_ConvolutionLayer         , res3a_branch2a                            1,   1 ,  1 ,   5 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x ,  6 ,       1 ,      64 ,      40 ,      96 ,       1 ,     128 ,      40 ,      96 , 283115520
     ,
      7, TIDL_ConvolutionLayer         , res3a_branch2b                            1,   1 ,  1 ,   6 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x ,  7 ,       1 ,     128 ,      40 ,      96 ,       1 ,     128 ,      20 ,      48 , 141557760
     ,
      8, TIDL_ConvolutionLayer         , res4a_branch2a                            1,   1 ,  1 ,   7 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x ,  8 ,       1 ,     128 ,      20 ,      48 ,       1 ,     256 ,      20 ,      48 , 283115520
     ,
      9, TIDL_ConvolutionLayer         , res4a_branch2b                            1,   1 ,  1 ,   8 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x ,  9 ,       1 ,     256 ,      20 ,      48 ,       1 ,     256 ,      20 ,      48 , 141557760
     ,
     10, TIDL_PoolingLayer             , pool4                                     1,   1 ,  1 ,   9 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 10 ,       1 ,     256 ,      20 ,      48 ,       1 ,     256 ,      10 ,      24 ,    245760
     ,
     11, TIDL_ConvolutionLayer         , res5a_branch2a                            1,   1 ,  1 ,  10 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 11 ,       1 ,     256 ,      10 ,      24 ,       1 ,     512 ,      10 ,      24 , 283115520
     ,
     12, TIDL_ConvolutionLayer         , res5a_branch2b                            1,   1 ,  1 ,  11 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 12 ,       1 ,     512 ,      10 ,      24 ,       1 ,     512 ,      10 ,      24 , 141557760
     ,
     13, TIDL_PoolingLayer             , pool6                                     1,   1 ,  1 ,  12 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 13 ,       1 ,     512 ,      10 ,      24 ,       1 ,     512 ,       5 ,      12 ,    122880
     ,
     14, TIDL_PoolingLayer             , pool7                                     1,   1 ,  1 ,  13 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 14 ,       1 ,     512 ,       5 ,      12 ,       1 ,     512 ,       3 ,       6 ,     36864
     ,
     15, TIDL_PoolingLayer             , pool8                                     1,   1 ,  1 ,  14 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 15 ,       1 ,     512 ,       3 ,       6 ,       1 ,     512 ,       2 ,       3 ,     12288
     ,
     16, TIDL_ConvolutionLayer         , ctx_output1                               1,   1 ,  1 ,   9 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 16 ,       1 ,     256 ,      20 ,      48 ,       1 ,     256 ,      20 ,      48 ,  62914560
     ,
     17, TIDL_ConvolutionLayer         , ctx_output2                               1,   1 ,  1 ,  12 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 17 ,       1 ,     512 ,      10 ,      24 ,       1 ,     256 ,      10 ,      24 ,  31457280
     ,
     18, TIDL_ConvolutionLayer         , ctx_output3                               1,   1 ,  1 ,  13 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 18 ,       1 ,     512 ,       5 ,      12 ,       1 ,     256 ,       5 ,      12 ,   7864320
     ,
     19, TIDL_ConvolutionLayer         , ctx_output4                               1,   1 ,  1 ,  14 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 19 ,       1 ,     512 ,       3 ,       6 ,       1 ,     256 ,       3 ,       6 ,   2359296
     ,
     20, TIDL_ConvolutionLayer         , ctx_output5                               1,   1 ,  1 ,  15 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 20 ,       1 ,     512 ,       2 ,       3 ,       1 ,     256 ,       2 ,       3 ,    786432
     ,
     21, TIDL_ConvolutionLayer         , ctx_output1/relu_mbox_loc                 1,   1 ,  1 ,  16 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 21 ,       1 ,     256 ,      20 ,      48 ,       1 ,      16 ,      20 ,      48 ,   3932160
     ,
     22, TIDL_FlattenLayer             , ctx_output1/relu_mbox_loc_perm            1,   1 ,  1 ,  21 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 22 ,       1 ,      16 ,      20 ,      48 ,       1 ,       1 ,       1 ,   15360 ,         1
     ,
     23, TIDL_ConvolutionLayer         , ctx_output1/relu_mbox_conf                1,   1 ,  1 ,  16 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 23 ,       1 ,     256 ,      20 ,      48 ,       1 ,      84 ,      20 ,      48 ,  20643840
     ,
     24, TIDL_FlattenLayer             , ctx_output1/relu_mbox_conf_perm           1,   1 ,  1 ,  23 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 24 ,       1 ,      84 ,      20 ,      48 ,       1 ,       1 ,       1 ,   80640 ,         1
     ,
