This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

TLV9162: TI PSPICE Models do not uniquely subckts ??

Part Number: TLV9162


Tool/software:

Hello.

I am instantiating two unique opamps, obviously with different models, into Cadence to do a spectre simulation.

In general pspice simulations work well in Cadence.

BUT the two TI models do not uniquify  their sub circuits...

One example, both spice models have something like (just showing definition)

* FEMT - INPUT CURRENT NOISE IN FA/RT-HZ
.SUBCKT FEMT_0 1 2

And clearly spectre throws an error because it has been defined twice....

There are about fifteen of different subckts  and I could edit them and uniquely everything, but there must be a better way....

Regards

Phil

  • Hi Phil,

    Did you download this model from the following site. 

    https://www.ti.com/product/TLV9162#design-tools-simulation

    I check the attached PSpice model in two different simulators, I do not see issues. 

    TLV9162 Sim 06252025.TSC

    * TLV9162
    * Created by Carolina Walter; December 14, 2021
    * Created with Green-Williams-Lis Op Amp Macro-model Architecture
    * Copyright 2021 by Texas Instruments Corporation
    ******************************************************
    * MACRO-MODEL SIMULATED PARAMETERS:
    ******************************************************
    * OPEN-LOOP GAIN AND PHASE VS. FREQUENCY  WITH RL, CL EFFECTS (Aol)
    * UNITY GAIN BANDWIDTH (GBW)
    * INPUT COMMON-MODE REJECTION RATIO VS. FREQUENCY (CMRR)
    * POWER SUPPLY REJECTION RATIO VS. FREQUENCY (PSRR)
    * DIFFERENTIAL INPUT IMPEDANCE (Zid)
    * COMMON-MODE INPUT IMPEDANCE (Zic)
    * OPEN-LOOP OUTPUT IMPEDANCE VS. FREQUENCY (Zo)
    * OUTPUT CURRENT THROUGH THE SUPPLY (Iout)
    * INPUT VOLTAGE NOISE DENSITY VS. FREQUENCY (en)
    * INPUT CURRENT NOISE DENSITY VS. FREQUENCY (in)
    * OUTPUT VOLTAGE SWING vs. OUTPUT CURRENT (Vo)
    * SHORT-CIRCUIT OUTPUT CURRENT (Isc)
    * QUIESCENT CURRENT (Iq)
    * SETTLING TIME VS. CAPACITIVE LOAD (ts)
    * SLEW RATE (SR)
    * SMALL SIGNAL OVERSHOOT VS. CAPACITIVE LOAD
    * LARGE SIGNAL RESPONSE
    * OVERLOAD RECOVERY TIME (tor)
    * INPUT BIAS CURRENT (Ib)
    * INPUT OFFSET CURRENT (Ios)
    * INPUT OFFSET VOLTAGE (Vos)
    * INPUT COMMON-MODE VOLTAGE RANGE (Vcm)
    * INPUT OFFSET VOLTAGE VS. INPUT COMMON-MODE VOLTAGE (Vos vs. Vcm)
    * INPUT/OUTPUT ESD CELLS (ESDin, ESDout)
    ******************************************************
    .subckt TLV9162 IN+ IN- VCC VEE OUT
    ******************************************************
    * MODEL DEFINITIONS:
    .model BB_SW VSWITCH(Ron=50 Roff=1e12 Von=700e-3 Voff=0)
    .model ESD_SW VSWITCH(Ron=50 Roff=1e12 Von=250e-3 Voff=0)
    .model OL_SW VSWITCH(Ron=1e-3 Roff=1e9 Von=900e-3 Voff=800e-3)
    .model OR_SW VSWITCH(Ron=10e-3 Roff=1e9 Von=1e-3 Voff=0)
    .model R_NOISELESS RES(T_ABS=-273.15)
    ******************************************************
    
