This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

TDA4VM: Compiling a model on PC

Part Number: TDA4VM


Hello,

I am trying to compile a model from model-zoo (ONNX model)using edgeai-tidl script (I made certain changes to it).

"""
Script to run onnx file and compile it. 
"""
from scripts.utils import loggerWritter, plot_TI_performance_data, plot_TI_DDRBW_data, get_benchmark_output
import os
os.environ["TIDL_TOOLS_PATH"] = "/home/xyz/edgeai-tidl-tools/tidl_tools"
os.environ["LD_LIBRARY_PATH"] = "/home/xyz/edgeai-tidl-tools/tidl_tools"
import tqdm

import numpy as np
import onnxruntime as rt
import shutil
import matplotlib.pyplot as plt

from pathlib import Path
import onnx
import cv2
def preprocess(img):
    """
    To do:implement resizing for image
    """
    #img = cv2.imread(image_path)

    #img = img[:,:,::-1] # convert to RGB
    
    print("Reshaping the image", img.shape)
    img = cv2.resize(img, (224, 224))
    img = img.astype("float32")
    img = np.expand_dims(img, axis=0)
    img = np.transpose(img, (0, 3, 1, 2))
    
    return img

calib_images = ["/home/xyz/TestCode/sample-images/elephant.bmp",
                "/home/xyz/TestCode/sample-images/bus.bmp",
                "/home/xyz/TestCode/sample-images/bicycle.bmp",
                "/home/xyz/TestCode/sample-images/zebra.bmp"] # here goes list of images to be used for calibration

output_dir = "/home/xyz/TestCode/output_dir"
onnx_model_path = "/home/xyz/TestCode/mobilenetv2-1.0.onnx"

onnx.shape_inference.infer_shapes_path(onnx_model_path, onnx_model_path)

num_bits = 8
accuracy = 1
log_dir = Path("logs").mkdir(parents=True, exist_ok=True)
with loggerWritter("logs/custom-model-onnx"):
    compile_options = {
    "tidl_tools_path": os.environ["TIDL_TOOLS_PATH"],
    "artifacts_folder" : output_dir,
    "tensor_bits": num_bits,
    "accuracy_level": accuracy,
    "advanced_options:calibration_frames": 2,#len(calib_images),
    "advanced_options:calibration_iterations": 1,
    "debug_level" : 1,
    "deny_list": "MaxPool, Gemm, Transpose, Pad, GlobalAveragePool, Squeeze"
}

os.makedirs(output_dir, exist_ok = True)
for root, dirs, files in os.walk(output_dir, topdown=False):
    [os.remove(os.path.join(root, f)) for f in files]
    [os.rmdir(os.path.join(root, d)) for d in dirs]

so = rt.SessionOptions()

EP_list = ["TIDLCompilationProvider", "CPUExecutionProvider"]

sess = rt.InferenceSession(onnx_model_path, providers=EP_list, provider_options=[compile_options, {}], sess_options=so)
print("********************Model compiled successfully*******************************")
input_details = sess.get_inputs()

for i, num in enumerate(calib_images):
    image = cv2.imread(calib_images[i])
    output = list(sess.run(None, {input_details[0].name:preprocess(image)}))[0]

EP_list = ["TIDLExecutionProvider", "CPUExecutionProvider"]
sess = rt.InferenceSession(onnx_model_path, providers=EP_list, provider_options=[compile_options, {}], sess_options=so)
print("********************Model Loaded**********************************************")
for i in range(5):
    img = cv2.imread('/home/xyz/TestCode/sample-images/elephant.bmp')
    output = list(sess.run(None, {input_details[0].name : preprocess(img)}))

root_src_dir = output_dir

root_dst_dir = "cusom-artifacts/onnx/converted_model.onnx"

for src_dir, dirs, files in os.walk(root_src_dir):
    dst_dir = src_dir.replace(root_src_dir, root_dst_dir, 1)
    if not os.path.exists(dst_dir):
        os.makedirs(dst_dir)
    for file_ in files:
        src_file = os.path.join(src_dir, file_)
        dst_file = os.path.join(dst_dir, file_)
        if os.path.exists(dst_file):
            os.remove(dst_file)
        shutil.copy(src_file, dst_dir)

However, I encounter failure while doing so. Please find attached the logs for the same.

tidl_tools_path                                 = /home/xyz/edgeai-tidl-tools/tidl_tools 
artifacts_folder                                = /home/xyz/TestCode/output_dir 
tidl_tensor_bits                                = 8 
debug_level                                     = 1 
num_tidl_subgraphs                              = 16 
tidl_denylist                                   = MaxPool   Gemm   Transpose   Pad   GlobalAveragePool   Squeeze   
tidl_denylist_layer_name                        = 
tidl_denylist_layer_type                         = 
tidl_allowlist_layer_name                        = 
model_type                                      =  
tidl_calibration_accuracy_level                 = 7 
tidl_calibration_options:num_frames_calibration = 2 
tidl_calibration_options:bias_calibration_iterations = 1 
mixed_precision_factor = -1,000000 
model_group_id = 0 
power_of_2_quantization                         = 2 
enable_high_resolution_optimization             = 0 
pre_batchnorm_fold                              = 1 
add_data_convert_ops                          = 0 
output_feature_16bit_names_list                 =  
m_params_16bit_names_list                       =  
reserved_compile_constraints_flag               = 1601 
ti_internal_reserved_1                          = 

 ****** WARNING : Network not identified as Object Detection network : (1) Ignore if network is not Object Detection network (2) If network is Object Detection network, please specify "model_type":"OD" as part of OSRT compilation options******