     26, TIDL_ConvolutionLayer         , ctx_output2/relu_mbox_loc                 1,   1 ,  1 ,  17 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 26 ,       1 ,     256 ,      10 ,      24 ,       1 ,      24 ,      10 ,      24 ,   1474560
     ,
     27, TIDL_FlattenLayer             , ctx_output2/relu_mbox_loc_perm            1,   1 ,  1 ,  26 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 27 ,       1 ,      24 ,      10 ,      24 ,       1 ,       1 ,       1 ,    5760 ,         1
     ,
     28, TIDL_ConvolutionLayer         , ctx_output2/relu_mbox_conf                1,   1 ,  1 ,  17 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 28 ,       1 ,     256 ,      10 ,      24 ,       1 ,     126 ,      10 ,      24 ,   7741440
     ,
     29, TIDL_FlattenLayer             , ctx_output2/relu_mbox_conf_perm           1,   1 ,  1 ,  28 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 29 ,       1 ,     126 ,      10 ,      24 ,       1 ,       1 ,       1 ,   30240 ,         1
     ,
     31, TIDL_ConvolutionLayer         , ctx_output3/relu_mbox_loc                 1,   1 ,  1 ,  18 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 31 ,       1 ,     256 ,       5 ,      12 ,       1 ,      24 ,       5 ,      12 ,    368640
     ,
     32, TIDL_FlattenLayer             , ctx_output3/relu_mbox_loc_perm            1,   1 ,  1 ,  31 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 32 ,       1 ,      24 ,       5 ,      12 ,       1 ,       1 ,       1 ,    1440 ,         1
     ,
     33, TIDL_ConvolutionLayer         , ctx_output3/relu_mbox_conf                1,   1 ,  1 ,  18 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 33 ,       1 ,     256 ,       5 ,      12 ,       1 ,     126 ,       5 ,      12 ,   1935360
     ,
     34, TIDL_FlattenLayer             , ctx_output3/relu_mbox_conf_perm           1,   1 ,  1 ,  33 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 34 ,       1 ,     126 ,       5 ,      12 ,       1 ,       1 ,       1 ,    7560 ,         1
     ,
     36, TIDL_ConvolutionLayer         , ctx_output4/relu_mbox_loc                 1,   1 ,  1 ,  19 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 36 ,       1 ,     256 ,       3 ,       6 ,       1 ,      24 ,       3 ,       6 ,    110592
     ,
     37, TIDL_FlattenLayer             , ctx_output4/relu_mbox_loc_perm            1,   1 ,  1 ,  36 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 37 ,       1 ,      24 ,       3 ,       6 ,       1 ,       1 ,       1 ,     432 ,         1
     ,
     38, TIDL_ConvolutionLayer         , ctx_output4/relu_mbox_conf                1,   1 ,  1 ,  19 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 38 ,       1 ,     256 ,       3 ,       6 ,       1 ,     126 ,       3 ,       6 ,    580608
     ,
     39, TIDL_FlattenLayer             , ctx_output4/relu_mbox_conf_perm           1,   1 ,  1 ,  38 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 39 ,       1 ,     126 ,       3 ,       6 ,       1 ,       1 ,       1 ,    2268 ,         1
     ,
     41, TIDL_ConvolutionLayer         , ctx_output5/relu_mbox_loc                 1,   1 ,  1 ,  20 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 41 ,       1 ,     256 ,       2 ,       3 ,       1 ,      16 ,       2 ,       3 ,     24576
     ,
     42, TIDL_FlattenLayer             , ctx_output5/relu_mbox_loc_perm            1,   1 ,  1 ,  41 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 42 ,       1 ,      16 ,       2 ,       3 ,       1 ,       1 ,       1 ,      96 ,         1
     ,
     43, TIDL_ConvolutionLayer         , ctx_output5/relu_mbox_conf                1,   1 ,  1 ,  20 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 43 ,       1 ,     256 ,       2 ,       3 ,       1 ,      84 ,       2 ,       3 ,    129024
     ,
     44, TIDL_FlattenLayer             , ctx_output5/relu_mbox_conf_perm           1,   1 ,  1 ,  43 ,  x ,  x ,  x ,
     x ,  x ,  x ,  x , 44 ,       1 ,      84 ,       2 ,       3 ,       1 ,       1 ,       1 ,     504 ,         1
     ,
     46, TIDL_ConcatLayer              , mbox_loc                                  1,   5 ,  1 ,  22 , 27 , 32 , 37 ,
    42 ,  x ,  x ,  x , 46 ,       1 ,       1 ,       1 ,   15360 ,       1 ,       1 ,       1 ,   23088 ,         1
     ,
     47, TIDL_ConcatLayer              , mbox_conf                                 1,   5 ,  1 ,  24 , 29 , 34 , 39 ,
    44 ,  x ,  x ,  x , 47 ,       1 ,       1 ,       1 ,   80640 ,       1 ,       1 ,       1 ,  121212 ,         1
     ,
     49, TIDL_DetectionOutputLayer     , detection_out                             2,   2 ,  1 ,  46 , 47 ,  x ,  x ,
     x ,  x ,  x ,  x , 49 ,       1 ,       1 ,       1 ,   23088 ,       1 ,       1 ,       1 ,     560 ,         1
     ,
    Total Giga Macs : 2.1312
            1개 파일이 복사되었습니다.
    
