This thread has been locked.
If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.
Having trouble making sense of Lab 21. The documentation for it is quite poor, and not much discussion on it in the forums exists. Attached are the user files, i haven't made any changes to the lab itself. Note I am using very low induction motor (Scorpion S-4025-12). I got through labs 2d, 5a, and 5b, as well as 20 with no issues.
-1st problem is that updating any of the IPD_HFI variables during runtime in the expressions does not affect the motor control at all, so tuning is very very slow. I have to stop debug, change the variables in the user file, and run again to see if it works better. I think i got the variables to be where they work, at least reasonably for now. Still some occasional jitter on start.
-the name of the variables are different in the lab pdf and in the actual lab's code. Minor, but annoying.
- Now, MOST IMPORTANT, my understaning is that this lab is supposed to allow me to transition from getting the motor to move from zero with relatively heavy load using HFI, to transition to either speed loop control or torque control FAST. But there is no explanation on how to take over control of the motor once gThrottle_Result has been used to start the motor. Changing the gMotorVars.SpeedRef_krpm value has no effect, regardless the value of gThrottle_Result or the motion of the motor. Is it just a matter of AFSEL_FREQ_LOW_PU ? I've tried a few different values but no success yet. Or is it that the transition to FAST is happening fine, i am just not in control of speed? The motor is spinning at full speed allowed by the voltage (4.5 krpm).
thanks
/* --COPYRIGHT--,BSD * Copyright (c) 2012, Texas Instruments Incorporated * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of Texas Instruments Incorporated nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * --/COPYRIGHT--*/ //! \file solutions/instaspin_foc/src/proj_lab05b.c //! \brief Adjusting the speed current controller //! //! (C) Copyright 2011, Texas Instruments, Inc. //! \defgroup PROJ_LAB05b PROJ_LAB05b //@{ //! \defgroup PROJ_LAB05b_OVERVIEW Project Overview //! //! Adjusting the supplied speed controller //! // ************************************************************************** // the includes // system includes #include <math.h> #include "main.h" #include "sw/modules/ipd/src/32b/ipd_hfi.h" #include "sw/modules/afsel/src/32b/afsel.h" #include "sw/modules/fstart/src/32b/fstart.h" #ifdef FLASH #pragma CODE_SECTION(mainISR,"ramfuncs"); #endif // Include header files used in the main function // ************************************************************************** // the defines #define LED_BLINK_FREQ_Hz 5 // ************************************************************************** // the globals uint_least16_t gCounter_updateGlobals = 0; bool Flag_Latch_softwareUpdate = true; MATH_vec3 gAdcBiasI; MATH_vec3 gAdcBiasV; CTRL_Handle ctrlHandle; CLARKE_Handle clarkeHandle_I; //!< the handle for the current Clarke transform CLARKE_Obj clarke_I; //!< the current Clarke transform object CLARKE_Handle clarkeHandle_V; //!< the handle for the voltage Clarke transform CLARKE_Obj clarke_V; //!< the voltage Clarke transform object EST_Handle estHandle; //!