    V_OS        25 26 -32U
    V_GRp       53 MID 50
    V_GRn       54 MID -35
    I_OS        ESDn MID 0
    I_B         26 MID 10P
    V_ISCp      68 MID 65
    V_ISCn      69 MID -65
    V_ORn       67 VCLP -3.84
    V11         73 66 0
    V_ORp       65 VCLP 4.32
    V12         72 64 0
    V4          40 OUT 0
    VCM_MIN     89 VEE_B 0
    VCM_MAX     90 VCC_B 0
    I_Q         VCC VEE 2.4M
    XIn11       ESDn MID FEMT_0
    Xi_n        MID 26 FEMT_0
    Xe_n        ESDp 26 VNSE_0
    C3          27 MID 5F IC=0 
    R74         MID 27 R_RES_1 1MEG 
    GVCCS5      27 MID VSENSE MID  -1U
    C2          CLAMP MID 184.6N IC=0 
    R61         MID CLAMP R_RES_2 1MEG 
    XVCCS_LIM_2 28 MID MID CLAMP VCCS_LIM_2_0
    R60         MID 28 R_RES_3 1MEG 
    XVCCS_LIM_1 29 30 MID 28 VCCS_LIM_1_0
    C23         31 MID 8P IC=0 
    R73         31 32 R_RES_4 10K 
    R72         32 33 R_RES_5 352K 
    C22         34 MID 75.07F IC=0 
    R71         34 35 R_RES_6 10K 
    R70         35 36 R_RES_7 18.38K 
    XVCCS_LIM_ZO 34 MID MID 37 VCCS_LIM_ZO_0
    R69         36 MID R_RES_8 1 
    C21         38 39 90N IC=0 
    R68         39 MID R_RES_9 463.4 
    R67         39 38 R_RES_10 10K 
    G_Adjust2   36 MID 32 MID  1
    R64         33 MID R_RES_11 1 
    G_adjust1   33 MID 39 MID  22.58
    R11         38 MID R_RES_12 1 
    R7          37 MID 1 
    Rdummy      MID 40 R_RES_13 1.01K 
    Rx          40 37 R_RES_14 10.1K 
    G_Aol_Zo    38 MID CL_CLAMP 40  -368.16
    R63         MID 41 R_RES_15 111.1 
    C6          41 42 159.2P 
    R24         42 41 R_RES_16 100MEG 
    G_adjust    42 MID VEE_B MID  -802.1M
    R23         MID 42 R_RES_17 1 
    R22         MID 43 R_RES_18 1 
    GVCCS4      43 MID 44 MID  -400
    R20         MID 44 R_RES_19 2.506K 
    C5          44 45 3.183P 
    R19         45 44 R_RES_20 1MEG 
    R18         MID 45 R_RES_21 1 
    GVCCS3      45 MID 46 MID  -1
    R17         MID 46 R_RES_22 900.8 
    C4          46 47 176.8P 
    R16         47 46 R_RES_23 1MEG 
    GVCCS2      47 MID VCC_B MID  -1.761M
    R8          MID 47 R_RES_24 1 
    R15         MID 48 R_RES_25 1 
    G_2         48 MID 49 MID  -6
    R2b         MID 49 R_RES_26 200K 
    C1b         49 50 159F 
    R1b         50 49 R_RES_27 1MEG 
    R14         MID 50 R_RES_28 1 
    GVCCS1      50 MID 51 MID  -1
    R6          MID 51 R_RES_29 200 
    C1          51 52 159.2P 
    R5          52 51 R_RES_30 1MEG 
    G_1         52 MID ESDp MID  -7.924M
    Rsrc        MID 52 R_RES_31 1 
    R13         INn_ESDp INn_ESDn R_RES_32 50 
    R12         INp_ESDn INp_ESDp R_RES_33 50 
    XGR_AMP     53 54 55 MID 56 57 CLAMP_AMP_HI_0
    R49         53 MID R_RES_34 1G 
    R54         54 MID R_RES_35 1G 
    R55         VSENSE 55 R_RES_36 1M 
    C16         55 MID 1F 
    R50         56 MID R_RES_37 1 
    R53         MID 57 R_RES_38 1 
    R51         56 58 R_RES_39 1M 
    R52         57 59 R_RES_40 1M 
    C14         58 MID 1F 
    C15         MID 59 1F 
    XGR_SRC     58 59 CLAMP MID VCCS_LIM_GR_0
    S5          VEE INp_ESDn VEE INp_ESDn  S_VSWITCH_1
    S4          VEE INn_ESDn VEE INn_ESDn  S_VSWITCH_2
    S2          INn_ESDp VCC INn_ESDp VCC  S_VSWITCH_3
    S3          INp_ESDp VCC INp_ESDp VCC  S_VSWITCH_4
    C18         60 MID 1P 
    R57         61 60 R_RES_41 100 
    C17         62 MID 1P 
    R56         63 62 R_RES_42 100 
    R48         MID 64 R_RES_43 1 
    G11         64 MID 65 MID  -1
    R47         66 MID R_RES_44 1 
    G10         66 MID 67 MID  -1
    XIQp        VIMON MID MID VCC VCCS_LIMIT_IQ_0
    XIQn        MID VIMON VEE MID VCCS_LIMIT_IQ_0
    C_DIFF      ESDp ESDn 9P 
    XCL_AMP     68 69 VIMON MID 70 71 CLAMP_AMP_LO_0
    SOR_SWp     CLAMP 72 CLAMP 72  S_VSWITCH_5
    SOR_SWn     73 CLAMP 73 CLAMP  S_VSWITCH_6
    R42         70 MID R_RES_45 1 
    R45         MID 71 R_RES_46 1 
    R43         70 74 R_RES_47 1M 
    R44         71 75 R_RES_48 1M 
    C12         74 MID 1F 
    C13         MID 75 1F 
    XCL_SRC     74 75 CL_CLAMP MID VCCS_LIM_4_0
    R41         68 MID R_RES_49 1G 
    R46         MID 69 R_RES_50 1G 
    XCLAWp      VIMON MID 76 VCC_B VCCS_LIM_CLAW+_0
    XCLAWn      MID VIMON VEE_B 77 VCCS_LIM_CLAW-_0
    R29         76 VCC_B R_RES_51 1K 
    R30         76 78 R_RES_52 1M 
    R32         VEE_B 77 R_RES_53 1K 
    R33         79 77 R_RES_54 1M 
    C9          79 MID 1F 
    C8          MID 78 1F 
    G8          VCC_CLP MID 78 MID  -1M
    R31         VCC_CLP MID R_RES_55 1K 
    G9          VEE_CLP MID 79 MID  -1M
    R34         MID VEE_CLP R_RES_56 1K 
    XCLAW_AMP   VCC_CLP VEE_CLP VOUT_S MID 80 81 CLAMP_AMP_LO_0
    R35         VCC_CLP MID R_RES_57 1G 
    R40         VEE_CLP MID R_RES_58 1G 
    R36         80 MID R_RES_59 1 
    R39         MID 81 R_RES_60 1 
    R37         80 82 R_RES_61 1M 
    R38         81 83 R_RES_62 1M 
    C10         82 MID 1F 
    C11         MID 83 1F 
    XCLAW_SRC   82 83 CLAW_CLAMP MID VCCS_LIM_3_0
    H2          63 MID V11 -1
    H3          61 MID V12 1
    C19         SW_OL MID 1P 
    R59         84 SW_OL R_RES_63 100 
    R58         84 MID R_RES_64 1 
    XOL_SENSE   MID 84 62 60 OL_SENSE_0
    S1          38 39 SW_OL MID  S_VSWITCH_7
    H3_2        85 MID V4 1K
    S7          VEE OUT VEE OUT  S_VSWITCH_8
    S6          OUT VCC OUT VCC  S_VSWITCH_9
    R83         MID 86 R_RES_65 1G 
    R_VOUT_S    86 VOUT_S R_RES_66 100 
    C_VOUT_S    VOUT_S MID 1N 
    E3          86 MID OUT MID  1
    C_VIMON     VIMON MID 1N 
    R_VIMON     85 VIMON R_RES_67 100 
    R81         MID 85 R_RES_68 1G 
    R_VCLP      87 VCLP R_RES_69 100 
    C_VCLP      VCLP MID 100P 
    E2          87 MID CL_CLAMP MID  1
    R66         MID CL_CLAMP R_RES_70 1K 
    G16         CL_CLAMP MID CLAW_CLAMP MID  -1M
    R65         MID CLAW_CLAMP R_RES_71 1K 
    G15         CLAW_CLAMP MID 27 MID  -1M
    R62         MID VSENSE R_RES_72 1K 
    G12         VSENSE MID CLAMP MID  -1M
    C7          29 MID 1F 
    R28         29 88 R_RES_73 1M 
    R25         MID 89 R_RES_74 1G 
    R26         90 MID R_RES_75 1G 
    R27         MID 88 R_RES_76 1 
    XVCM_CLAMP  91 MID 88 MID 90 89 VCCS_EXT_LIM_0
    E6          MID 0 92 0  1
    R109        VEE_B 0 R_RES_77 1 
    R113        93 VEE_B R_RES_78 1M 
    C35         93 0 1F 
    R112        92 93 R_RES_79 1MEG 
    C34         92 0 100N 
    R108        92 0 R_RES_80 1T 
    R111        94 92 R_RES_81 1MEG 
    C33         94 0 1F 
    R110        VCC_B 94 R_RES_82 1M 
    R107        VCC_B 0 R_RES_83 1 
    G37         VEE_B 0 VEE 0  -1
    G36         VCC_B 0 VCC 0  -1
    R21         95 91 R_RES_84 1K 
    G6          91 95 43 41  -1M
    R10         30 ESDn R_RES_85 1M 
    R9          95 96 R_RES_86 1M 
    R_CMR       25 96 R_RES_87 1K 
    G_CMR       96 25 48 MID  -1M
    C_CMn       ESDn MID 1P 
    C_CMp       MID ESDp 1P 
    R4          ESDn MID R_RES_88 1T 
    R3          MID ESDp R_RES_89 1T 
    R2          IN- ESDn R_RES_90 10M 
    R1          IN+ ESDp R_RES_91 10M 
    
