Hi,
I have trained ssdJacintoNetV2 into 27 classes and converted them to bin files using the import utility。
I also modify the deploy.prototxt in the end filed " keep_top_k: 20 confidence_threshold: 0.15 ", But this tidl od_usecase just can only run for 1 frame ,
I also use the openvx_TIDL usecase test,list below: the DSP still runs a long time,why?
# Default - 0 randParams = 0 # 0: Caffe, 1: TensorFlow, Default - 0 modelType = 0 # 0: Fixed quantization By tarininng Framework, 1: Dyanamic quantization by TIDL, Default - 1 quantizationStyle = 1 # quantRoundAdd/100 will be added while rounding to integer, Default - 50 quantRoundAdd = 25 numParamBits = 8 # 0 : 8bit Unsigned, 1 : 8bit Signed Default - 1 inElementType = 0 inputNetFile = "deploy.prototxt" inputParamsFile = "voc0712_ssdJacintoNetV2_iter_120000_spare.caffemodel" outputNetFile = "tidl_net_jdetNet_ssd.bin" outputParamsFile = "tidl_param_jdetNet_ssd.bin" rawSampleInData = 1 preProcType = 4 sampleInData = "trace_dump_0_768x320.y" tidlStatsTool = "eve_test_dl_algo.out.exe" layersGroupId = 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 0 conv2dKernelType = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[IPU1-0] 18.804611 s: Enter Choice:
[IPU1-0] 18.804764 s: vx_tutorial_tidl: Tutorial Started !!!
[IPU1-0] 18.821692 s: Reading config file sd:test_data//tivx/tidl/tidl_infer.cfg ...
[IPU1-0] 18.867809 s: Reading network file sd:test_data//./tivx/tidl/tidl_net_jdetNet_ssd.bin
[IPU1-0] ...
[IPU1-0] 19.644878 s: Reading network params file sd:test_data//./tivx/tidl/tidl_param_jdetNet_ssd.bin
[IPU1-0] ...
[IPU1-0] 23.586561 s:
[IPU1-0] 23.586683 s: Thread #1: Create graph ...
[IPU1-0] 23.587659 s: Thread #1: Create input and output tensors for node 1 ...
[IPU1-0] 23.588635 s: Thread #1: Create node 1 ...
[IPU1-0] 23.605075 s: Thread #1: Create output tensors for node 2 ...
[IPU1-0] 23.605532 s: Thread #1: Create node 2 ...
[IPU1-0] 23.621576 s:
[IPU1-0] 23.621759 s: Thread #1: Verify graph ...
[IPU1-0] 26.613707 s:
[IPU1-0] 26.614103 s: Thread #1: Start graph ...
[IPU1-0] 26.614256 s:
[IPU1-0] 26.614378 s: Thread #1: Wait for graph ...