< the handle for the estimator IPARK_Handle iparkHandle; //!< the handle for the inverse Park transform IPARK_Obj ipark; //!< the inverse Park transform object PARK_Handle parkHandle; //!< the handle for the Park object PARK_Obj park; //!< the Park transform object SVGEN_Handle svgenHandle; //!< the handle for the space vector generator SVGEN_Obj svgen; //!< the space vector generator object IPD_HFI_Handle ipdHandle; //!< the handle for the ipd algorithm AFSEL_Handle afselHandle; //!< the handle for the afselect general algorithm FStart_Handle fstartHandle; //!< the handle for the flying start algorithm TRAJ_Handle trajHandle_Iq; //!< the trajectory handle for the Iq current reference TRAJ_Obj traj_Iq; //!< the trajectory for Iq current reference HAL_Handle halHandle; USER_Params gUserParams; HAL_PwmData_t gPwmData = {_IQ(0.0), _IQ(0.0), _IQ(0.0)}; HAL_AdcData_t gAdcData; _iq gMaxCurrentSlope = _IQ(0.0); #ifdef FAST_ROM_V1p6 CTRL_Obj *controller_obj; #else CTRL_Obj ctrl; //v1p7 format #endif uint16_t gLEDcnt = 0; volatile MOTOR_Vars_t gMotorVars = MOTOR_Vars_INIT; #ifdef FLASH // Used for running BackGround in flash, and ISR in RAM extern uint16_t *RamfuncsLoadStart, *RamfuncsLoadEnd, *RamfuncsRunStart; #endif #ifdef DRV8301_SPI // Watch window interface to the 8301 SPI DRV_SPI_8301_Vars_t gDrvSpi8301Vars; #endif _iq gFlux_pu_to_Wb_sf; _iq gFlux_pu_to_VpHz_sf; _iq gTorque_Ls_Id_Iq_pu_to_Nm_sf; _iq gTorque_Flux_Iq_pu_to_Nm_sf; _iq gUi = _IQ(0.0); _iq gThrottle_Result = _IQ(0.0); bool flag_update_ipd = false; // ************************************************************************** // the functions void main(void) { uint_least8_t estNumber = 0; #ifdef FAST_ROM_V1p6 uint_least8_t ctrlNumber = 0; #endif // Only used if running from FLASH // Note that the variable FLASH is defined by the project #ifdef FLASH // Copy time critical code and Flash setup code to RAM // The RamfuncsLoadStart, RamfuncsLoadEnd, and RamfuncsRunStart // symbols are created by the linker. Refer to the linker files. memCopy((uint16_t *)&RamfuncsLoadStart,(uint16_t *)&RamfuncsLoadEnd,(uint16_t *)&RamfuncsRunStart); #endif // initialize the hardware abstraction layer halHandle = HAL_init(&hal,sizeof(hal)); // check for errors in user parameters USER_checkForErrors(&gUserParams); // store user parameter error in global variable gMotorVars.UserErrorCode = USER_getErrorCode(&gUserParams); // do not allow code execution if there is a user parameter error if(gMotorVars.UserErrorCode != USER_ErrorCode_NoError) { for(;;) { gMotorVars.Flag_enableSys = false; } } // initialize the user parameters USER_setParams(&gUserParams); // set the hardware abstraction layer parameters HAL_setParams(halHandle,&gUserParams); // initialize the controller #ifdef FAST_ROM_V1p6 ctrlHandle = CTRL_initCtrl(ctrlNumber, estNumber); //v1p6 format (06xF and 06xM devices) controller_obj = (CTRL_Obj *)ctrlHandle; #else ctrlHandle = CTRL_initCtrl(estNumber,&ctrl,sizeof(ctrl)); //v1p7 format default #endif { CTRL_Version version; // get the version number CTRL_getVersion(ctrlHandle,&version); gMotorVars.CtrlVersion = version; } // set the default controller parameters CTRL_setParams(ctrlHandle,&gUserParams); // initialize the Clarke modules