    .MODEL R_RES_1 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_2 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_3 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_4 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_5 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_6 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_7 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_8 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_9 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_10 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_11 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_12 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_13 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_14 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_15 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_16 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_17 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_18 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_19 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_20 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_21 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_22 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_23 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_24 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_25 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_26 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_27 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_28 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_29 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_30 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_31 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_32 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_33 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_34 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_35 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_36 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_37 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_38 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_39 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_40 RES ( TCE=0 T_ABS=-273.15)
    .MODEL S_VSWITCH_1 VSWITCH (RON=50 ROFF=1T VON=500M VOFF=450M)
    .MODEL S_VSWITCH_2 VSWITCH (RON=50 ROFF=1T VON=500M VOFF=450M)
    .MODEL S_VSWITCH_3 VSWITCH (RON=50 ROFF=1T VON=500M VOFF=450M)
    .MODEL S_VSWITCH_4 VSWITCH (RON=50 ROFF=1T VON=500M VOFF=450M)
    .MODEL R_RES_41 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_42 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_43 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_44 RES ( TCE=0 T_ABS=-273.15)
    .MODEL S_VSWITCH_5 VSWITCH (RON=10M ROFF=1G VON=10M VOFF=0)
    .MODEL S_VSWITCH_6 VSWITCH (RON=10M ROFF=1G VON=10M VOFF=0)
    .MODEL R_RES_45 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_46 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_47 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_48 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_49 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_50 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_51 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_52 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_53 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_54 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_55 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_56 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_57 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_58 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_59 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_60 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_61 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_62 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_63 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_64 RES ( TCE=0 T_ABS=-273.15)
    .MODEL S_VSWITCH_7 VSWITCH (RON=1M ROFF=1G VON=900M VOFF=800M)
    .MODEL S_VSWITCH_8 VSWITCH (RON=50 ROFF=1T VON=500M VOFF=450M)
    .MODEL S_VSWITCH_9 VSWITCH (RON=50 ROFF=1T VON=500M VOFF=450M)
    .MODEL R_RES_65 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_66 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_67 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_68 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_69 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_70 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_71 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_72 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_73 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_74 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_75 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_76 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_77 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_78 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_79 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_80 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_81 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_82 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_83 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_84 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_85 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_86 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_87 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_88 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_89 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_90 RES ( TCE=0 T_ABS=-273.15)
    .MODEL R_RES_91 RES ( TCE=0 T_ABS=-273.15)
    .ENDS TLV9162
    