    Processing config file .\tempDir\qunat_stats_config.txt !
      0, TIDL_DataLayer                ,  0,  -1 ,  1 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  0 ,    0 ,    0 ,
    0 ,    0 ,    1 ,    3 ,  320 ,  768 ,
      1, TIDL_BatchNormLayer           ,  1,   1 ,  1 ,  0 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  1 ,    1 ,    3 ,  32
    0 ,  768 ,    1 ,    3 ,  320 ,  768 ,
      2, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  1 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  2 ,    1 ,    3 ,  32
    0 ,  768 ,    1 ,   32 ,  160 ,  384 ,
      3, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  2 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  3 ,    1 ,   32 ,  16
    0 ,  384 ,    1 ,   32 ,   80 ,  192 ,
      4, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  3 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  4 ,    1 ,   32 ,   8
    0 ,  192 ,    1 ,   64 ,   80 ,  192 ,
      5, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  4 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  5 ,    1 ,   64 ,   8
    0 ,  192 ,    1 ,   64 ,   40 ,   96 ,
      6, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  5 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  6 ,    1 ,   64 ,   4
    0 ,   96 ,    1 ,  128 ,   40 ,   96 ,
      7, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  6 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  7 ,    1 ,  128 ,   4
    0 ,   96 ,    1 ,  128 ,   20 ,   48 ,
      8, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  7 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  8 ,    1 ,  128 ,   2
    0 ,   48 ,    1 ,  256 ,   20 ,   48 ,
      9, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  8 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  9 ,    1 ,  256 ,   2
    0 ,   48 ,    1 ,  256 ,   20 ,   48 ,
     10, TIDL_PoolingLayer             ,  1,   1 ,  1 ,  9 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 10 ,    1 ,  256 ,   2
    0 ,   48 ,    1 ,  256 ,   10 ,   24 ,
     11, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 10 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 11 ,    1 ,  256 ,   1
    0 ,   24 ,    1 ,  512 ,   10 ,   24 ,
     12, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 11 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 12 ,    1 ,  512 ,   1
    0 ,   24 ,    1 ,  512 ,   10 ,   24 ,
     13, TIDL_PoolingLayer             ,  1,   1 ,  1 , 12 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 13 ,    1 ,  512 ,   1
    0 ,   24 ,    1 ,  512 ,    5 ,   12 ,
     14, TIDL_PoolingLayer             ,  1,   1 ,  1 , 13 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 14 ,    1 ,  512 ,
    5 ,   12 ,    1 ,  512 ,    3 ,    6 ,
     15, TIDL_PoolingLayer             ,  1,   1 ,  1 , 14 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 15 ,    1 ,  512 ,
    3 ,    6 ,    1 ,  512 ,    2 ,    3 ,
     16, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  9 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 16 ,    1 ,  256 ,   2
    0 ,   48 ,    1 ,  256 ,   20 ,   48 ,
     17, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 12 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 17 ,    1 ,  512 ,   1
    0 ,   24 ,    1 ,  256 ,   10 ,   24 ,
     18, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 13 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 18 ,    1 ,  512 ,
    5 ,   12 ,    1 ,  256 ,    5 ,   12 ,
     19, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 14 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 19 ,    1 ,  512 ,
    3 ,    6 ,    1 ,  256 ,    3 ,    6 ,
     20, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 15 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 20 ,    1 ,  512 ,
    2 ,    3 ,    1 ,  256 ,    2 ,    3 ,
     21, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 16 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 21 ,    1 ,  256 ,   2
    0 ,   48 ,    1 ,   16 ,   20 ,   48 ,
     22, TIDL_FlattenLayer             ,  1,   1 ,  1 , 21 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 22 ,    1 ,   16 ,   2
    0 ,   48 ,    1 ,    1 ,    1 ,15360 ,
     23, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 16 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 23 ,    1 ,  256 ,   2
    0 ,   48 ,    1 ,   84 ,   20 ,   48 ,
     24, TIDL_FlattenLayer             ,  1,   1 ,  1 , 23 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 24 ,    1 ,   84 ,   2
    0 ,   48 ,    1 ,    1 ,    1 ,80640 ,
     25, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 17 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 26 ,    1 ,  256 ,   1
    0 ,   24 ,    1 ,   24 ,   10 ,   24 ,
     26, TIDL_FlattenLayer             ,  1,   1 ,  1 , 26 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 27 ,    1 ,   24 ,   1