[IPU1-0] 26.924723 s:
[IPU1-0] 26.924876 s: Thread #1: Results
[IPU1-0] 26.924998 s: ---------------------
[IPU1-0] 26.925211 s:
[IPU1-0] 26.925333 s: ObjId|label|score| xmin| ymin| xmax| ymax|
[IPU1-0] 26.925486 s: ------------------------------------------
[IPU1-0] 26.925730 s: 0| 14| 1.00| 0.64| 0.33| 0.80| 0.90|
[IPU1-0] 26.926005 s: 1| 20| 1.00| 0.44| 0.46| 0.65| 0.90|
[IPU1-0] 26.926218 s: 2| 20| 1.00| 0.05| 0.35| 0.20| 0.68|
[IPU1-0] 26.926432 s: 3| 11| 1.00| 0.73| 0.42| 0.85| 0.87|
[IPU1-0] 26.926676 s: 4| 2| 1.00| 0.55| 0.16| 0.78| 0.91|
[IPU1-0] 26.926920 s: 5| 2| 1.00|-0.25| 0.03| 0.18| 0.59|
[IPU1-0] 26.927133 s: 6| 12| 1.00| 0.12| 0.26| 0.27| 0.65|
[IPU1-0] 26.927347 s: 7| 16| 1.00|-0.01| 0.14| 0.26| 0.59|
[IPU1-0] 26.927560 s: 8| 16| 1.00| 0.35| 0.18| 0.57| 0.61|
[IPU1-0] 26.927804 s: 9| 21| 1.00| 0.84| 0.61| 0.92| 0.96|
[IPU1-0] 26.928018 s: 10| 2| 1.00| 0.85| 0.56| 0.90| 0.93|
[IPU1-0] 26.928262 s: 11| 21| 1.00| 0.27| 0.46| 0.33| 0.83|
[IPU1-0] 26.928475 s: 12| 21| 1.00| 0.51| 0.36| 0.58| 0.72|
[IPU1-0] 26.928689 s: 13| 15| 1.00| 0.16| 0.25| 0.25| 0.70|
[IPU1-0] 26.929116 s: 14| 21| 1.00| 0.01| 0.07| 0.12| 0.50|
[IPU1-0] 26.929360 s: 15| 21| 1.00| 0.84|-0.06| 0.91| 0.41|
[IPU1-0] 26.929573 s: 16| 21| 1.00| 0.59|-0.08| 0.66| 0.39|
[IPU1-0] 26.929817 s: 17| 15| 1.00| 0.85| 0.59| 0.95| 0.83|
[IPU1-0] 26.930061 s: 18| 26| 1.00| 0.10| 0.58| 0.19| 0.74|
[IPU1-0] 26.930305 s: 19| 26| 1.00| 0.76| 0.45| 0.97| 0.66|
[IPU1-0] 26.930366 s:
[IPU1-0] 26.930458 s: Number of detected objects: 20
[IPU1-0] 26.930519 s:
[IPU1-0] 26.930610 s:
[IPU1-0] 26.930793 s: ---- Thread #1: Node 1 (EVE-1) Execution time: 138.622000 ms
[IPU1-0] 26.931068 s: ---- Thread #1: Node 2 (DSP-1) Execution time: 171.431000 ms
[IPU1-0] 26.931312 s: ---- Thread #1: Total Graph Execution time: 310.458000 ms
and my import tools log,and what is meaning of the red word?:
randParams = 0
modelType = 0
quantizationStyle = 1
quantRoundAdd = 25
numParamBits = 8
preProcType = 4
inElementType = 0
numFrames = -1
rawSampleInData = 1
numSampleInData = 1
foldBnInConv2D = 1
inWidth = -1
inHeight = -1
inNumChannels = -1
sampleInData = trace_dump_0_768x320.y
tidlStatsTool = eve_test_dl_algo.out.exe
inputNetFile = deploy.prototxt
inputParamsFile = voc0712_ssdJacintoNetV2_iter_120000_spare.caffemodel
outputNetFile = tidl_net_jdetNet_ssd.bin
outputParamsFile = tidl_param_jdetNet_ssd.bin
conv2dKernelType = 0
layersGroupId = 0
Caffe Network File : deploy.prototxt
Caffe Model File : voc0712_ssdJacintoNetV2_iter_120000_spare.caffemodel