Supported TIDL layer type ---            Conv -- mobilenetv20_features_conv0_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_relu0_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck0_conv0_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck0_relu0_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck0_conv1_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck0_relu1_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck0_conv2_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck1_conv0_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck1_relu0_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck1_conv1_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck1_relu1_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck1_conv2_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck2_conv0_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck2_relu0_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck2_conv1_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck2_relu1_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck2_conv2_fwd 
Supported TIDL layer type ---             Add -- mobilenetv20_features_linearbottleneck2_elemwise_add0 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck3_conv0_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck3_relu0_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck3_conv1_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck3_relu1_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck3_conv2_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck4_conv0_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck4_relu0_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck4_conv1_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck4_relu1_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck4_conv2_fwd 
Supported TIDL layer type ---             Add -- mobilenetv20_features_linearbottleneck4_elemwise_add0 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck5_conv0_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck5_relu0_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck5_conv1_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck5_relu1_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck5_conv2_fwd 
Supported TIDL layer type ---             Add -- mobilenetv20_features_linearbottleneck5_elemwise_add0 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck6_conv0_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck6_relu0_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck6_conv1_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck6_relu1_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck6_conv2_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck7_conv0_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck7_relu0_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck7_conv1_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck7_relu1_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck7_conv2_fwd 
Supported TIDL layer type ---             Add -- mobilenetv20_features_linearbottleneck7_elemwise_add0 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck8_conv0_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck8_relu0_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck8_conv1_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck8_relu1_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck8_conv2_fwd 
Supported TIDL layer type ---             Add -- mobilenetv20_features_linearbottleneck8_elemwise_add0 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck9_conv0_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck9_relu0_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck9_conv1_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck9_relu1_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck9_conv2_fwd 
Supported TIDL layer type ---             Add -- mobilenetv20_features_linearbottleneck9_elemwise_add0 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck10_conv0_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck10_relu0_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck10_conv1_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck10_relu1_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck10_conv2_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck11_conv0_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck11_relu0_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck11_conv1_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck11_relu1_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck11_conv2_fwd 
Supported TIDL layer type ---             Add -- mobilenetv20_features_linearbottleneck11_elemwise_add0 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck12_conv0_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck12_relu0_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck12_conv1_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck12_relu1_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck12_conv2_fwd 
Supported TIDL layer type ---             Add -- mobilenetv20_features_linearbottleneck12_elemwise_add0 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck13_conv0_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck13_relu0_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck13_conv1_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck13_relu1_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck13_conv2_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck14_conv0_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck14_relu0_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck14_conv1_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck14_relu1_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck14_conv2_fwd 
Supported TIDL layer type ---             Add -- mobilenetv20_features_linearbottleneck14_elemwise_add0 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck15_conv0_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck15_relu0_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck15_conv1_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck15_relu1_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck15_conv2_fwd 
Supported TIDL layer type ---             Add -- mobilenetv20_features_linearbottleneck15_elemwise_add0 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck16_conv0_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck16_relu0_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck16_conv1_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_linearbottleneck16_relu1_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_linearbottleneck16_conv2_fwd 
Supported TIDL layer type ---            Conv -- mobilenetv20_features_conv1_fwd 
Supported TIDL layer type ---            Relu -- mobilenetv20_features_relu1_fwd 
Op type 'GlobalAveragePool'  added to unsupported nodes as specified in deny list 
Supported TIDL layer type ---            Conv -- mobilenetv20_output_pred_fwd 
Supported TIDL layer type ---         Reshape -- mobilenetv20_output_flatten0_reshape0 