    * FEMT - INPUT CURRENT NOISE IN FA/RT-HZ
    .SUBCKT FEMT_0  1 2
    * INPUT VARIABLES
    * SET UP 1/F NOISE
    * FLWF = 1/F FREQUENCY IN HZ
    .PARAM FLWF=1E-3
    * NLFF = CURRENT NOISE DENSITY AT 1/F FREQUENCY IN FA/RT(HZ)
    .PARAM NLFF=60
    * SET UP BROADBAND NOISE
    * NVRF = BROADBAND CURRENT NOISE DENSITY IN FA/RT(HZ)
    .PARAM NVRF=60
    * CALCULATED VALUES
    .PARAM GLFF={PWR(FLWF,0.25)*NLFF/1164}
    .PARAM RNVF={1.184*PWR(NVRF,2)}
    .MODEL DVNF D KF={PWR(FLWF,0.5)/1E11} IS=1.0E-16
    * CIRCUIT CONNECTIONS
    I1 0 7 10E-3
    I2 0 8 10E-3
    D1 7 0 DVNF
    D2 8 0 DVNF
    E1 3 6 7 8 {GLFF}
    R1 3 0 1E9
    R2 3 0 1E9
    R3 3 6 1E9
    E2 6 4 5 0 10
    R4 5 0 {RNVF}
    R5 5 0 {RNVF}
    R6 3 4 1E9
    R7 4 0 1E9
    G1 1 2 3 4 1E-6
    .ENDS
    