TIDL Network File : tidl_net_jdetNet_ssd.bin
TIDL Model File : tidl_param_jdetNet_ssd.bin
Name of the Network : ssdJacintoNetV2_deploy
Num Inputs : 1
Kernel Size not matching 65536 !!Setting RAND Kernel Params for Layer ctx_output1
Kernel Size not matching 21504 !!Setting RAND Kernel Params for Layer ctx_output1/relu_mbox_conf
Bias Size not matching!!Setting RAND BIAS Params for Layer ctx_output1/relu_mbox_conf
Kernel Size not matching 32256 !!Setting RAND Kernel Params for Layer ctx_output2/relu_mbox_conf
Bias Size not matching!!Setting RAND BIAS Params for Layer ctx_output2/relu_mbox_conf
Kernel Size not matching 32256 !!Setting RAND Kernel Params for Layer ctx_output3/relu_mbox_conf
Bias Size not matching!!Setting RAND BIAS Params for Layer ctx_output3/relu_mbox_conf
Kernel Size not matching 32256 !!Setting RAND Kernel Params for Layer ctx_output4/relu_mbox_conf
Bias Size not matching!!Setting RAND BIAS Params for Layer ctx_output4/relu_mbox_conf
Kernel Size not matching 21504 !!Setting RAND Kernel Params for Layer ctx_output5/relu_mbox_conf
Bias Size not matching!!Setting RAND BIAS Params for Layer ctx_output5/relu_mbox_conf
Num of Layer Detected : 50
0, TIDL_DataLayer , data 0, -1 , 1 , x , x , x , x , x , x , x , x , 0 , 0 , 0 , 0 , 0 , 1 , 3 , 320 , 768 , 0 ,
1, TIDL_BatchNormLayer , data/bias 1, 1 , 1 , 0 , x , x , x , x , x , x , x , 1 , 1 , 3 , 320 , 768 , 1 , 3 , 320 , 768 , 737280 ,
2, TIDL_ConvolutionLayer , conv1a 1, 1 , 1 , 1 , x , x , x , x , x , x , x , 2 , 1 , 3 , 320 , 768 , 1 , 32 , 160 , 384 , 147456000 ,
3, TIDL_ConvolutionLayer , conv1b 1, 1 , 1 , 2 , x , x , x , x , x , x , x , 3 , 1 , 32 , 160 , 384 , 1 , 32 , 80 , 192 , 141557760 ,
4, TIDL_ConvolutionLayer , res2a_branch2a 1, 1 , 1 , 3 , x , x , x , x , x , x , x , 4 , 1 , 32 , 80 , 192 , 1 , 64 , 80 , 192 , 283115520 ,
5, TIDL_ConvolutionLayer , res2a_branch2b 1, 1 , 1 , 4 , x , x , x , x , x , x , x , 5 , 1 , 64 , 80 , 192 , 1 , 64 , 40 , 96 , 141557760 ,
6, TIDL_ConvolutionLayer , res3a_branch2a 1, 1 , 1 , 5 , x , x , x , x , x , x , x , 6 , 1 , 64 , 40 , 96 , 1 , 128 , 40 , 96 , 283115520 ,
7, TIDL_ConvolutionLayer , res3a_branch2b 1, 1 , 1 , 6 , x , x , x , x , x , x , x , 7 , 1 , 128 , 40 , 96 , 1 , 128 , 40 , 96 , 141557760 ,
8, TIDL_PoolingLayer , pool3 1, 1 , 1 , 7 , x , x , x , x , x , x , x , 8 , 1 , 128 , 40 , 96 , 1 , 128 , 20 , 48 , 491520 ,
9, TIDL_ConvolutionLayer , res4a_branch2a 1, 1 , 1 , 8 , x , x , x , x , x , x , x , 9 , 1 , 128 , 20 , 48 , 1 , 256 , 20 , 48 , 283115520 ,