    0 ,   24 ,    1 ,    1 ,    1 , 5760 ,
     27, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 17 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 28 ,    1 ,  256 ,   1
    0 ,   24 ,    1 ,  126 ,   10 ,   24 ,
     28, TIDL_FlattenLayer             ,  1,   1 ,  1 , 28 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 29 ,    1 ,  126 ,   1
    0 ,   24 ,    1 ,    1 ,    1 ,30240 ,
     29, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 18 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 31 ,    1 ,  256 ,
    5 ,   12 ,    1 ,   24 ,    5 ,   12 ,
     30, TIDL_FlattenLayer             ,  1,   1 ,  1 , 31 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 32 ,    1 ,   24 ,
    5 ,   12 ,    1 ,    1 ,    1 , 1440 ,
     31, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 18 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 33 ,    1 ,  256 ,
    5 ,   12 ,    1 ,  126 ,    5 ,   12 ,
     32, TIDL_FlattenLayer             ,  1,   1 ,  1 , 33 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 34 ,    1 ,  126 ,
    5 ,   12 ,    1 ,    1 ,    1 , 7560 ,
     33, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 19 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 36 ,    1 ,  256 ,
    3 ,    6 ,    1 ,   24 ,    3 ,    6 ,
     34, TIDL_FlattenLayer             ,  1,   1 ,  1 , 36 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 37 ,    1 ,   24 ,
    3 ,    6 ,    1 ,    1 ,    1 ,  432 ,
     35, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 19 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 38 ,    1 ,  256 ,
    3 ,    6 ,    1 ,  126 ,    3 ,    6 ,
     36, TIDL_FlattenLayer             ,  1,   1 ,  1 , 38 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 39 ,    1 ,  126 ,
    3 ,    6 ,    1 ,    1 ,    1 , 2268 ,
     37, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 20 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 41 ,    1 ,  256 ,
    2 ,    3 ,    1 ,   16 ,    2 ,    3 ,
     38, TIDL_FlattenLayer             ,  1,   1 ,  1 , 41 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 42 ,    1 ,   16 ,
    2 ,    3 ,    1 ,    1 ,    1 ,   96 ,
     39, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 20 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 43 ,    1 ,  256 ,
    2 ,    3 ,    1 ,   84 ,    2 ,    3 ,
     40, TIDL_FlattenLayer             ,  1,   1 ,  1 , 43 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 44 ,    1 ,   84 ,
    2 ,    3 ,    1 ,    1 ,    1 ,  504 ,
     41, TIDL_ConcatLayer              ,  1,   5 ,  1 , 22 , 27 , 32 , 37 , 42 ,  x ,  x ,  x , 46 ,    1 ,    1 ,
    1 ,15360 ,    1 ,    1 ,    1 ,23088 ,
     42, TIDL_ConcatLayer              ,  1,   5 ,  1 , 24 , 29 , 34 , 39 , 44 ,  x ,  x ,  x , 47 ,    1 ,    1 ,
    1 ,80640 ,    1 ,    1 ,    1 ,121212 ,
     43, TIDL_DetectionOutputLayer     ,  1,   2 ,  1 , 46 , 47 ,  x ,  x ,  x ,  x ,  x ,  x , 49 ,    1 ,    1 ,
    1 ,23088 ,    1 ,    1 ,    1 ,  560 ,
     44, TIDL_DataLayer                ,  0,   1 , -1 , 49 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  0 ,    1 ,    1 ,
    1 ,  560 ,    0 ,    0 ,    0 ,    0 ,
    Layer ID    ,inBlkWidth  ,inBlkHeight ,inBlkPitch  ,outBlkWidth ,outBlkHeight,outBlkPitch ,numInChs    ,numOutChs
      ,numProcInChs,numLclInChs ,numLclOutChs,numProcItrs ,numAccItrs  ,numHorBlock ,numVerBlock ,inBlkChPitch,outBlkC
    hPitc,alignOrNot
          2           72           72           72           32           32           32            3           32
             3            1            8            1            3           12            5         5184         1024
                1
          3           40           34           40           32           32           32            8            8
             8            4            8            1            2           12            5         1360         1024
                1
          4           40           22           40           32           20           32           32           64
            32            8            8            1            4            6            4          880          640
                1
          5           40           22           40           32           20           32           16           16
            16            8            8            1            2            6            4          880          640
                1
          6           40           22           40           32           20           32           64          128
            64            8            8            1            8            3            2          880          640
                1
          7           40           22           40           32           20           32           32           32