    
    * VNSE - INPUT VOLTAGE NOISE IN NV/RT-HZ
    .SUBCKT VNSE_0  1 2
    * INPUT VARIABLES
    * SET UP 1/F NOISE
    * FLW = 1/F FREQUENCY IN HZ
    .PARAM FLW=10
    * NLF = VOLTAGE NOISE DENSITY AT 1/F FREQUENCY IN NV/RT(HZ)
    .PARAM NLF=64.13
    * SET UP BROADBAND NOISE
    * NVR = BROADBAND VOLTAGE NOISE DENSITY IN NV/RT(HZ)
    .PARAM NVR=4
    * CALCULATED VALUES
    .PARAM GLF={PWR(FLW,0.25)*NLF/1164}
    .PARAM RNV={1.184*PWR(NVR,2)}
    .MODEL DVN D KF={PWR(FLW,0.5)/1E11} IS=1.0E-16
    * CIRCUIT CONNECTIONS
    I1 0 7 10E-3
    I2 0 8 10E-3
    D1 7 0 DVN
    D2 8 0 DVN
    E1 3 6 7 8 {GLF}
    R1 3 0 1E9
    R2 3 0 1E9
    R3 3 6 1E9
    E2 6 4 5 0 10
    R4 5 0 {RNV}
    R5 5 0 {RNV}
    R6 3 4 1E9
    R7 4 0 1E9
    E3 1 2 3 4 1
    .ENDS
    
