This thread has been locked.
If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.
Dear TI,
Is it possible to add DCO calibration options to the MSP430 gang programmer or provide the code set that is there today for the F2xx devices? We are using the G2332 which has the DCO values stored in INFO A and we want to check and apply calibrations to these DCO values. See picture attached
Hi Jason,
Adding a check (beyond what is already in place) would not be possible without the source for msp-gang.exe, which I don't believe is provided (I didn't see it in the download).
However, there are a couple of options. We provide the DLLs, along with a demo in the \MSP-GANG\Examples\CPP_Interactive_MSP_DLL\ folder of the MSP-GANG installation, for interfacing a PC with the MSP-GANG. Your customer could use this demo app as a framework and modify to perform a two-stage calibrate/finalImage flash process. We provide source for an application in MSP430Ware that reflashes the DCO calibration constants into INFO A.
/* --COPYRIGHT--,BSD_EX * Copyright (c) 2012, Texas Instruments Incorporated * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of Texas Instruments Incorporated nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************* * * MSP430 CODE EXAMPLE DISCLAIMER * * MSP430 code examples are self-contained low-level programs that typically * demonstrate a single peripheral function or device feature in a highly * concise manner. For this the code may rely on the device's power-on default * register values and settings such as the clock configuration and care must * be taken when combining code from several examples to avoid potential side * effects. Also see www.ti.com/grace for a GUI- and www.ti.com/msp430ware * for an API functional library-approach to peripheral configuration. * * --/COPYRIGHT--*/ //****************************************************************************** // MSP430G2xx2 Demo - DCO Calibration Constants Programmer // // NOTE: THIS CODE REPLACES THE TI FACTORY-PROGRAMMED DCO CALIBRATION // CONSTANTS LOCATED IN INFOA WITH NEW VALUES. USE ONLY IF THE ORIGINAL // CONSTANTS ACCIDENTALLY GOT CORRUPTED OR ERASED. // // Description: This code re-programs the G2xx2 DCO calibration constants. // A software FLL mechanism is used to set the DCO based on an external // 32kHz reference clock. After each calibration, the values from the // clock system are read out and stored in a temporary variable. The final // frequency the DCO is set to is 1MHz, and this frequency is also used // during Flash programming of the constants. The program end is indicated // by the blinking LED. // ACLK = LFXT1/8 = 32768/8, MCLK = SMCLK = target DCO // //* External watch crystal installed on XIN XOUT is required for ACLK *// // // MSP430G2xx2 // --------------- // /|\| XIN|- // | | | 32kHz // --|RST XOUT|- // | | // | P1.0|--> LED // | P1.4|--> SMLCK = target DCO // // A. Dannenberg // Texas Instruments Inc. // May 2010 // Built with CCS Version 4.2.0 and IAR Embedded Workbench Version: 3.42A //****************************************************************************** #include <msp430.h> #define DELTA_1MHZ 244 // 244 x 4096Hz = 999.4Hz #define DELTA_8MHZ 1953 // 1953 x 4096Hz = 7.99MHz #define DELTA_12MHZ 2930 // 2930 x 4096Hz = 12.00MHz #define DELTA_16MHZ 3906 // 3906 x 4096Hz = 15.99MHz unsigned char CAL_DATA[8]; // Temp. storage for constants volatile unsigned int i; int j; char *Flash_ptrA; // Segment A pointer void Set_DCO(unsigned int Delta); int main(void) { WDTCTL = WDTPW + WDTHOLD; // Stop WDT for (i = 0; i < 0xfffe; i++); // Delay for XTAL stabilization P1OUT = 0x00; // Clear P1 output latches P1SEL = 0x10; // P1.4 SMCLK output P1DIR = 0x11; // P1.0,4 output j = 0; // Reset pointer Set_DCO(DELTA_16MHZ); // Set DCO and obtain constants CAL_DATA[j++] = DCOCTL; CAL_DATA[j++] = BCSCTL1; Set_DCO(DELTA_12MHZ); // Set DCO and obtain constants CAL_DATA[j++] = DCOCTL; CAL_DATA[j++] = BCSCTL1; Set_DCO(DELTA_8MHZ); // Set DCO and obtain constants CAL_DATA[j++] = DCOCTL; CAL_DATA[j++] = BCSCTL1; Set_DCO(DELTA_1MHZ); // Set DCO and obtain constants CAL_DATA[j++] = DCOCTL; CAL_DATA[j++] = BCSCTL1; Flash_ptrA = (char *)0x10C0; // Point to beginning of seg A FCTL2 = FWKEY + FSSEL0 + FN1; // MCLK/3 for Flash Timing Generator FCTL1 = FWKEY + ERASE; // Set Erase bit FCTL3 = FWKEY + LOCKA; // Clear LOCK & LOCKA bits *Flash_ptrA = 0x00; // Dummy write to erase Flash seg A FCTL1 = FWKEY + WRT; // Set WRT bit for write operation Flash_ptrA = (char *)0x10F8; // Point to beginning of cal consts for (j = 0; j < 8; j++) *Flash_ptrA++ = CAL_DATA[j]; // re-flash DCO calibration data FCTL1 = FWKEY; // Clear WRT bit FCTL3 = FWKEY + LOCKA + LOCK; // Set LOCK & LOCKA bit while (1) { P1OUT ^= 0x01; // Toggle LED for (i = 0; i < 0x4000; i++); // SW Delay } } void Set_DCO(unsigned int Delta) // Set DCO to selected frequency { unsigned int Compare, Oldcapture = 0; BCSCTL1 |= DIVA_3; // ACLK = LFXT1CLK/8 TACCTL0 = CM_1 + CCIS_1 + CAP; // CAP, ACLK TACTL = TASSEL_2 + MC_2 + TACLR; // SMCLK, cont-mode, clear while (1) { while (!(CCIFG & TACCTL0)); // Wait until capture occured TACCTL0 &= ~CCIFG; // Capture occured, clear flag Compare = TACCR0; // Get current captured SMCLK Compare = Compare - Oldcapture; // SMCLK difference Oldcapture = TACCR0; // Save current captured SMCLK if (Delta == Compare) break; // If equal, leave "while(1)" else if (Delta < Compare) { DCOCTL--; // DCO is too fast, slow it down if (DCOCTL == 0xFF) // Did DCO roll under? if (BCSCTL1 & 0x0f) BCSCTL1--; // Select lower RSEL } else { DCOCTL++; // DCO is too slow, speed it up if (DCOCTL == 0x00) // Did DCO roll over? if ((BCSCTL1 & 0x0f) != 0x0f) BCSCTL1++; // Sel higher RSEL } } TACCTL0 = 0; // Stop TACCR0 TACTL = 0; // Stop Timer_A BCSCTL1 &= ~DIVA_3; // ACLK = LFXT1CLK }
You could also just build the above demo application code and flash it first to recalibrate and then flash the end application over it.
Michael,
Thanks for getting back to Jason on this, I appreciate the pointers.
Jason,
Do either of the above approaches seem feasible to you? I like the simplicitiy of the second option, though it would add time to the end-of-line procedures for the customer.
Regards,
Walter
Dear TI,
Yes one of these approaches should work. I was hoping the source for the programmer was available but we can make due with one of the other options.
**Attention** This is a public forum