            32            8            8            1            4            3            2          880          640
                1
          8           56           22           56           48           20           48          128          256
           128            7            8            1           19            1            1         1232          960
                1
          9           56           22           56           48           20           48           64           64
            64            7            8            1           10            1            1         1232          960
                1
         11           40           12           40           32           10           32          256          512
           256            8            8            1           32            1            1          480          320
                1
         12           40           12           40           32           10           32          128          128
           128            8            8            1           16            1            1          480          320
                1
         16           48            4           48           48            4           48          256          256
           256           32            8            1            8            1            5          192          192
                1
         17           24           10           24           24           10           24          512          256
           512           32           32            1           16            1            1          240          240
                1
         18           12            5           12           12            5           12          512          256
           512           32           32            1           16            1            1           60           60
                1
         19            6            3            6            6            3            6          512          256
           512           32           32            1           16            1            1           18           18
                1
         20            3            2            3            3            2            3          512          256
           512           32           32            1           16            1            1            6            6
                1
         21           48            4           48           48            4           48          256           16
           256           32            8            1            8            1            5          192          192
                1
         23           48            4           48           48            4           48          256           88
           256           32            8            1            8            1            5          192          192
                1
         25           24           10           24           24           10           24          256           24
           256           32           24            1            8            1            1          240          240
                1
         27           24           10           24           24           10           24          256          128
           256           32           32            1            8            1            1          240          240
                1
         29           12            5           12           12            5           12          256           24
           256           32           24            1            8            1            1           60           60
                1
         31           12            5           12           12            5           12          256          128
           256           32           32            1            8            1            1           60           60
                1
         33            6            3            6            6            3            6          256           24
           256           32           24            1            8            1            1           18           18
                1
         35            6            3            6            6            3            6          256          128
           256           32           32            1            8            1            1           18           18
                1
         37            3            2            3            3            2            3          256           16
           256           32           16            1            8            1            1            6            6
                1
         39            3            2            3            3            2            3          256           96
           256           32           32            1            8            1            1            6            6
                1
    