    
    * VOLTAGE-CONTROLLED CURRENT SOURCE WITH LIMITS - AOL SECOND STAGE
    .SUBCKT VCCS_LIM_2_0  VC+ VC- IOUT+ IOUT-
    .PARAM GAIN = 1.26E-1
    .PARAM IPOS = 6.64
    .PARAM INEG = -5.9
    G1 IOUT+ IOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),INEG,IPOS)}
    .ENDS
    
    
    * VOLTAGE-CONTROLLED CURRENT SOURCE WITH LIMITS - AOL FIRST STAGE
    .SUBCKT VCCS_LIM_1_0  VC+ VC- IOUT+ IOUT-
    .PARAM GAIN = 1E-4
    .PARAM IPOS = .5
    .PARAM INEG = -.5
    G1 IOUT+ IOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),INEG,IPOS)}
    .ENDS
    
    
    * VOLTAGE-CONTROLLED CURRENT SOURCE WITH LIMITS - ZO OUTPUT
    .SUBCKT VCCS_LIM_ZO_0  VC+ VC- IOUT+ IOUT-
    .PARAM GAIN = 1
    .PARAM IPOS = 2E3
    .PARAM INEG = -2E3
    G1 IOUT+ IOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),INEG,IPOS)}
    .ENDS
    
    
    
    * CLAMP AMP - OVERLOAD AND GROSS CLAMP
    .SUBCKT CLAMP_AMP_HI_0  VC+ VC- VIN COM VO+ VO-
    *  PINS     CLAMP V+  CLAMP V-  VIN  COM   VOUT+  VOUT-
    .PARAM G=10
    * OUTPUT G(COM,0) WHEN CONDITION NOT MET
    GVO+ COM VO+ VALUE = {IF(V(VIN,COM)>V(VC+,COM),((V(VIN,COM)-V(VC+,COM))*G),0)}
    GVO- COM VO- VALUE = {IF(V(VIN,COM)<V(VC-,COM),((V(VC-,COM)-V(VIN,COM))*G),0)}
    .ENDS
    
    
    * VOLTAGE-CONTROLLED CURRENT SOURCE WITH LIMITS - GROSS CLAMP
    .SUBCKT VCCS_LIM_GR_0  VC+ VC- IOUT+ IOUT-
    .PARAM GAIN = 1
    .PARAM IPOS = 14
    .PARAM INEG = -12
    G1 IOUT+ IOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),INEG,IPOS)}
    .ENDS
    
    
    * VOLTAGE-CONTROLLED SOURCE WITH LIMITS - IOUT DRAW
    .SUBCKT VCCS_LIMIT_IQ_0  VC+ VC- IOUT+ IOUT-
    .PARAM GAIN = 1E-3
    G1 IOUT- IOUT+ VALUE={IF( (V(VC+,VC-)<=0),0,GAIN*V(VC+,VC-) )}
    .ENDS
    
    
    * CLAMP AMP - CLAW AND CURRENT LIMIT CLAMP
    .SUBCKT CLAMP_AMP_LO_0  VC+ VC- VIN COM VO+ VO-
    *  PINS     CLAMP V+  CLAMP V-  VIN  COM   VOUT+  VOUT-
    .PARAM G=1
    * OUTPUT G(COM,0) WHEN CONDITION NOT MET
    GVO+ COM VO+ VALUE = {IF(V(VIN,COM)>V(VC+,COM),((V(VIN,COM)-V(VC+,COM))*G),0)}
    GVO- COM VO- VALUE = {IF(V(VIN,COM)<V(VC-,COM),((V(VC-,COM)-V(VIN,COM))*G),0)}
    .ENDS
    