clarkeHandle_I = CLARKE_init(&clarke_I,sizeof(clarke_I)); clarkeHandle_V = CLARKE_init(&clarke_V,sizeof(clarke_V)); // set the number of current sensors setupClarke_I(clarkeHandle_I,gUserParams.numCurrentSensors); // set the number of voltage sensors setupClarke_V(clarkeHandle_V,gUserParams.numVoltageSensors); #ifdef FAST_ROM_V1p6 estHandle = controller_obj->estHandle; #else estHandle = ctrl.estHandle; #endif // initialize the inverse Park module iparkHandle = IPARK_init(&ipark,sizeof(ipark)); // initialize the Park module parkHandle = PARK_init(&park,sizeof(park)); // initialize the space vector generator module svgenHandle = SVGEN_init(&svgen,sizeof(svgen)); trajHandle_Iq = TRAJ_init(&traj_Iq,sizeof(traj_Iq)); TRAJ_setMaxValue(trajHandle_Iq,_IQ(1.0)); TRAJ_setMinValue(trajHandle_Iq,_IQ(0.0)); TRAJ_setIntValue(trajHandle_Iq,_IQ(0.0)); TRAJ_setMaxDelta(trajHandle_Iq,_IQ((float)(1.0/0.5/15.0e3))); // initialize the IPD module library file ipdHandle = IPD_HFI_init(); // Set the IPD_HFI parameters IPD_HFI_setParams(ipdHandle, USER_ISR_FREQ_Hz, // estimation frequency, Hz IPD_HFI_EXC_FREQ_HZ, // excitation frequency, Hz IPD_HFI_LP_SPD_FILT_HZ, // lowpass filter cutoff frequency, Hz IPD_HFI_HP_IQ_FILT_HZ, // highpass filter cutoff frequency, Hz gUserParams.iqFullScaleFreq_Hz, // IQ full scale frequency, Hz IPD_HFI_KSPD, // the speed gain value IPD_HFI_EXC_MAG_COARSE_PU, // coarse IPD excitation magnitude, pu IPD_HFI_EXC_MAG_FINE_PU, // fine IPD excitation magnitude, pu IPD_HFI_EXC_TIME_COARSE_S, // coarse wait time, sec max 0.64 IPD_HFI_EXC_TIME_FINE_S); // fine wait time, sec max 0.4 // Initialize the global motor variables gMotorVars.ipd_excFreq_Hz = IPD_HFI_EXC_FREQ_HZ; gMotorVars.ipd_Kspd = _IQ(IPD_HFI_KSPD); gMotorVars.ipd_excMag_coarse_pu = _IQ(IPD_HFI_EXC_MAG_COARSE_PU); gMotorVars.ipd_excMag_fine_pu = _IQ(IPD_HFI_EXC_MAG_FINE_PU); gMotorVars.ipd_waitTime_coarse_sec = IPD_HFI_EXC_TIME_COARSE_S; gMotorVars.ipd_waitTime_fine_sec = IPD_HFI_EXC_TIME_FINE_S; afselHandle = AFSEL_init(); // Set the AFSEL parameters AFSEL_setParams(afselHandle, AFSEL_MAX_IQ_REF_HFI, AFSEL_MAX_IQ_REF_EST, AFSEL_IQ_SLOPE_HFI, AFSEL_IQ_SLOPE_EST, AFSEL_FREQ_LOW_PU, AFSEL_FREQ_HIGH_PU, ipdHandle, estHandle); // gFlux_pu_VpHz_sf = USER_computeFlux_pu_to_VpHz_sf(); // initialize the Flying Start module fstartHandle = FStart_init(); { float_t maxFlux_VpHz = (USER_MOTOR_RATED_FLUX*((USER_MOTOR_TYPE==MOTOR_Type_Induction)?0.05:0.7)); FStart_setParams(fstartHandle, USER_IQ_FULL_SCALE_VOLTAGE_V, USER_IQ_FULL_SCALE_FREQ_Hz, USER_EST_FREQ_Hz, maxFlux_VpHz); } // disable the forced angle flag gMotorVars.Flag_enableForceAngle = false; // setup faults HAL_setupFaults(halHandle); // initialize the interrupt vector table HAL_initIntVectorTable(halHandle); // enable the ADC interrupts HAL_enableAdcInts(halHandle); // enable global interrupts HAL_enableGlobalInts(halHandle); // enable debug interrupts HAL_enableDebugInt(halHandle); // disable the PWM HAL_disablePwm(halHandle); #ifdef DRV8301_SPI // turn on the DRV8301 if present HAL_enableDrv(halHandle); // initialize the DRV8301 interface HAL_setupDrvSpi(halHandle,&gDrvSpi8301Vars); #endif // enable DC bus compensation CTRL_setFlag_enableDcBusComp(ctrlHandle, true); // compute scaling factors for flux and torque calculations gFlux_pu_to_Wb_sf = USER_computeFlux_pu_to_Wb_sf(); gFlux_pu_to_VpHz_sf = USER_computeFlux_pu_to_VpHz_sf(); gTorque_Ls_Id_Iq_pu_to_Nm_sf = USER_computeTorque_Ls_Id_Iq_pu_to_Nm_sf(); gTorque_Flux_Iq_pu_to_Nm_sf = USER_computeTorque_Flux_Iq_pu_to_Nm_sf(); for(;;) { // Waiting for enable system flag to be set while(!