    Processing Frame Number : 0
    
     Layer    1 : Out Q :      254 , TIDL_BatchNormLayer  , PASSED  #MMACs =     0.74,     0.74, Sparsity :   0.00
     Layer    2 : Out Q :     4787 , TIDL_ConvolutionLayer, PASSED  #MMACs =   147.46,    92.65, Sparsity :  37.17
     Layer    3 : Out Q :     4230 , TIDL_ConvolutionLayer, PASSED  #MMACs =   141.56,    53.33, Sparsity :  62.33
     Layer    4 : Out Q :     7280 , TIDL_ConvolutionLayer, PASSED  #MMACs =   283.12,    83.44, Sparsity :  70.53
     Layer    5 : Out Q :    10223 , TIDL_ConvolutionLayer, PASSED  #MMACs =   141.56,    66.11, Sparsity :  53.30
     Layer    6 : Out Q :     8988 , TIDL_ConvolutionLayer, PASSED  #MMACs =   283.12,    91.59, Sparsity :  67.65
     Layer    7 : Out Q :    10923 , TIDL_ConvolutionLayer, PASSED  #MMACs =   141.56,    57.32, Sparsity :  59.51
     Layer    8 : Out Q :    20852 , TIDL_ConvolutionLayer, PASSED  #MMACs =   283.12,    96.27, Sparsity :  66.00
     Layer    9 : Out Q :    18101 , TIDL_ConvolutionLayer, PASSED  #MMACs =   141.56,    52.28, Sparsity :  63.07
     Layer   10 :TIDL_PoolingLayer,     PASSED  #MMACs =     0.06,     0.06, Sparsity :   0.00
     Layer   11 : Out Q :    27171 , TIDL_ConvolutionLayer, PASSED  #MMACs =   283.12,    76.31, Sparsity :  73.04
     Layer   12 : Out Q :     5405 , TIDL_ConvolutionLayer, PASSED  #MMACs =   141.56,    31.40, Sparsity :  77.82
     Layer   13 :TIDL_PoolingLayer,     PASSED  #MMACs =     0.03,     0.03, Sparsity :   0.00
     Layer   14 :TIDL_PoolingLayer,     PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
     Layer   15 :TIDL_PoolingLayer,     PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
     Layer   16 : Out Q :    15924 , TIDL_ConvolutionLayer, PASSED  #MMACs =    62.91,    62.91, Sparsity :   0.00
     Layer   17 : Out Q :    10177 , TIDL_ConvolutionLayer, PASSED  #MMACs =    31.46,    31.46, Sparsity :   0.00
     Layer   18 : Out Q :    14028 , TIDL_ConvolutionLayer, PASSED  #MMACs =     7.86,     7.86, Sparsity :   0.00
     Layer   19 : Out Q :    17569 , TIDL_ConvolutionLayer, PASSED  #MMACs =     2.36,     2.36, Sparsity :   0.00
     Layer   20 : Out Q :    26121 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.79,     0.79, Sparsity :   0.00
     Layer   21 : Out Q :     4366 , TIDL_ConvolutionLayer, PASSED  #MMACs =     3.93,     3.93, Sparsity :   0.00
     Layer   22 :TIDL_FlattenLayer, PASSED  #MMACs =     0.02,     0.02, Sparsity :   0.00
     Layer   23 : Out Q :     3862 , TIDL_ConvolutionLayer, PASSED  #MMACs =    21.63,    21.63, Sparsity :   0.00
     Layer   24 :TIDL_FlattenLayer, PASSED  #MMACs =     0.08,     0.08, Sparsity :   0.00
     Layer   25 : Out Q :     5460 , TIDL_ConvolutionLayer, PASSED  #MMACs =     1.47,     1.47, Sparsity :   0.00
     Layer   26 :TIDL_FlattenLayer, PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
     Layer   27 : Out Q :     2597 , TIDL_ConvolutionLayer, PASSED  #MMACs =     7.86,     7.86, Sparsity :   0.00
     Layer   28 :TIDL_FlattenLayer, PASSED  #MMACs =     0.03,     0.03, Sparsity :   0.00
     Layer   29 : Out Q :     6983 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.37,     0.37, Sparsity :   0.00
     Layer   30 :TIDL_FlattenLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
     Layer   31 : Out Q :     2508 , TIDL_ConvolutionLayer, PASSED  #MMACs =     1.97,     1.97, Sparsity :   0.00
     Layer   32 :TIDL_FlattenLayer, PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
     Layer   33 : Out Q :     9470 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.11,     0.11, Sparsity :   0.00
     Layer   34 :TIDL_FlattenLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
     Layer   35 : Out Q :     3264 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.59,     0.59, Sparsity :   0.00
     Layer   36 :TIDL_FlattenLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
     Layer   37 : Out Q :     8417 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.02,     0.02, Sparsity :   0.00
     Layer   38 :TIDL_FlattenLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
     Layer   39 : Out Q :     3940 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.15,     0.15, Sparsity :   0.00
     Layer   40 :TIDL_FlattenLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
     Layer   41 : Out Q :     4383 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :  -1.#J
     Layer   42 : Out Q :     2518 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :  -1.#J
     Layer   43 : #MMACs =     0.00,     0.00, Sparsity :   0.00
    End of config list found !
    
    c:\PROCESSOR_SDK_VISION_03_03_00_00\ti_components\algorithms\REL.TIDLSRC.01.01.02.00\modules\ti_dl\utils\tidlModel
    Import>

    What else should I check?