    
    * VOLTAGE-CONTROLLED CURRENT SOURCE WITH LIMITS - CURRENT LIMIT CLAMP
    .SUBCKT VCCS_LIM_4_0  VC+ VC- IOUT+ IOUT-
    .PARAM GAIN = 1
    .PARAM IPOS = 200E-3
    .PARAM INEG = -200E-3
    G1 IOUT+ IOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),INEG,IPOS)}
    .ENDS
    
    
    * VOLTAGE-CONTROLLED CURRENT SOURCE (TABLE-DEFINED) - CLAW+
    .SUBCKT VCCS_LIM_CLAW+_0  VC+ VC- IOUT+ IOUT-
    G1 IOUT+ IOUT- TABLE {(V(VC+,VC-))} =
    +(0, 6.87E-5)
    +(15, 4.04E-4)
    +(30, 7.93E-4)
    +(45, 1.27E-3)
    +(60, 1.8E-3)
    +(70, 2.4E-3)
    +(80, 3.75E-3)
    +(90, 9.83E-3)
    .ENDS
    
    
    * VOLTAGE-CONTROLLED CURRENT SOURCE (TABLE-DEFINED) - CLAW-
    .SUBCKT VCCS_LIM_CLAW-_0  VC+ VC- IOUT+ IOUT-
    G1 IOUT+ IOUT- TABLE {(V(VC+,VC-))} =
    +(0, 7.59E-5)
    +(40, 1.21E-3)
    +(60, 2E-3)
    +(70, 2.61E-3)
    +(80, 4.42E-3)
    +(90, 9.61E-3)
    .ENDS
    
    
    * VOLTAGE-CONTROLLED CURRENT SOURCE WITH LIMITS - CLAW CLAMP
    .SUBCKT VCCS_LIM_3_0  VC+ VC- IOUT+ IOUT-
    .PARAM GAIN = 1
    .PARAM IPOS = 100E-3
    .PARAM INEG = -70E-3
    G1 IOUT+ IOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),INEG,IPOS)}
    .ENDS
    
    
    * OVERLOAD SENSE FOR ZO SWITCHES
    .SUBCKT OL_SENSE_0  COM SW+ OLN  OLP
    * PINS          COM SW+ OLN OLP
    GSW+ COM SW+ VALUE = {IF((V(OLN,COM)>10E-3 | V(OLP,COM)>10E-3),1,0)}
    .ENDS
    
    
    * VOLTAGE-CONTROLLED CURRENT SOURCE WITH EXTERNAL LIMITS - VCM CLAMP
    .SUBCKT VCCS_EXT_LIM_0  VIN+ VIN- IOUT- IOUT+ VP+ VP-
    .PARAM GAIN = 1
    G1 IOUT+ IOUT- VALUE={LIMIT(GAIN*V(VIN+,VIN-),V(VP-,VIN-), V(VP+,VIN-))}
    .ENDS
    
    
    .END
    

    If you have other questions, please let me know. 

    Best,

    Raymond

  • Both models from TI.

  • Hi Philip, 

    What are you trying to do?

    And clearly spectre throws an error because it has been defined twice....

    I see that the subckt is defined once. 

    The subckt is intended for simulating low-level current noise sources, such as in ultra-low noise op amps, transimpedance amplifiers, or photodiode front ends. It models both broadband (white) current noise and 1/f (flicker) noise, expressed in femtoamperes per √Hz (fA/√Hz).

    Best,

    Raymond

  • Hello..yes I know.

    The problem is explain in the post...the subckt  is not uniquified  along with the other opamp.

  • Hi Philip, 

    I am not modeling engineer and I have to submit a request to fix it. I do not know when it will get it done. But it is still usable in Tina or LTSpice.

    Best,

    Raymond

  • Hi Philip, 

    Here is the revised PSpice file. 

    tlv9162.lib

    If you have other questions, please let me know. 

    Best,

    Raymond