(gMotorVars.Flag_enableSys)); // Enable the Library internal PI. Iq is referenced by the speed PI now CTRL_setFlag_enableSpeedCtrl(ctrlHandle, true); // loop while the enable system flag is true while(gMotorVars.Flag_enableSys) { CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle; // increment counters gCounter_updateGlobals++; // enable/disable the use of motor parameters being loaded from user.h CTRL_setFlag_enableUserMotorParams(ctrlHandle,gMotorVars.Flag_enableUserParams); // enable/disable Rs recalibration during motor startup EST_setFlag_enableRsRecalc(obj->estHandle,gMotorVars.Flag_enableRsRecalc); // enable/disable automatic calculation of bias values CTRL_setFlag_enableOffset(ctrlHandle,gMotorVars.Flag_enableOffsetcalc); if(CTRL_isError(ctrlHandle)) { // set the enable controller flag to false CTRL_setFlag_enableCtrl(ctrlHandle,false); // set the enable system flag to false gMotorVars.Flag_enableSys = false; // IPD disable IPD_HFI_disable(ipdHandle); // disable the PWM HAL_disablePwm(halHandle); } else { // update the controller state bool flag_ctrlStateChanged = CTRL_updateState(ctrlHandle); // enable or disable the control CTRL_setFlag_enableCtrl(ctrlHandle, gMotorVars.Flag_Run_Identify); if(flag_ctrlStateChanged) { CTRL_State_e ctrlState = CTRL_getState(ctrlHandle); if(ctrlState == CTRL_State_OffLine) { // enable the PWM HAL_enablePwm(halHandle); } else if(ctrlState == CTRL_State_OnLine) { if(gMotorVars.Flag_enableOffsetcalc == true) { uint_least16_t cnt; // update the ADC bias values HAL_updateAdcBias(halHandle); // record the current bias for(cnt=0;cnt<3;cnt++) gAdcBiasI.value[cnt] = HAL_getBias(halHandle,HAL_SensorType_Current,cnt); // record the voltage bias for(cnt=0;cnt<3;cnt++) gAdcBiasV.value[cnt] = HAL_getBias(halHandle,HAL_SensorType_Voltage,cnt); gMotorVars.Flag_enableOffsetcalc = false; } else { uint_least16_t cnt; // set the current bias for(cnt=0;cnt<3;cnt++) HAL_setBias(halHandle,HAL_SensorType_Current,cnt,gAdcBiasI.value[cnt]); // set the voltage bias for(cnt=0;cnt<3;cnt++) HAL_setBias(halHandle,HAL_SensorType_Voltage,cnt,gAdcBiasV.value[cnt]); } IPD_HFI_enable(ipdHandle); AFSEL_enable(afselHandle); // enable the PWM HAL_enablePwm(halHandle); } else if(ctrlState == CTRL_State_Idle) { // disable the PWM HAL_disablePwm(halHandle); // IPD disable IPD_HFI_disable(ipdHandle); AFSEL_disable(afselHandle); gMotorVars.Flag_Run_Identify = false; } if((CTRL_getFlag_enableUserMotorParams(ctrlHandle) == true) && (ctrlState > CTRL_State_Idle) && (gMotorVars.CtrlVersion.minor == 6)) { // call this function to fix 1p6 USER_softwareUpdate1p6(ctrlHandle); } } } if(EST_isMotorIdentified(obj->estHandle)) { // set the current ramp EST_setMaxCurrentSlope_pu(obj->estHandle,gMaxCurrentSlope); gMotorVars.Flag_MotorIdentified = true; // set the speed reference CTRL_setSpd_ref_krpm(ctrlHandle,gMotorVars.SpeedRef_krpm); // set the speed acceleration