Other Parts Discussed in Thread: TLV3201
In the datasheet of the TLV3501 there is section 8.2.1 about Relaxation Oscillator.
I don't understand the frequency equation in this section and I need more details.
This thread has been locked.
If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.
I see what you are referring to. Depending on what frequency you are trying to create, the parasitics that are eluded to in the datasheet may or may not affect you. We will need a couple days to look into this and see if an appropriate equation or model of the parasitics can be created. In the meantime, if you can share what frequency you are trying to create we can try to help you find a solution.
Chuck
Hi,
Sorry for the delay in getting back to you. The parasitics eluded to in the TLV3501 datasheet typically apply to oscillators at much larger frequencies than the target frequencies you have listed. The best device for your application and frequency range is the TLV3201. I have used the TLV3201 to create the oscillator circuit described in the TLV3501 datasheet for one of your target frequencies of 40khz. I both simulated and tested this circuit in the lab to verify the equations and set up. A 40khz oscillation would have a period of 25us and a half period of 12.5us. Based on this you would have 12.5us = 0.69RC. Using this equation you can select your resistor and capacitor values. In my example for 40khz I set C = 1nF and R = 18K to get the oscillation period I would like. In your case you would change the resistor and capacitor accordingly for each frequency. I created this circuit in TINA and simulated it to get the target oscillation period of 25us as shown in the screenshot. I have also attached the TINA file to this circuit if you would like to simulate it. I then verified the simulation results in the lab. You should be able to use this device and set up to create the oscillator circuit for your frequency ranges.
Regards,
Jaskaran