10, TIDL_ConvolutionLayer , res4a_branch2b 1, 1 , 1 , 9 , x , x , x , x , x , x , x , 10 , 1 , 256 , 20 , 48 , 1 , 256 , 10 , 24 , 141557760 ,
11, TIDL_ConvolutionLayer , res5a_branch2a 1, 1 , 1 , 10 , x , x , x , x , x , x , x , 11 , 1 , 256 , 10 , 24 , 1 , 512 , 10 , 24 , 283115520 ,
12, TIDL_ConvolutionLayer , res5a_branch2b 1, 1 , 1 , 11 , x , x , x , x , x , x , x , 12 , 1 , 512 , 10 , 24 , 1 , 512 , 10 , 24 , 141557760 ,
13, TIDL_PoolingLayer , pool6 1, 1 , 1 , 12 , x , x , x , x , x , x , x , 13 , 1 , 512 , 10 , 24 , 1 , 512 , 5 , 12 , 122880 ,
14, TIDL_PoolingLayer , pool7 1, 1 , 1 , 13 , x , x , x , x , x , x , x , 14 , 1 , 512 , 5 , 12 , 1 , 512 , 3 , 6 , 36864 ,
15, TIDL_PoolingLayer , pool8 1, 1 , 1 , 14 , x , x , x , x , x , x , x , 15 , 1 , 512 , 3 , 6 , 1 , 512 , 2 , 3 , 12288 ,
16, TIDL_ConvolutionLayer , ctx_output1 1, 1 , 1 , 7 , x , x , x , x , x , x , x , 16 , 1 , 128 , 40 , 96 , 1 , 256 , 40 , 96 , 125829120 ,
17, TIDL_ConvolutionLayer , ctx_output2 1, 1 , 1 , 12 , x , x , x , x , x , x , x , 17 , 1 , 512 , 10 , 24 , 1 , 256 , 10 , 24 , 31457280 ,
18, TIDL_ConvolutionLayer , ctx_output3 1, 1 , 1 , 13 , x , x , x , x , x , x , x , 18 , 1 , 512 , 5 , 12 , 1 , 256 , 5 , 12 , 7864320 ,
19, TIDL_ConvolutionLayer , ctx_output4 1, 1 , 1 , 14 , x , x , x , x , x , x , x , 19 , 1 , 512 , 3 , 6 , 1 , 256 , 3 , 6 , 2359296 ,
20, TIDL_ConvolutionLayer , ctx_output5 1, 1 , 1 , 15 , x , x , x , x , x , x , x , 20 , 1 , 512 , 2 , 3 , 1 , 256 , 2 , 3 , 786432 ,
21, TIDL_ConvolutionLayer , ctx_output1/relu_mbox_loc 1, 1 , 1 , 16 , x , x , x , x , x , x , x , 21 , 1 , 256 , 40 , 96 , 1 , 16 , 40 , 96 , 15728640 ,
22, TIDL_FlattenLayer , ctx_output1/relu_mbox_loc_perm 1, 1 , 1 , 21 , x , x , x , x , x , x , x , 22 , 1 , 16 , 40 , 96 , 1 , 1 , 1 , 61440 , 1 ,
23, TIDL_ConvolutionLayer , ctx_output1/relu_mbox_conf 1, 1 , 1 , 16 , x , x , x , x , x , x , x , 23 , 1 , 256 , 40 , 96 , 1 , 112 , 40 , 96 , 110100480 ,
24, TIDL_FlattenLayer , ctx_output1/relu_mbox_conf_perm 1, 1 , 1 , 23 , x , x , x , x , x , x , x , 24 , 1 , 112 , 40 , 96 , 1 , 1 , 1 , 430080 , 1 ,
26, TIDL_ConvolutionLayer , ctx_output2/relu_mbox_loc 1, 1 , 1 , 17 , x , x , x , x , x , x , x , 26 , 1 , 256 , 10 , 24 , 1 , 24 , 10 , 24 , 1474560 ,
27, TIDL_FlattenLayer , ctx_output2/relu_mbox_loc_perm 1, 1 , 1 , 26 , x , x , x , x , x , x , x , 27 , 1 , 24 , 10 , 24 , 1 , 1 , 1 , 5760 , 1 ,