CTRL_setMaxAccel_pu(ctrlHandle,_IQmpy(MAX_ACCEL_KRPMPS_SF,gMotorVars.MaxAccel_krpmps)); if(Flag_Latch_softwareUpdate) { Flag_Latch_softwareUpdate = false; USER_calcPIgains(ctrlHandle); // initialize the watch window kp and ki current values with pre-calculated values gMotorVars.Kp_Idq = CTRL_getKp(ctrlHandle,CTRL_Type_PID_Id); gMotorVars.Ki_Idq = CTRL_getKi(ctrlHandle,CTRL_Type_PID_Id); // initialize the watch window kp and ki values with pre-calculated values gMotorVars.Kp_spd = CTRL_getKp(ctrlHandle,CTRL_Type_PID_spd); gMotorVars.Ki_spd = CTRL_getKi(ctrlHandle,CTRL_Type_PID_spd); } } else { Flag_Latch_softwareUpdate = true; // the estimator sets the maximum current slope during identification gMaxCurrentSlope = EST_getMaxCurrentSlope_pu(obj->estHandle); } // when appropriate, update the global variables if(gCounter_updateGlobals >= NUM_MAIN_TICKS_FOR_GLOBAL_VARIABLE_UPDATE) { // reset the counter gCounter_updateGlobals = 0; updateGlobalVariables_motor(ctrlHandle); // Update the IPD parameters in real time when flag_update_ipd is true if(flag_update_ipd) { { uint_least32_t period = (uint_least32_t)(USER_ISR_FREQ_Hz / (2.0 * gMotorVars.ipd_excFreq_Hz)); uint_least32_t Periods[IPD_HFI_TRAJ_State_NumStates] = {0,0}; Periods[IPD_HFI_TRAJ_State_Coarse] = period; Periods[IPD_HFI_TRAJ_State_Fine] = period; IPD_HFI_setTrajPeriods(ipdHandle,Periods); } IPD_HFI_setKspd_pu(ipdHandle, _IQmpy(gMotorVars.ipd_Kspd,_IQ(1.0/MATH_TWO_PI))); { _iq Mags[4] = {0,0,0,0}; Mags[IPD_HFI_TRAJ_State_Coarse] = gMotorVars.ipd_excMag_coarse_pu; Mags[IPD_HFI_TRAJ_State_Fine] = gMotorVars.ipd_excMag_fine_pu; IPD_HFI_setTrajMags(ipdHandle,Mags); } { uint_least32_t coarse_s = (uint_least32_t)(gMotorVars.ipd_waitTime_coarse_sec * USER_ISR_FREQ_Hz); uint_least32_t fine_s = (uint_least32_t)(gMotorVars.ipd_waitTime_fine_sec * USER_ISR_FREQ_Hz); uint_least32_t WaitTimes[5] = {0,0,0,0,0}; WaitTimes[IPD_HFI_State_Coarse] = coarse_s; WaitTimes[IPD_HFI_State_Fine] = fine_s; IPD_HFI_setWaitTimes(ipdHandle,WaitTimes); } flag_update_ipd = false; } } // update Kp and Ki gains updateKpKiGains(ctrlHandle); // calculate the throttle position and output as a torque command { _iq IqSlope = AFSEL_getIqSlope(afselHandle); _iq IqMax = AFSEL_getIqMax(afselHandle); gUi = FStart_run(fstartHandle, EST_getFm_pu(estHandle), EST_getFlux_pu(estHandle)); // set slope for Iq reference TRAJ_setMaxDelta(trajHandle_Iq, IqSlope); // set maximum Iq reference TRAJ_setMaxValue(trajHandle_Iq, IqMax); // set target Iq reference TRAJ_setTargetValue(trajHandle_Iq, gThrottle_Result); } // enable/disable the forced angle EST_setFlag_enableForceAngle(obj->estHandle,gMotorVars.Flag_enableForceAngle); // update the afsel state AFSEL_updateState(afselHandle); // update the IPD state IPD_HFI_updateState(ipdHandle); // enable or disable power warp CTRL_setFlag_enablePowerWarp(ctrlHandle,gMotorVars.Flag_enablePowerWarp); #ifdef DRV8301_SPI HAL_writeDrvData(halHandle,&gDrvSpi8301Vars); HAL_readDrvData(halHandle,&gDrvSpi8301Vars); #endif } // end of while(gFlag_enableSys) loop // disable the PWM HAL_disablePwm(halHandle); // IPD disable IPD_HFI_disable(ipdHandle); // reset the IPD estimator IPD_HFI_setAngle_pu(ipdHandle,_IQ(0.0)); IPD_HFI_setId_sum(ipdHandle,_IQ(0.0)); // set the