Preliminary subgraphs created = 2 
Final number of subgraphs created are : 2, - Offloaded Nodes - 101, Total Nodes - 102 
Node in deny list...delegated to ARM --- layer type - GlobalAveragePool, Node name - mobilenetv20_features_pool0_fwd  
Running runtimes graphviz - /home/xyz/edgeai-tidl-tools/tidl_tools/tidl_graphVisualiser_runtimes.out /home/xyz/TestCode/output_dir/allowedNode.txt /home/xyz/TestCode/output_dir/tempDir/graphvizInfo.txt /home/xyz/TestCode/output_dir/tempDir/runtimes_visualization.svg 
*** In TIDL_createStateImportFunc *** 
Compute on node : TIDLExecutionProvider_TIDL_0_0
  0,            Conv, 3, 1, data, mobilenetv20_features_batchnorm0_fwd
  1,            Relu, 1, 1, mobilenetv20_features_batchnorm0_fwd, mobilenetv20_features_relu0_fwd
  2,            Conv, 3, 1, mobilenetv20_features_relu0_fwd, mobilenetv20_features_linearbottleneck0_batchnorm0_fwd
  3,            Relu, 1, 1, mobilenetv20_features_linearbottleneck0_batchnorm0_fwd, mobilenetv20_features_linearbottleneck0_relu0_fwd
  4,            Conv, 3, 1, mobilenetv20_features_linearbottleneck0_relu0_fwd, mobilenetv20_features_linearbottleneck0_batchnorm1_fwd
  5,            Relu, 1, 1, mobilenetv20_features_linearbottleneck0_batchnorm1_fwd, mobilenetv20_features_linearbottleneck0_relu1_fwd
  6,            Conv, 3, 1, mobilenetv20_features_linearbottleneck0_relu1_fwd, mobilenetv20_features_linearbottleneck0_batchnorm2_fwd
  7,            Conv, 3, 1, mobilenetv20_features_linearbottleneck0_batchnorm2_fwd, mobilenetv20_features_linearbottleneck1_batchnorm0_fwd
  8,            Relu, 1, 1, mobilenetv20_features_linearbottleneck1_batchnorm0_fwd, mobilenetv20_features_linearbottleneck1_relu0_fwd
  9,            Conv, 3, 1, mobilenetv20_features_linearbottleneck1_relu0_fwd, mobilenetv20_features_linearbottleneck1_batchnorm1_fwd
 10,            Relu, 1, 1, mobilenetv20_features_linearbottleneck1_batchnorm1_fwd, mobilenetv20_features_linearbottleneck1_relu1_fwd
 11,            Conv, 3, 1, mobilenetv20_features_linearbottleneck1_relu1_fwd, mobilenetv20_features_linearbottleneck1_batchnorm2_fwd
 12,            Conv, 3, 1, mobilenetv20_features_linearbottleneck1_batchnorm2_fwd, mobilenetv20_features_linearbottleneck2_batchnorm0_fwd
 13,            Relu, 1, 1, mobilenetv20_features_linearbottleneck2_batchnorm0_fwd, mobilenetv20_features_linearbottleneck2_relu0_fwd
 14,            Conv, 3, 1, mobilenetv20_features_linearbottleneck2_relu0_fwd, mobilenetv20_features_linearbottleneck2_batchnorm1_fwd
 15,            Relu, 1, 1, mobilenetv20_features_linearbottleneck2_batchnorm1_fwd, mobilenetv20_features_linearbottleneck2_relu1_fwd
 16,            Conv, 3, 1, mobilenetv20_features_linearbottleneck2_relu1_fwd, mobilenetv20_features_linearbottleneck2_batchnorm2_fwd
 17,             Add, 2, 1, mobilenetv20_features_linearbottleneck2_batchnorm2_fwd, mobilenetv20_features_linearbottleneck2_elemwise_add0
 18,            Conv, 3, 1, mobilenetv20_features_linearbottleneck2_elemwise_add0, mobilenetv20_features_linearbottleneck3_batchnorm0_fwd
 19,            Relu, 1, 1, mobilenetv20_features_linearbottleneck3_batchnorm0_fwd, mobilenetv20_features_linearbottleneck3_relu0_fwd
 20,            Conv, 3, 1, mobilenetv20_features_linearbottleneck3_relu0_fwd, mobilenetv20_features_linearbottleneck3_batchnorm1_fwd
 21,            Relu, 1, 1, mobilenetv20_features_linearbottleneck3_batchnorm1_fwd, mobilenetv20_features_linearbottleneck3_relu1_fwd
 22,            Conv, 3, 1, mobilenetv20_features_linearbottleneck3_relu1_fwd, mobilenetv20_features_linearbottleneck3_batchnorm2_fwd
 23,            Conv, 3, 1, mobilenetv20_features_linearbottleneck3_batchnorm2_fwd, mobilenetv20_features_linearbottleneck4_batchnorm0_fwd
 24,            Relu, 1, 1, mobilenetv20_features_linearbottleneck4_batchnorm0_fwd, mobilenetv20_features_linearbottleneck4_relu0_fwd
 25,            Conv, 3, 1, mobilenetv20_features_linearbottleneck4_relu0_fwd, mobilenetv20_features_linearbottleneck4_batchnorm1_fwd
 26,            Relu, 1, 1, mobilenetv20_features_linearbottleneck4_batchnorm1_fwd, mobilenetv20_features_linearbottleneck4_relu1_fwd
 27,            Conv, 3, 1, mobilenetv20_features_linearbottleneck4_relu1_fwd, mobilenetv20_features_linearbottleneck4_batchnorm2_fwd
 28,             Add, 2, 1, mobilenetv20_features_linearbottleneck4_batchnorm2_fwd, mobilenetv20_features_linearbottleneck4_elemwise_add0
 29,            Conv, 3, 1, mobilenetv20_features_linearbottleneck4_elemwise_add0, mobilenetv20_features_linearbottleneck5_batchnorm0_fwd
 30,            Relu, 1, 1, mobilenetv20_features_linearbottleneck5_batchnorm0_fwd, mobilenetv20_features_linearbottleneck5_relu0_fwd
 31,            Conv, 3, 1, mobilenetv20_features_linearbottleneck5_relu0_fwd, mobilenetv20_features_linearbottleneck5_batchnorm1_fwd
 32,            Relu, 1, 1, mobilenetv20_features_linearbottleneck5_batchnorm1_fwd, mobilenetv20_features_linearbottleneck5_relu1_fwd
 33,            Conv, 3, 1, mobilenetv20_features_linearbottleneck5_relu1_fwd, mobilenetv20_features_linearbottleneck5_batchnorm2_fwd
 34,             Add, 2, 1, mobilenetv20_features_linearbottleneck5_batchnorm2_fwd, mobilenetv20_features_linearbottleneck5_elemwise_add0
 35,            Conv, 3, 1, mobilenetv20_features_linearbottleneck5_elemwise_add0, mobilenetv20_features_linearbottleneck6_batchnorm0_fwd
 36,            Relu, 1, 1, mobilenetv20_features_linearbottleneck6_batchnorm0_fwd, mobilenetv20_features_linearbottleneck6_relu0_fwd
 37,            Conv, 3, 1, mobilenetv20_features_linearbottleneck6_relu0_fwd, mobilenetv20_features_linearbottleneck6_batchnorm1_fwd
 38,            Relu, 1, 1, mobilenetv20_features_linearbottleneck6_batchnorm1_fwd, mobilenetv20_features_linearbottleneck6_relu1_fwd
 39,            Conv, 3, 1, mobilenetv20_features_linearbottleneck6_relu1_fwd, mobilenetv20_features_linearbottleneck6_batchnorm2_fwd
 40,            Conv, 3, 1, mobilenetv20_features_linearbottleneck6_batchnorm2_fwd, mobilenetv20_features_linearbottleneck7_batchnorm0_fwd
 41,            Relu, 1, 1, mobilenetv20_features_linearbottleneck7_batchnorm0_fwd, mobilenetv20_features_linearbottleneck7_relu0_fwd
 42,            Conv, 3, 1, mobilenetv20_features_linearbottleneck7_relu0_fwd, mobilenetv20_features_linearbottleneck7_batchnorm1_fwd
 43,            Relu, 1, 1, mobilenetv20_features_linearbottleneck7_batchnorm1_fwd, mobilenetv20_features_linearbottleneck7_relu1_fwd
 44,            Conv, 3, 1, mobilenetv20_features_linearbottleneck7_relu1_fwd, mobilenetv20_features_linearbottleneck7_batchnorm2_fwd
 45,             Add, 2, 1, mobilenetv20_features_linearbottleneck7_batchnorm2_fwd, mobilenetv20_features_linearbottleneck7_elemwise_add0
 46,            Conv, 3, 1, mobilenetv20_features_linearbottleneck7_elemwise_add0, mobilenetv20_features_linearbottleneck8_batchnorm0_fwd
 47,            Relu, 1, 1, mobilenetv20_features_linearbottleneck8_batchnorm0_fwd, mobilenetv20_features_linearbottleneck8_relu0_fwd
 48,            Conv, 3, 1, mobilenetv20_features_linearbottleneck8_relu0_fwd, mobilenetv20_features_linearbottleneck8_batchnorm1_fwd