28, TIDL_ConvolutionLayer , ctx_output2/relu_mbox_conf 1, 1 , 1 , 17 , x , x , x , x , x , x , x , 28 , 1 , 256 , 10 , 24 , 1 , 168 , 10 , 24 , 10321920 ,
29, TIDL_FlattenLayer , ctx_output2/relu_mbox_conf_perm 1, 1 , 1 , 28 , x , x , x , x , x , x , x , 29 , 1 , 168 , 10 , 24 , 1 , 1 , 1 , 40320 , 1 ,
31, TIDL_ConvolutionLayer , ctx_output3/relu_mbox_loc 1, 1 , 1 , 18 , x , x , x , x , x , x , x , 31 , 1 , 256 , 5 , 12 , 1 , 24 , 5 , 12 , 368640 ,
32, TIDL_FlattenLayer , ctx_output3/relu_mbox_loc_perm 1, 1 , 1 , 31 , x , x , x , x , x , x , x , 32 , 1 , 24 , 5 , 12 , 1 , 1 , 1 , 1440 , 1 ,
33, TIDL_ConvolutionLayer , ctx_output3/relu_mbox_conf 1, 1 , 1 , 18 , x , x , x , x , x , x , x , 33 , 1 , 256 , 5 , 12 , 1 , 168 , 5 , 12 , 2580480 ,
34, TIDL_FlattenLayer , ctx_output3/relu_mbox_conf_perm 1, 1 , 1 , 33 , x , x , x , x , x , x , x , 34 , 1 , 168 , 5 , 12 , 1 , 1 , 1 , 10080 , 1 ,
36, TIDL_ConvolutionLayer , ctx_output4/relu_mbox_loc 1, 1 , 1 , 19 , x , x , x , x , x , x , x , 36 , 1 , 256 , 3 , 6 , 1 , 24 , 3 , 6 , 110592 ,
37, TIDL_FlattenLayer , ctx_output4/relu_mbox_loc_perm 1, 1 , 1 , 36 , x , x , x , x , x , x , x , 37 , 1 , 24 , 3 , 6 , 1 , 1 , 1 , 432 , 1 ,
38, TIDL_ConvolutionLayer , ctx_output4/relu_mbox_conf 1, 1 , 1 , 19 , x , x , x , x , x , x , x , 38 , 1 , 256 , 3 , 6 , 1 , 168 , 3 , 6 , 774144 ,
39, TIDL_FlattenLayer , ctx_output4/relu_mbox_conf_perm 1, 1 , 1 , 38 , x , x , x , x , x , x , x , 39 , 1 , 168 , 3 , 6 , 1 , 1 , 1 , 3024 , 1 ,
41, TIDL_ConvolutionLayer , ctx_output5/relu_mbox_loc 1, 1 , 1 , 20 , x , x , x , x , x , x , x , 41 , 1 , 256 , 2 , 3 , 1 , 16 , 2 , 3 , 24576 ,
42, TIDL_FlattenLayer , ctx_output5/relu_mbox_loc_perm 1, 1 , 1 , 41 , x , x , x , x , x , x , x , 42 , 1 , 16 , 2 , 3 , 1 , 1 , 1 , 96 , 1 ,
43, TIDL_ConvolutionLayer , ctx_output5/relu_mbox_conf 1, 1 , 1 , 20 , x , x , x , x , x , x , x , 43 , 1 , 256 , 2 , 3 , 1 , 112 , 2 , 3 , 172032 ,
44, TIDL_FlattenLayer , ctx_output5/relu_mbox_conf_perm 1, 1 , 1 , 43 , x , x , x , x , x , x , x , 44 , 1 , 112 , 2 , 3 , 1 , 1 , 1 , 672 , 1 ,
46, TIDL_ConcatLayer , mbox_loc 1, 5 , 1 , 22 , 27 , 32 , 37 , 42 , x , x , x , 46 , 1 , 1 , 1 , 61440 , 1 , 1 , 1 , 69168 , 1 ,
47, TIDL_ConcatLayer , mbox_conf 1, 5 , 1 , 24 , 29 , 34 , 39 , 44 , x , x , x , 47 , 1 , 1 , 1 , 430080 , 1 , 1 , 1 , 484176 , 1 ,
49, TIDL_DetectionOutputLayer , detection_out 2, 2 , 1 , 46 , 47 , x , x , x , x , x , x , 49 , 1 , 1 , 1 , 69168 , 1 , 1 , 1 , 560 , 1 ,
Total Giga Macs : 2.2991
已复制 1 个文件。
Processing config file .\tempDir\qunat_stats_config.txt !