default controller parameters (Reset the control to re-identify the motor) CTRL_setParams(ctrlHandle,&gUserParams); gMotorVars.Flag_Run_Identify = false; } // end of for(;;) loop } // end of main() function interrupt void mainISR(void) { _iq angle_pu,angle_hfi_pu,angle_est_pu; _iq speed_pu,speed_hfi_pu,speed_est_pu; _iq speed_ref_pu = TRAJ_getIntValue(((CTRL_Obj *)ctrlHandle)->trajHandle_spd); _iq speed_outMax_pu = TRAJ_getIntValue(((CTRL_Obj *)ctrlHandle)->trajHandle_spdMax); MATH_vec2 Iab_pu; MATH_vec2 Vab_pu; MATH_vec2 Vdq_out_pu; MATH_vec2 Vab_out_pu; MATH_vec2 phasor; // toggle status LED if(gLEDcnt++ > (uint_least32_t)(USER_ISR_FREQ_Hz / LED_BLINK_FREQ_Hz)) { HAL_toggleLed(halHandle,(GPIO_Number_e)HAL_Gpio_LED2); gLEDcnt = 0; } // acknowledge the ADC interrupt HAL_acqAdcInt(halHandle,ADC_IntNumber_1); // convert the ADC data HAL_readAdcData(halHandle,&gAdcData); { uint_least16_t count_isr = CTRL_getCount_isr(ctrlHandle); uint_least16_t numIsrTicksPerCtrlTick = CTRL_getNumIsrTicksPerCtrlTick(ctrlHandle); // if needed, run the controller if(count_isr >= numIsrTicksPerCtrlTick) { CTRL_State_e ctrlState = CTRL_getState(ctrlHandle); bool flag_enableSpeedCtrl; bool flag_enableCurrentCtrl; MATH_vec2 Idq_offset_pu; MATH_vec2 Vdq_offset_pu; // reset the isr count CTRL_resetCounter_isr(ctrlHandle); // run Clarke transform on current CLARKE_run(clarkeHandle_I,&gAdcData.I,&Iab_pu); // run Clarke transform on voltage CLARKE_run(clarkeHandle_V,&gAdcData.V,&Vab_pu); { // run the estimator EST_run(estHandle, \ &Iab_pu, \ &Vab_pu, \ gAdcData.dcBus, \ speed_ref_pu); } // run IPD-HFI if(IPD_HFI_isEnabled(ipdHandle)) { // run the IPD algorithm IPD_HFI_run(ipdHandle,&Iab_pu); // set the Vdq bias Vdq_offset_pu.value[0] = IPD_HFI_getVdValue(ipdHandle); Vdq_offset_pu.value[1] = _IQ(0.0); // get the reference angle and frequency values angle_pu = IPD_HFI_getAngle_pu(ipdHandle); speed_pu = IPD_HFI_getSpeed_lp_pu(ipdHandle); } else { // zero the Vdq bias Vdq_offset_pu.value[0] = _IQ(0.0); Vdq_offset_pu.value[1] = _IQ(0.0); // get the estimator angle and frequency values angle_pu = EST_getAngle_pu(estHandle); speed_pu = EST_getFm_pu(estHandle); } if(AFSEL_isEnabled(afselHandle)) { // get the reference angle and frequency values angle_hfi_pu = IPD_HFI_getAngle_pu(ipdHandle); speed_hfi_pu = IPD_HFI_getSpeed_lp_pu(ipdHandle); // get the estimator angle and frequency values angle_est_pu = EST_getAngle_pu(estHandle); speed_est_pu = EST_getFm_pu(estHandle); // setup the angle/frequency selector AFSEL_setup(afselHandle, angle_hfi_pu, speed_hfi_pu, angle_est_pu, speed_est_pu); // run the angle/frequency selector AFSEL_run(afselHandle); // get the angle and frequency angle_pu = AFSEL_getAngle_pu(afselHandle); speed_pu = AFSEL_getFreq_pu(afselHandle); } // compute the sin/cos phasor CTRL_computePhasor(angle_pu,&phasor); // set the phasor in the Park transform PARK_setPhasor(parkHandle,&phasor); // run the Park transform PARK_run(parkHandle,&Iab_pu,CTRL_getIdq_in_addr(ctrlHandle)); // run the Iq current trajectory TRAJ_run(trajHandle_Iq); // set the offset based on the Id trajectory Idq_offset_pu.value[0] = TRAJ_getIntValue(((CTRL_Obj *)ctrlHandle)->trajHandle_Id); Idq_offset_pu.value[1] = TRAJ_getIntValue(trajHandle_Iq);; flag_enableSpeedCtrl = EST_doSpeedCtrl(estHandle) & gMotorVars.Flag_enableSpeedCtrl; flag_enableCurrentCtrl = EST_doCurrentCtrl(estHandle); CTRL_setup_user(ctrlHandle, angle_pu, speed_ref_pu, speed_pu, speed_outMax_pu, &Idq_offset_pu, &Vdq_offset_pu, flag_enableSpeedCtrl, flag_enableCurrentCtrl); // run the appropriate controller if(ctrlState == CTRL_State_OnLine) { // run the online controller CTRL_runPiOnly(ctrlHandle); // get the controller output CTRL_getVdq_out_pu(ctrlHandle,&Vdq_out_pu); // set the phasor in the inverse Park transform IPARK_setPhasor(iparkHandle,&phasor); // run the inverse Park module IPARK_run(iparkHandle,&Vdq_out_pu,&Vab_out_pu); // run the space Vector Generator (SVGEN) module SVGEN_run(svgenHandle,&Vab_out_pu,&(gPwmData.Tabc)); } else if(ctrlState == CTRL_State_OffLine) { // run the offline controller CTRL_runOffLine(ctrlHandle,halHandle,&gAdcData,&gPwmData); } } else { // increment the isr count CTRL_incrCounter_isr(ctrlHandle); } } // write the PWM compare values HAL_writePwmData(halHandle,&gPwmData); return; } // end of mainISR() function void setupClarke_I(CLARKE_Handle handle,const uint_least8_t numCurrentSensors) { _iq alpha_sf,beta_sf; // initialize the Clarke transform module for current if(numCurrentSensors == 3) { alpha_sf = _IQ(MATH_ONE_OVER_THREE); beta_sf = _IQ(MATH_ONE_OVER_SQRT_THREE); } else if(numCurrentSensors == 2) { alpha_sf = _IQ(1.0); beta_sf = _IQ(MATH_ONE_OVER_SQRT_THREE); } else { alpha_sf = _IQ(0.0); beta_sf = _IQ(0.0); } // set the parameters CLARKE_setScaleFactors(handle,alpha_sf,beta_sf); CLARKE_setNumSensors(handle,numCurrentSensors); return; } // end of setupClarke_I() function void setupClarke_V(CLARKE_Handle handle,const uint_least8_t numVoltageSensors) { _iq alpha_sf,beta_sf; // initialize the Clarke transform module for voltage if(numVoltageSensors == 3) { alpha_sf = _IQ(MATH_ONE_OVER_THREE); beta_sf = _IQ(MATH_ONE_OVER_SQRT_THREE); } else { alpha_sf = _IQ(0.0); beta_sf = _IQ(0.0); } // set the parameters CLARKE_setScaleFactors(handle,alpha_sf,beta_sf); CLARKE_setNumSensors(handle,numVoltageSensors); return; } // end of setupClarke_V() function void updateGlobalVariables_motor(CTRL_Handle handle) { CTRL_Obj *obj = (CTRL_Obj *)handle; // get the speed estimate gMotorVars.Speed_krpm = EST_getSpeed_krpm(obj->estHandle); // get the real time speed reference coming out of the speed trajectory generator gMotorVars.SpeedTraj_krpm = _IQmpy(CTRL_getSpd_int_ref_pu(handle),EST_get_pu_to_krpm_sf(obj->estHandle)); // get the torque estimate gMotorVars.Torque_Nm = USER_computeTorque_Nm(handle, gTorque_Flux_Iq_pu_to_Nm_sf, gTorque_Ls_Id_Iq_pu_to_Nm_sf); // get the magnetizing current gMotorVars.MagnCurr_A = EST_getIdRated(obj->estHandle); // get the rotor resistance gMotorVars.Rr_Ohm = EST_getRr_Ohm(obj->estHandle); // get the stator resistance gMotorVars.Rs_Ohm = EST_getRs_Ohm(obj->estHandle); // get the stator inductance in the direct coordinate direction gMotorVars.Lsd_H = EST_getLs_d_H(obj->estHandle); // get the stator inductance in the quadrature coordinate direction gMotorVars.Lsq_H = EST_getLs_q_H(obj->estHandle); // get the flux in V/Hz in floating point gMotorVars.Flux_VpHz = EST_getFlux_VpHz(obj->estHandle); // get the flux in Wb in fixed point