 49,            Relu, 1, 1, mobilenetv20_features_linearbottleneck8_batchnorm1_fwd, mobilenetv20_features_linearbottleneck8_relu1_fwd
 50,            Conv, 3, 1, mobilenetv20_features_linearbottleneck8_relu1_fwd, mobilenetv20_features_linearbottleneck8_batchnorm2_fwd
 51,             Add, 2, 1, mobilenetv20_features_linearbottleneck8_batchnorm2_fwd, mobilenetv20_features_linearbottleneck8_elemwise_add0
 52,            Conv, 3, 1, mobilenetv20_features_linearbottleneck8_elemwise_add0, mobilenetv20_features_linearbottleneck9_batchnorm0_fwd
 53,            Relu, 1, 1, mobilenetv20_features_linearbottleneck9_batchnorm0_fwd, mobilenetv20_features_linearbottleneck9_relu0_fwd
 54,            Conv, 3, 1, mobilenetv20_features_linearbottleneck9_relu0_fwd, mobilenetv20_features_linearbottleneck9_batchnorm1_fwd
 55,            Relu, 1, 1, mobilenetv20_features_linearbottleneck9_batchnorm1_fwd, mobilenetv20_features_linearbottleneck9_relu1_fwd
 56,            Conv, 3, 1, mobilenetv20_features_linearbottleneck9_relu1_fwd, mobilenetv20_features_linearbottleneck9_batchnorm2_fwd
 57,             Add, 2, 1, mobilenetv20_features_linearbottleneck9_batchnorm2_fwd, mobilenetv20_features_linearbottleneck9_elemwise_add0
 58,            Conv, 3, 1, mobilenetv20_features_linearbottleneck9_elemwise_add0, mobilenetv20_features_linearbottleneck10_batchnorm0_fwd
 59,            Relu, 1, 1, mobilenetv20_features_linearbottleneck10_batchnorm0_fwd, mobilenetv20_features_linearbottleneck10_relu0_fwd
 60,            Conv, 3, 1, mobilenetv20_features_linearbottleneck10_relu0_fwd, mobilenetv20_features_linearbottleneck10_batchnorm1_fwd
 61,            Relu, 1, 1, mobilenetv20_features_linearbottleneck10_batchnorm1_fwd, mobilenetv20_features_linearbottleneck10_relu1_fwd
 62,            Conv, 3, 1, mobilenetv20_features_linearbottleneck10_relu1_fwd, mobilenetv20_features_linearbottleneck10_batchnorm2_fwd
 63,            Conv, 3, 1, mobilenetv20_features_linearbottleneck10_batchnorm2_fwd, mobilenetv20_features_linearbottleneck11_batchnorm0_fwd
 64,            Relu, 1, 1, mobilenetv20_features_linearbottleneck11_batchnorm0_fwd, mobilenetv20_features_linearbottleneck11_relu0_fwd
 65,            Conv, 3, 1, mobilenetv20_features_linearbottleneck11_relu0_fwd, mobilenetv20_features_linearbottleneck11_batchnorm1_fwd
 66,            Relu, 1, 1, mobilenetv20_features_linearbottleneck11_batchnorm1_fwd, mobilenetv20_features_linearbottleneck11_relu1_fwd
 67,            Conv, 3, 1, mobilenetv20_features_linearbottleneck11_relu1_fwd, mobilenetv20_features_linearbottleneck11_batchnorm2_fwd
 68,             Add, 2, 1, mobilenetv20_features_linearbottleneck11_batchnorm2_fwd, mobilenetv20_features_linearbottleneck11_elemwise_add0
 69,            Conv, 3, 1, mobilenetv20_features_linearbottleneck11_elemwise_add0, mobilenetv20_features_linearbottleneck12_batchnorm0_fwd
 70,            Relu, 1, 1, mobilenetv20_features_linearbottleneck12_batchnorm0_fwd, mobilenetv20_features_linearbottleneck12_relu0_fwd
 71,            Conv, 3, 1, mobilenetv20_features_linearbottleneck12_relu0_fwd, mobilenetv20_features_linearbottleneck12_batchnorm1_fwd
 72,            Relu, 1, 1, mobilenetv20_features_linearbottleneck12_batchnorm1_fwd, mobilenetv20_features_linearbottleneck12_relu1_fwd
 73,            Conv, 3, 1, mobilenetv20_features_linearbottleneck12_relu1_fwd, mobilenetv20_features_linearbottleneck12_batchnorm2_fwd
 74,             Add, 2, 1, mobilenetv20_features_linearbottleneck12_batchnorm2_fwd, mobilenetv20_features_linearbottleneck12_elemwise_add0
 75,            Conv, 3, 1, mobilenetv20_features_linearbottleneck12_elemwise_add0, mobilenetv20_features_linearbottleneck13_batchnorm0_fwd
 76,            Relu, 1, 1, mobilenetv20_features_linearbottleneck13_batchnorm0_fwd, mobilenetv20_features_linearbottleneck13_relu0_fwd
 77,            Conv, 3, 1, mobilenetv20_features_linearbottleneck13_relu0_fwd, mobilenetv20_features_linearbottleneck13_batchnorm1_fwd
 78,            Relu, 1, 1, mobilenetv20_features_linearbottleneck13_batchnorm1_fwd, mobilenetv20_features_linearbottleneck13_relu1_fwd
 79,            Conv, 3, 1, mobilenetv20_features_linearbottleneck13_relu1_fwd, mobilenetv20_features_linearbottleneck13_batchnorm2_fwd
 80,            Conv, 3, 1, mobilenetv20_features_linearbottleneck13_batchnorm2_fwd, mobilenetv20_features_linearbottleneck14_batchnorm0_fwd
 81,            Relu, 1, 1, mobilenetv20_features_linearbottleneck14_batchnorm0_fwd, mobilenetv20_features_linearbottleneck14_relu0_fwd
 82,            Conv, 3, 1, mobilenetv20_features_linearbottleneck14_relu0_fwd, mobilenetv20_features_linearbottleneck14_batchnorm1_fwd
 83,            Relu, 1, 1, mobilenetv20_features_linearbottleneck14_batchnorm1_fwd, mobilenetv20_features_linearbottleneck14_relu1_fwd
 84,            Conv, 3, 1, mobilenetv20_features_linearbottleneck14_relu1_fwd, mobilenetv20_features_linearbottleneck14_batchnorm2_fwd
 85,             Add, 2, 1, mobilenetv20_features_linearbottleneck14_batchnorm2_fwd, mobilenetv20_features_linearbottleneck14_elemwise_add0
 86,            Conv, 3, 1, mobilenetv20_features_linearbottleneck14_elemwise_add0, mobilenetv20_features_linearbottleneck15_batchnorm0_fwd
 87,            Relu, 1, 1, mobilenetv20_features_linearbottleneck15_batchnorm0_fwd, mobilenetv20_features_linearbottleneck15_relu0_fwd
 88,            Conv, 3, 1, mobilenetv20_features_linearbottleneck15_relu0_fwd, mobilenetv20_features_linearbottleneck15_batchnorm1_fwd
 89,            Relu, 1, 1, mobilenetv20_features_linearbottleneck15_batchnorm1_fwd, mobilenetv20_features_linearbottleneck15_relu1_fwd
 90,            Conv, 3, 1, mobilenetv20_features_linearbottleneck15_relu1_fwd, mobilenetv20_features_linearbottleneck15_batchnorm2_fwd
 91,             Add, 2, 1, mo********************Model compiled successfully*******************************
Reshaping the image (462, 620, 3)
Shape of image is:********************************************** (1, 3, 224, 224) ****************************************
bilenetv20_features_linearbottleneck15_batchnorm2_fwd, mobilenetv20_features_linearbottleneck15_elemwise_add0
 92,            Conv, 3, 1, mobilenetv20_features_linearbottleneck15_elemwise_add0, mobilenetv20_features_linearbottleneck16_batchnorm0_fwd
 93,            Relu, 1, 1, mobilenetv20_features_linearbottleneck16_batchnorm0_fwd, mobilenetv20_features_linearbottleneck16_relu0_fwd
 94,            Conv, 3, 1, mobilenetv20_features_linearbottleneck16_relu0_fwd, mobilenetv20_features_linearbottleneck16_batchnorm1_fwd
 95,            Relu, 1, 1, mobilenetv20_features_linearbottleneck16_batchnorm1_fwd, mobilenetv20_features_linearbottleneck16_relu1_fwd
 96,            Conv, 3, 1, mobilenetv20_features_linearbottleneck16_relu1_fwd, mobilenetv20_features_linearbottleneck16_batchnorm2_fwd
 97,            Conv, 3, 1, mobilenetv20_features_linearbottleneck16_batchnorm2_fwd, mobilenetv20_features_batchnorm1_fwd
 98,            Relu, 1, 1, mobilenetv20_features_batchnorm1_fwd, mobilenetv20_features_relu1_fwd