noZeroCoeffsPercentage = 100
updateNetWithStats = 1
rawImage = 1
randInput = 0
writeInput = 0
writeOutput = 1
compareRef = 0
numFrames = 1
preProcType = 4
netBinFile = .\tempDir\temp_net.bin
outputNetBinFile = tidl_net_jdetNet_ssd.bin
paramsBinFile = tidl_param_jdetNet_ssd.bin
inData = trace_dump_0_768x320.y
outData = .\tempDir\stats_tool_out.bin
traceDumpBaseName = .\tempDir\trace_dump_
testCaseName =
testCaseDesc =
performanceTestcase = 0
layersGroupId = 1
writeQ = 0
readQ = 0
runFullNet = 1
read layer 0 param
read layer 1 param
read layer 2 param
read layer 3 param
read layer 4 param
read layer 5 param
read layer 6 param
read layer 7 param
read layer 8 param
read layer 9 param
read layer 10 param
read layer 11 param
read layer 12 param
read layer 13 param
read layer 14 param
read layer 15 param
read layer 16 param
read layer 17 param
read layer 18 param
read layer 19 param
read layer 20 param
read layer 21 param
read layer 22 param
read layer 23 param
read layer 24 param
read layer 25 param
read layer 26 param
read layer 27 param
read layer 28 param
read layer 29 param
read layer 30 param
read layer 31 param
read layer 32 param
read layer 33 param
read layer 34 param
read layer 35 param
read layer 36 param
read layer 37 param
read layer 38 param
read layer 39 param
read layer 40 param
read layer 41 param
read layer 42 param
read layer 43 param
read layer 44 param
weightsElementSize = 1
slopeElementSize = 1
biasElementSize = 2
dataElementSize = 1
interElementSize = 4
quantizationStyle = 1
strideOffsetMethod = 0
reserved = 0
Layer ID ,inBlkWidth ,inBlkHeight ,inBlkPitch ,outBlkWidth ,outBlkHeight,outBlkPitch ,numInChs ,numOutChs ,numProcInChs,numLclInChs ,numLclOutChs,numProcItrs ,numAccItrs ,numHorBlock ,numVerBlock ,inBlkChPitch,outBlkChPitc,alignOrNot
2 72 72 72 32 32 32 3 32 3 1 8 1 3 12 5 5184 1024 1
3 40 34 40 32 32 32 8 8 8 4 8 1 2 12 5 1360 1024 1
4 40 22 40 32 20 32 32 64 32 8 8 1 4 6 4 880 640 1
5 40 22 40 32 20 32 16 16 16 8 8 1 2 6 4 880 640 1
6 40 22 40 32 20 32 64 128 64 8 8 1 8 3 2 880 640 1
7 40 22 40 32 20 32 32 32 32 8 8 1 4 3 2 880 640 1
9 56 22 56 48 20 48 128 256 128 7 8 1 19 1 1 1232 960 1
10 56 22 56 48 20 48 64 64 64 7 8 1 10 1 1 1232 960 1
11 40 12 40 32 10 32 256 512 256 8 8 1 32 1 1 480 320 1
12 40 12 40 32 10 32 128 128 128 8 8 1 16 1 1 480 320 1
16 96 4 96 96 4 96 128 256 128 32 8 1 4 1 10 384 384 1
17 24 10 24 24 10 24 512 256 512 32 32 1 16 1 1 240 240 1
18 12 5 12 12 5 12 512 256 512 32 32 1 16 1 1 60 60 1
19 6 3 6 6 3 6 512 256 512 32 32 1 16 1 1 18 18 1
20 3 2 3 3 2 3 512 256 512 32 32 1 16 1 1 6 6 1
21 96 4 96 96 4 96 256 16 256 32 8 1 8 1 10 384 384 1
23 96 4 96 96 4 96 256 112 256 32 8 1 8 1 10 384 384 1
25 24 10 24 24 10 24 256 24 256 32 24 1 8 1 1 240 240 1
27 24 10 24 24 10 24 256 192 256 32 32 1 8 1 1 240 240 1
29 12 5 12 12 5 12 256 24 256 32 24 1 8 1 1 60 60 1
31 12 5 12 12 5 12 256 192 256 32 32 1 8 1 1 60 60 1
33 6 3 6 6 3 6 256 24 256 32 24 1 8 1 1 18 18 1
35 6 3 6 6 3 6 256 192 256 32 32 1 8 1 1 18 18 1
37 3 2 3 3 2 3 256 16 256 32 16 1 8 1 1 6 6 1
39 3 2 3 3 2 3 256 128 256 32 32 1 8 1 1 6 6 1
Processing Frame Number : 0
Not belongs to this group!