gMotorVars.Flux_Wb = USER_computeFlux(handle, gFlux_pu_to_Wb_sf); // get the controller state gMotorVars.CtrlState = CTRL_getState(handle); // get the estimator state gMotorVars.EstState = EST_getState(obj->estHandle); // Get the DC buss voltage gMotorVars.VdcBus_kV = _IQmpy(gAdcData.dcBus,_IQ(USER_IQ_FULL_SCALE_VOLTAGE_V/1000.0)); return; } // end of updateGlobalVariables_motor() function void updateKpKiGains(CTRL_Handle handle) { if((gMotorVars.CtrlState == CTRL_State_OnLine) && (gMotorVars.Flag_MotorIdentified == true) && (Flag_Latch_softwareUpdate == false)) { // set the kp and ki speed values from the watch window CTRL_setKp(handle,CTRL_Type_PID_spd,gMotorVars.Kp_spd); CTRL_setKi(handle,CTRL_Type_PID_spd,gMotorVars.Ki_spd); // set the kp and ki current values for Id and Iq from the watch window CTRL_setKp(handle,CTRL_Type_PID_Id,gMotorVars.Kp_Idq); CTRL_setKi(handle,CTRL_Type_PID_Id,gMotorVars.Ki_Idq); CTRL_setKp(handle,CTRL_Type_PID_Iq,gMotorVars.Kp_Idq); CTRL_setKi(handle,CTRL_Type_PID_Iq,gMotorVars.Ki_Idq); } return; } // end of updateKpKiGains() function //@} //defgroup // end of file
lui kawasumi said:Note I am using very low induction motor (Scorpion S-4025-12).
this motor does not have any saliency, the HFI technique will not be successful
lui kawasumi said:my understaning is that this lab is supposed to allow me to transition from getting the motor to move from zero with relatively heavy load using HFI, to transition to either speed loop control or torque control FAST
project_lab21 is just torque mode only (used for things like e-Bikes).
21. Initial & Slow Speed Position Detection (IPD_HFI) with transition (AFSEL) to FAST: Torque Control Mode [F2806x only for first release]
22. Coming Soon: IPD_HFI with Speed Control Mode [and F2802x support]
ChrisClearman said:21. Initial & Slow Speed Position Detection (IPD_HFI) with transition (AFSEL) to FAST: Torque Control Mode [F2806x only for first release]
22. Coming Soon: IPD_HFI with Speed Control Mode [and F2802x support]
Hello,
any update on the last point (22)?
thank you very much
lorenzo
Lorenzo,
I should remove that point.
The IPD_HFI has proved extremely challenging to get working unless the customer has some significant expertise and knows the inductance/saliency and saturation effects of their motor very well. Because it is not "instant" we have decided to stop investing in solutions that use IPD_HFI. We are leaving the existing project as-is for customers who want to give it a try.
Chris,
thank you very much for your fast answer.
do you have an high level description of the hfi module? such a schematics?
have a great weekend
lorenzo
lab21 does not have project support for the HVKIT
you could port this over yourself, but we have never done so
Hi Chris,
Thanks for your reply. I transfer the project lab21 to Lab5b by using Lab21's "user.h" file and other Library files. I can compile and run the project normally.
But when I set "gMotorVars.Flag_enableSys" and “gMotorVars.Flag_Run_Identify" equal to 1, I just hear some noise, not any other reaction.
I read the rotor position from the variable "angle_pu" in the debug window, it doesn't work normally.
Could you give me some advices about the lab procedure and the correct result?
Thank you!
Eli