Input tensor name -  data 
Output tensor name - mobilenetv20_features_relu1_fwd 
*** In TIDL_createStateImportFunc *** 
Compute on node : TIDLExecutionProvider_TIDL_1_1
  0,            Conv, 2, 1, mobilenetv20_features_pool0_fwd, mobilenetv20_output_pred_fwd
  1,         Reshape, 2, 1, mobilenetv20_output_pred_fwd, mobilenetv20_output_flatten0_reshape0

Input tensor name -  mobilenetv20_features_pool0_fwd 
Output tensor name - mobilenetv20_output_flatten0_reshape0 
In TIDL_onnxRtImportInit subgraph_name=mobilenetv20_features_relu1_fwd
Layer 0, subgraph id mobilenetv20_features_relu1_fwd, name=mobilenetv20_features_relu1_fwd
Layer 1, subgraph id mobilenetv20_features_relu1_fwd, name=data
In TIDL_runtimesOptimizeNet: LayerIndex = 101, dataIndex = 100 

 ************** Frame index 1 : Running float import ************* 
In TIDL_runtimesPostProcessNet 
****************************************************
**                ALL MODEL CHECK PASSED          **
****************************************************

************ in TIDL_subgraphRtCreate ************ 
 The soft limit is 2048
The hard limit is 2048
MEM: Init ... !!!
MEM: Init ... Done !!!
 0.0s:  VX_ZONE_INIT:Enabled
 0.8s:  VX_ZONE_ERROR:Enabled
 0.9s:  VX_ZONE_WARNING:Enabled
 0.1397s:  VX_ZONE_INIT:[tivxInit:184] Initialization Done !!!
************ TIDL_subgraphRtCreate done ************ 
 *******   In TIDL_subgraphRtInvoke  ******** 
 Layer,   Layer Cycles,kernelOnlyCycles, coreLoopCycles,LayerSetupCycles,dmaPipeupCycles, dmaPipeDownCycles, PrefetchCycles,copyKerCoeffCycles,LayerDeinitCycles,LastBlockCycles, paddingTrigger,    paddingWait,LayerWithoutPad,LayerHandleCopy,   BackupCycles,  RestoreCycles,

     1,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     2,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     3,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     4,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     5,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     6,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     7,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     8,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     9,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    10,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    11,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    12,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    13,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    14,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    15,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    16,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    17,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    18,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    19,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    20,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    21,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    22,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    23,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    24,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    25,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    26,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    27,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    28,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    29,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    30,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    31,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    32,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    33,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    34,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    35,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    36,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    37,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    38,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    39,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    40,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    41,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    42,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    43,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    44,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    45,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    46,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    47,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    48,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    49,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    50,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    51,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    52,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    53,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    54,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    55,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    56,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    57,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    58,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    59,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    60,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    61,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    62,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    63,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,

 Sum of Layer Cycles 0 
Sub Graph Stats 109,000000 5653879,000000 222,000000 
*******  TIDL_subgraphRtInvoke done  ******** 

**********  Frame Index 1 : Running float inference **********
In TIDL_onnxRtImportInit subgraph_name=mobilenetv20_output_flatten0_reshape0
Layer 0, subgraph id mobilenetv20_output_flatten0_reshape0, name=mobilenetv20_output_flatten0_reshape0
Layer 1, subgraph id mobilenetv20_output_flatten0_reshape0, name=mobilenetv20_features_pool0_fwd
In TIDL_runtimesOptimizeNet: LayerIndex = 4, dataIndex = 3 