inPtrs 0xccbad0
Layer 1 : Out Q : 254 , TIDL_BatchNormLayer , PASSED #MMACs = 0.74, 0.74, Sparsity : 0.00
Layer 2 : Out Q : 6011 , TIDL_ConvolutionLayer, PASSED #MMACs = 147.46, 92.65, Sparsity : 37.17
Layer 3 : Out Q : 6157 , TIDL_ConvolutionLayer, PASSED #MMACs = 141.56, 53.33, Sparsity : 62.33
Layer 4 : Out Q : 11692 , TIDL_ConvolutionLayer, PASSED #MMACs = 283.12, 83.44, Sparsity : 70.53
Layer 5 : Out Q : 10495 , TIDL_ConvolutionLayer, PASSED #MMACs = 141.56, 66.11, Sparsity : 53.30
Layer 6 : Out Q : 13681 , TIDL_ConvolutionLayer, PASSED #MMACs = 283.12, 91.59, Sparsity : 67.65
Layer 7 : Out Q : 16771 , TIDL_ConvolutionLayer, PASSED #MMACs = 141.56, 57.32, Sparsity : 59.51
Layer 8 :TIDL_PoolingLayer, PASSED #MMACs = 0.12, 0.12, Sparsity : 0.00
Layer 9 : Out Q : 18587 , TIDL_ConvolutionLayer, PASSED #MMACs = 283.12, 96.27, Sparsity : 66.00
Layer 10 : Out Q : 12886 , TIDL_ConvolutionLayer, PASSED #MMACs = 141.56, 52.28, Sparsity : 63.07
Layer 11 : Out Q : 20462 , TIDL_ConvolutionLayer, PASSED #MMACs = 283.12, 76.31, Sparsity : 73.04
Layer 12 : Out Q : 5854 , TIDL_ConvolutionLayer, PASSED #MMACs = 141.56, 31.40, Sparsity : 77.82
Layer 13 :TIDL_PoolingLayer, PASSED #MMACs = 0.03, 0.03, Sparsity : 0.00
Layer 14 :TIDL_PoolingLayer, PASSED #MMACs = 0.01, 0.01, Sparsity : 0.00
Layer 15 :TIDL_PoolingLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : 0.00
Layer 16 : Out Q : 2609 , TIDL_ConvolutionLayer, PASSED #MMACs = 125.83, 125.83, Sparsity : 0.00
Layer 17 : Out Q : 11558 , TIDL_ConvolutionLayer, PASSED #MMACs = 31.46, 31.46, Sparsity : 0.00
Layer 18 : Out Q : 7859 , TIDL_ConvolutionLayer, PASSED #MMACs = 7.86, 7.86, Sparsity : 0.00
Layer 19 : Out Q : 9041 , TIDL_ConvolutionLayer, PASSED #MMACs = 2.36, 2.36, Sparsity : 0.00
Layer 20 : Out Q : 7197 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.79, 0.79, Sparsity : 0.00
Layer 21 : Out Q : 1077 , TIDL_ConvolutionLayer, PASSED #MMACs = 15.73, 15.73, Sparsity : 0.00
Layer 22 :TIDL_FlattenLayer, PASSED #MMACs = 0.06, 0.06, Sparsity : 0.00
Layer 23 : Out Q : 77 , TIDL_ConvolutionLayer, PASSED #MMACs = 110.10, 110.10, Sparsity : 0.00
Layer 24 :TIDL_FlattenLayer, PASSED #MMACs = 0.43, 0.43, Sparsity : 0.00
Layer 25 : Out Q : 7738 , TIDL_ConvolutionLayer, PASSED #MMACs = 1.47, 1.47, Sparsity : 0.00
Layer 26 :TIDL_FlattenLayer, PASSED #MMACs = 0.01, 0.01, Sparsity : 0.00
Layer 27 : Out Q : 173 , TIDL_ConvolutionLayer, PASSED #MMACs = 11.80, 11.80, Sparsity : 0.00