    Thank you for your help.

    BR,

    Khethan

  • Hi Khethan,

    Can you share your output ?

    Thanks,
    Praveen
  • Hi Praveen,

    Here I attach the output for the input.

    tempDir.zip

    BR,

    Khethan

  • Hi Praveen,

    I have tested on TDA2P EVM, but the output data is initialized as below attachment files.

    evm_output.zip

    This phenomenon seems to be the same in PC simulation mode.

    As mentioned earlier, if I use eve_test_dl_algo.out.exe, which is included in the package by default, the output is very good.

    The TIDL build was referenced in the TIDeepLearningLibrary_UserGuide.pdf document.

    BR,

    Khethan

  • Hi Praveen,

    I tried to compile eve and dsp again with TIDL_SRC(1.1.2), and confirmed that the generated file (dsp_test_dl_algo.out, eve_test_dl_algo.out) works fine on EVM through CCS as output file(stats_tool_out.bin).

    However, when I execute the same model file with "tidl od usecase" in EVM(sd_boot), the video is played but the bbox is not displayed.

    please refer my data.

    eve_data_log.zip

    I would appreciate your advice on what went wrong.

    BR,

    Khethan

  • Hi Khethan,

    Were you able get TIDL Usecase working as is from release package?

    Thanks,
    Praveen
  • Hi Praveen,

    The package(3.3.0.0) which i use current was not supported TIDL usecase for TDA2P, but I confirmed that it works well after modifying the chain etc with reference to TDA2X.

    Regarding above issue,  It was related to layersGroupId valule in tidl_import_JDetNex.txt.

    When I values just change as below regardless of version, the problem was solved.

    before:

    layersGroupId = 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 0

    conv2dKernelType = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

    after:

    layersGroupId = 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 0
    conv2dKernelType = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

    But there was another problem.


    1. When tidl usecase is executed, bbox is not displayed from the beginning and box is displayed from about 20sec of video.

    2. When video(inData and inHeader) are replaced with mine, frame is played at 1 ~ 2fps slowly, resulting in frame reversal. the Problem is not reproduced when using ti demo clip.

        I made this clip using the program(ffmpeg&ffprobe&sizeBin) and It seem like to have no problem.

    BR,

    Khethan

  • Hi Praveen

    #1

    I have reduced the time to 6sec by adjusting parameters( quantHistoryParam1 / 2 and quantMargin) as below.

          20, 5, 0   -> 40, 40, 40

    Is there any problem using this value? How can we reduce the lead time further?

    I have read  for the doc(tidl user guide) for parameter but I do not understand it enough.

    could you please explain about the parameter in detail(unit.etc)

    #2

    The attached log file does not seem to be a problem.

    revers_sym_log.txt

    Referencing  TIDeepLearningLibrary_UserGuide.pdf 3.7 (Input and Output Data Formats), clip format is below. right?

          width: 760(video)+4(MAX_PAD), height; 312(video)+4(MAX_PAD)

     If it is not related to it, What should I do ?

    BR,

    Khethan

  • I am sorry,

    The clip size should be modified as follows due to my mistake
    width: 760(video)+2*4(MAX_PAD), height; 312(video)+2*4(MAX_PAD)

    BR,
    Khethan
  • Hi Khethan,

    #1

    The lead time can not be reduced by changing these quant parameters, these parameters are used to improve the accuracy, I explained these parameters in detail below,

    In TIDL, we use the current computation of min and max to update the quantization parameters for next frame. We don’t directly use it in the next frame, we gradually update.
    This quantHistoryParam1 / 2 and quantMargin values are used to control, how fast we need update the quantization parameter.
    If quantHistoryParam1 / 2 are higher than the update will happen faster.
    QuantMargin controls the margin that would want for max to grow.

    #2

    Yes, this padding is correct

    Thanks,
    Praveen
  • Hi Praveen,

    My issue was solved
    Thank you for your support.

    BR,
    Khethan