 ************** Frame index 1 : Running float import ************* 
In TIDL_runtimesPostProcessNet 
****************************************************
**                ALL MODEL CHECK PASSED          **
******************************Reshaping the image (421, 571, 3)
Shape of image is:********************************************** (1, 3, 224, 224) ****************************************
**********************

************ in TIDL_subgraphRtCreate ************ 
 ************ TIDL_subgraphRtCreate done ************ 
 Warning : Couldn't find corresponding ioBuf tensor for onnx tensor with matching name 
*******   In TIDL_subgraphRtInvoke  ******** 
 Layer,   Layer Cycles,kernelOnlyCycles, coreLoopCycles,LayerSetupCycles,dmaPipeupCycles, dmaPipeDownCycles, PrefetchCycles,copyKerCoeffCycles,LayerDeinitCycles,LastBlockCycles, paddingTrigger,    paddingWait,LayerWithoutPad,LayerHandleCopy,   BackupCycles,  RestoreCycles,

     1,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     2,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     3,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     4,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,

 Sum of Layer Cycles 0 
Sub Graph Stats 20,000000 19820,000000 50,000000 
*******  TIDL_subgraphRtInvoke done  ******** 

**********  Frame Index 1 : Running float inference **********
*******   In TIDL_subgraphRtInvoke  ******** 
 Layer,   Layer Cycles,kernelOnlyCycles, coreLoopCycles,LayerSetupCycles,dmaPipeupCycles, dmaPipeDownCycles, PrefetchCycles,copyKerCoeffCycles,LayerDeinitCycles,LastBlockCycles, paddingTrigger,    paddingWait,LayerWithoutPad,LayerHandleCopy,   BackupCycles,  RestoreCycles,

     1,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     2,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     3,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     4,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     5,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     6,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     7,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     8,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     9,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    10,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    11,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    12,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    13,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    14,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    15,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    16,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    17,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    18,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    19,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    20,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    21,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    22,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    23,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    24,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    25,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    26,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    27,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    28,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    29,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    30,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    31,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    32,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    33,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    34,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    35,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    36,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    37,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    38,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    39,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    40,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    41,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    42,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    43,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    44,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    45,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    46,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    47,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    48,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    49,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    50,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    51,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    52,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    53,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,            
Processing config file #0 : /home/xyz/TestCode/output_dir/tempDir/mobilenetv20_features_relu1_fwd_tidl_io_.qunat_stats_config.txt 

Parameter value parse error for 'quantRangeUpdateFactor' = '-1,000000' (Conversion error)...  
Parser Failed
Processing config file #0 : /home/xyz/TestCode/output_dir/tempDir/mobilenetv20_features_relu1_fwd_tidl_io_.qunat_stats_config.txt 

Parameter value parse error for 'quantRangeUpdateFactor' = '-1,000000' (Conversion error)...  
Parser Failed
------------------ Network Compiler Traces -----------------------------
NC running for device: 1
Running with OTF buffer optimizations
successful Memory allocation
  0,              0,              0,              0,
    54,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    55,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    56,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    57,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    58,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    59,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    60,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    61,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    62,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    63,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,

 Sum of Layer Cycles 0 
Sub Graph Stats 122,000000 5577737,000000 404,000000 
*******  TIDL_subgraphRtInvoke done  ******** 

**********  Frame Index 2 : Running fixed point mode for calibration **********
In TIDL_runtimesPostProcessNet 

~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~

~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~

 
 
 *****************   Calibration iteration number 0 completed ************************ 
 
 
 
TIDL ALLOWLISTING LAYER CHECK: TIDL_E_QUANT_STATS_NOT_AVAILABLE] tidl_quant_stats_tool.out fails to collect dynamic range. Please look into quant stats log. This model will get fault on target.
****************************************************
**          0 WARNINGS          1 ERRORS          **
****************************************************
Warning : Couldn't find corresponding ioBuf tensor for onnx tensor with matching name 
*******   In TIDL_subgraphRtInvoke  ******** 
 Layer,   Layer Cycles,kernelOnlyCycles, coreLoopCycles,LayerSetupCycles,dmaPipeupCycles, dmaPipeDownCycles, PrefetchCycles,copyKerCoeffCycles,LayerDeinitCycles,LastBlockCycles, paddingTrigger,    paddingWait,LayerWithoutPad,LayerHandleCopy,   BackupCycles,  RestoreCycles,

     1,              0,              0,              0,           
Processing config file #0 : /home/xyz/TestCode/output_dir/tempDir/mobilenetv20_output_flatten0_reshape0_tidl_io_.qunat_stats_config.txt 

Parameter value parse error for 'quantRangeUpdateFactor' = '-1,000000' (Conversion error)...  
Parser Failed
Processing config file #0 : /home/xyz/TestCode/output_dir/tempDir/mobilenetv20_output_flatten0_reshape0_tidl_io_.qunat_stats_config.txt 

Parameter value parse error for 'quantRangeUpdateFactor' = '-1,000000' (Conversion error)...  
Parser Failed
------------------ Network Compiler Traces -----------------------------
NC running for device: 1
Running with OTF buffer optimizations
successful Memory allocation

------------------ Network Compiler Traces -----------------------------
NC running for device: 1
Running with OTF buffer optimizations
successful Memory allocation
Reshaping the image (360, 581, 3)
Shape of image is:********************************************** (1, 3, 224, 224) ****************************************
   0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     2,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     3,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     4,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,

 Sum of Layer Cycles 0 
Sub Graph Stats 12,000000 17753,000000 80,000000 
*******  TIDL_subgraphRtInvoke done  ******** 