Layer 28 :TIDL_FlattenLayer, PASSED #MMACs = 0.04, 0.04, Sparsity : 0.00
Layer 29 : Out Q : 5752 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.37, 0.37, Sparsity : 0.00
Layer 30 :TIDL_FlattenLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : 0.00
Layer 31 : Out Q : 157 , TIDL_ConvolutionLayer, PASSED #MMACs = 2.95, 2.95, Sparsity : 0.00
Layer 32 :TIDL_FlattenLayer, PASSED #MMACs = 0.01, 0.01, Sparsity : 0.00
Layer 33 : Out Q : 3139 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.11, 0.11, Sparsity : 0.00
Layer 34 :TIDL_FlattenLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : 0.00
Layer 35 : Out Q : 173 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.88, 0.88, Sparsity : 0.00
Layer 36 :TIDL_FlattenLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : 0.00
Layer 37 : Out Q : 2333 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.02, 0.02, Sparsity : 0.00
Layer 38 :TIDL_FlattenLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : 0.00
Layer 39 : Out Q : 156 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.20, 0.20, Sparsity : 0.00
Layer 40 :TIDL_FlattenLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : 0.00
Layer 41 : Out Q : 1081 , TIDL_ConcatLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : -nan(ind)
Layer 42 : Out Q : 76 , TIDL_ConcatLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : -nan(ind)
Layer 43 :
Target: number label value xmin ymin xmax ymax
Target: 0.00 25.00 1.00 0.66 0.56 0.71 0.88
Target: 1.00 4.00 1.00 0.63 0.19 0.81 0.88
Target: 2.00 13.00 1.00 0.33 0.46 0.48 0.97
Target: 3.00 13.00 1.00 0.64 0.33 0.80 0.90
Target: 4.00 13.00 1.00 0.39 0.64 0.64 1.01
Target: 5.00 20.00 1.00 0.05 0.35 0.20 0.68
Target: 6.00 13.00 1.00 0.73 0.42 0.85 0.87
Target: 7.00 13.00 1.00 0.57 0.32 0.75 0.89
Target: 8.00 12.00 1.00 0.12 0.26 0.27 0.65
Target: 9.00 6.00 1.00 0.30 0.21 0.47 0.68
Target: 10.00 6.00 1.00 0.07 0.27 0.19 0.70
Target: 11.00 21.00 1.00 0.84 0.61 0.92 0.96
Target: 12.00 2.00 1.00 0.85 0.56 0.90 0.93
Target: 13.00 21.00 1.00 0.59 0.45 0.65 0.90
Target: 14.00 21.00 1.00 0.27 0.46 0.33 0.83
Target: 15.00 21.00 1.00 0.83 0.31 0.91 0.78
Target: 16.00 21.00 1.00 0.51 0.36 0.58 0.72
Target: 17.00 21.00 1.00 0.50 0.06 0.59 0.57
Target: 18.00 21.00 1.00 0.42 0.06 0.51 0.60
Target: 19.00 21.00 1.00 0.04 0.08 0.16 0.52
#MMACs = 0.00, 0.00, Sparsity : 0.00
Not belongs to this group!
End of config list found !