**********  Frame Index 2 : Running fixed point mode for calibration **********
In TIDL_runtimesPostProcessNet 

~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~

~~~~~Running TIDL in PC emulation mode to collect Activations range for each layer~~~~~

 
 
 *****************   Calibration iteration number 0 completed ************************ 
 
 
 
Rerunning network compiler for reshape
TIDL ALLOWLISTING LAYER CHECK: TIDL_E_QUANT_STATS_NOT_AVAILABLE] tidl_quant_stats_tool.out fails to collect dynamic range. Please look into quant stats log. This model will get fault on target.
****************************************************
**          0 WARNINGS          1 ERRORS          **
****************************************************
*******   In TIDL_subgraphRtInvoke  ******** 
 Layer,   Layer Cycles,kernelOnlyCycles, coreLoopCycles,LayerSetupCycles,dmaPipeupCycles, dmaPipeDownCycles, PrefetchCycles,copyKerCoeffCycles,LayerDeinitCycles,LastBlockCycles, paddingTrigger,    paddingWait,LayerWithoutPad,LayerHandleCopy,   BackupCycles,  RestoreCycles,

     1,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     2,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     3,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     4,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     5,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     6,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     7,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     8,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     9,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    10,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    11,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    12,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    13,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    14,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    15,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    16,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    17,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    18,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    19,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    20,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    21,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    22,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    23,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    24,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    25,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    26,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    27,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    28,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    29,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    30,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    31,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    32,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    33,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    34,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    35,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    36,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    37,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    38,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    39,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    40,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    41,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    42,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    43,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    44,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    45,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    46,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    47,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    48,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    49,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    50,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    51,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    52,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    53,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    54,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    55,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    56,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    57,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    58,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    59,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    60,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    61,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    62,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    63,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,

 Sum of Layer Cycles 0 
Sub Graph Stats 100,000000 5481190,000000 420,000000 
*******  TIDL_subgraphRtInvoke done  ******** 

**********  Frame Index 3 Running inference - currFrameIdx > numFramesCalibration **********
Warning : Couldn't find corresponding ioBuf tensor for onnx tensor with matching name 
*******   In TIDL_subgraphRtInvoke  ******** 
 Layer,   Layer Cycles,kernelOnlyCycles, coreLoopCycles,LayerSetupCycles,dmaPipeupCycles, dmaPipeDownCycles, PrefetchCycles,copyKerCoeffCycles,LayerDeinitCycles,LastBlockCycles, paddingTrigger,    paddingWait,LayerWithoutPad,LayerHandleCopy,   BackupCycles,  RestoreCycles,

     1,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     2,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     3,              0,              0,              0,        Reshaping the image (427, 640, 3)
Shape of image is:********************************************** (1, 3, 224, 224) ****************************************
      0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     4,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,

 Sum of Layer Cycles 0 
Sub Graph Stats 9,000000 16440,000000 59,000000 
*******  TIDL_subgraphRtInvoke done  ******** 

**********  Frame Index 3 Running inference - currFrameIdx > numFramesCalibration **********
*******   In TIDL_subgraphRtInvoke  ******** 
 Layer,   Layer Cycles,kernelOnlyCycles, coreLoopCycles,LayerSetupCycles,dmaPipeupCycles, dmaPipeDownCycles, PrefetchCycles,copyKerCoeffCycles,LayerDeinitCycles,LastBlockCycles, paddingTrigger,    paddingWait,LayerWithoutPad,LayerHandleCopy,   BackupCycles,  RestoreCycles,

     1,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     2,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     3,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     4,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     5,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     6,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     7,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     8,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     9,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    10,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    11,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    12,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    13,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    14,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    15,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    16,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    17,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    18,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    19,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    20,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    21,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    22,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    23,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    24,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    25,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    26,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    27,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    28,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    29,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    30,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    31,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    32,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    33,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    34,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    35,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    36,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    37,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    38,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    39,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    40,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    41,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    42,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    43,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    44,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    45,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    46,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    47,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    48,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    49,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    50,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    51,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    52,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    53,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    54,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    55,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    56,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    57,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    58,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    59,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    60,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    61,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    62,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
    63,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,

 Sum of Layer Cycles 0 
Sub Graph Stats 96,000000 5568327,000000 378,000000 
*******  TIDL_subgraphRtInvoke done  ******** 

**********  Frame Index 4 Running inference - currFrameIdx > numFramesCalibration **********
Warning : Couldn't find corresponding ioBuf tensor for onnx tensor with matching name 
*******   In TIDL_subgraphRtInvoke  ******** 
 Layer,   Layer Cycles,kernelOnlyCycles, coreLoopCycles,LayerSetupCycles,dmaPipeupCycles, dmaPipeDownCycles, PrefetchCycles,copyKerCoeffCycles,LayerDeinitCycles,LastBlockCycles, paddingTrigger,    paddingWait,LayerWithoutPad,LayerHandleCopy,   BackupCycles,  RestoreCycles,

     1,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     2,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     3,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,
     4,              0,              0,              0,              0,              0,                 0,              0,                 0,              0,              0,              0,              0,              0,              0,              0,              0,

 Sum of Layer Cycles 0 
Sub Graph Stats 8,000000 16152,000000 13,000000 
*******  TIDL_subgraphRtInvoke done  ******** 

**********  Frame Index 4 Running inference - currFrameIdx > numFramesCalibration **********
libtidl_onnxrt_EP loaded 0x890fd30 
artifacts_folder                                = /home/xyz/TestCode/output_dir 
debug_level                                     = 1 
target_priority                                 = 0 
max_pre_empt_delay                              = 340282346638528859811704183484516925440,000000 
Final number of subgraphs created are : 2, - Offloaded Nodes - 101, Total Nodes - 102 
In TIDL_createStateInfer 
Compute on node : TIDLExecutionProvider_TIDL_0_0
************ in TIDL_subgraphRtCreate ************ ********************Model Loaded**********************************************
Reshaping the image (462, 620, 3)
Shape of image is:********************************************** (1, 3, 224, 224) ****************************************

  25.413871s:  VX_ZONE_ERROR:[tivxAlgiVisionCreate:363] Calling ialg.algAlloc failed with status = -1115
 25.413890s:  VX_ZONE_ERROR:[tivxKernelTIDLCreate:720] tivxAlgiVisionCreate returned NULL
 25.414465s:  VX_ZONE_ERROR:[ownContextSendCmd:801] Command ack message returned failure cmd_status: -1
 25.414467s:  VX_ZONE_ERROR:[ownContextSendCmd:835] tivxEventWait() failed.
 25.414469s:  VX_ZONE_ERROR:[ownNodeKernelInit:527] Target kernel, TIVX_CMD_NODE_CREATE failed for node TIDLNode
 25.414469s:  VX_ZONE_ERROR:[ownNodeKernelInit:528] Please be sure the target callbacks have been registered for this core
 25.414470s:  VX_ZONE_ERROR:[ownNodeKernelInit:529] If the target callbacks have been registered, please ensure no errors are occurring within the create callback of this kernel
 25.414472s:  VX_ZONE_ERROR:[ownGraphNodeKernelInit:583] kernel init for node 0, kernel com.ti.tidl:1:1 ... failed !!!
 25.414474s:  VX_ZONE_ERROR:[vxVerifyGraph:2055] Node kernel init failed
 25.414475s:  VX_ZONE_ERROR:[vxVerifyGraph:2109] Graph verify failed
TIDL_RT_OVX: ERROR: Verifying TIDL graph ... Failed !!!
TIDL_RT_OVX: ERROR: Verify OpenVX graph failed
************ TIDL_subgraphRtCreate done ************ 
 In TIDL_createStateInfer 
Compute on node : TIDLExecutionProvider_TIDL_1_1
************ in TIDL_subgraphRtCreate ************ 
  25.417636s:  VX_ZONE_ERROR:[tivxAlgiVisionCreate:363] Calling ialg.algAlloc failed with status = -1115
 25.417660s:  VX_ZONE_ERROR:[tivxKernelTIDLCreate:720] tivxAlgiVisionCreate returned NULL
 25.418007s:  VX_ZONE_ERROR:[ownContextSendCmd:801] Command ack message returned failure cmd_status: -1
 25.418009s:  VX_ZONE_ERROR:[ownContextSendCmd:835] tivxEventWait() failed.
 25.418010s:  VX_ZONE_ERROR:[ownNodeKernelInit:527] Target kernel, TIVX_CMD_NODE_CREATE failed for node TIDLNode
 25.418011s:  VX_ZONE_ERROR:[ownNodeKernelInit:528] Please be sure the target callbacks have been registered for this core
 25.418012s:  VX_ZONE_ERROR:[ownNodeKernelInit:529] If the target callbacks have been registered, please ensure no errors are occurring within the create callback of this kernel
 25.418014s:  VX_ZONE_ERROR:[ownGraphNodeKernelInit:583] kernel init for node 0, kernel com.ti.tidl:1:1 ... failed !!!
 25.418015s:  VX_ZONE_ERROR:[vxVerifyGraph:2055] Node kernel init failed
 25.418016s:  VX_ZONE_ERROR:[vxVerifyGraph:2109] Graph verify failed
TIDL_RT_OVX: ERROR: Verifying TIDL graph ... Failed !!!
TIDL_RT_OVX: ERROR: Verify OpenVX graph failed
************ TIDL_subgraphRtCreate done ************ 
 *******   In TIDL_subgraphRtInvoke  ******** 
 25.422042s:  VX_ZONE_ERROR:[tivxAlgiVisionCreate:363] Calling ialg.algAlloc failed with status = -1115
 25.422057s:  VX_ZONE_ERROR:[tivxKernelTIDLCreate:720] tivxAlgiVisionCreate returned NULL
 25.422713s:  VX_ZONE_ERROR:[ownContextSendCmd:801] Command ack message returned failure cmd_status: -1
 25.422715s:  VX_ZONE_ERROR:[ownContextSendCmd:835] tivxEventWait() failed.
 25.422717s:  VX_ZONE_ERROR:[ownNodeKernelInit:527] Target kernel, TIVX_CMD_NODE_CREATE failed for node TIDLNode
 25.422718s:  VX_ZONE_ERROR:[ownNodeKernelInit:528] Please be sure the target callbacks have been registered for this core
 25.422719s:  VX_ZONE_ERROR:[ownNodeKernelInit:529] If the target callbacks have been registered, please ensure no errors are occurring within the create callback of this kernel
 25.422720s:  VX_ZONE_ERROR:[ownGraphNodeKernelInit:583] kernel init for node 0, kernel com.ti.tidl:1:1 ... failed !!!
 25.422722s:  VX_ZONE_ERROR:[vxVerifyGraph:2055] Node kernel init failed
 25.422723s:  VX_ZONE_ERROR:[vxVerifyGraph:2109] Graph verify failed
 25.422923s:  VX_ZONE_ERROR:[ownGraphScheduleGraphWrapper:799] graph is not in a state required to be scheduled
 25.422924s:  VX_ZONE_ERROR:[vxProcessGraph:734] schedule graph failed
 25.422925s:  VX_ZONE_ERROR:[vxProcessGraph:739] wait graph failed
ERROR: Running TIDL graph ... Failed !!!
Sub Graph Stats 263,000000 3148,000000 17581775893973498,000000 
*******  TIDL_subgraphRtInvoke done  ******** 
Warning : Couldn't find corresponding ioBuf tensor forReshaping the image (462, 620, 3)
Shape of image is:********************************************** (1, 3, 224, 224) ****************************************
 onnx tensor with matching name 
*******   In TIDL_subgraphRtInvoke  ******** 
 25.424394s:  VX_ZONE_ERROR:[tivxAlgiVisionCreate:363] Calling ialg.algAlloc failed with status = -1115
 25.424407s:  VX_ZONE_ERROR:[tivxKernelTIDLCreate:720] tivxAlgiVisionCreate returned NULL
 25.424835s:  VX_ZONE_ERROR:[ownContextSendCmd:801] Command ack message returned failure cmd_status: -1
 25.424837s:  VX_ZONE_ERROR:[ownContextSendCmd:835] tivxEventWait() failed.
 25.424838s:  VX_ZONE_ERROR:[ownNodeKernelInit:527] Target kernel, TIVX_CMD_NODE_CREATE failed for node TIDLNode
 25.424839s:  VX_ZONE_ERROR:[ownNodeKernelInit:528] Please be sure the target callbacks have been registered for this core
 25.424840s:  VX_ZONE_ERROR:[ownNodeKernelInit:529] If the target callbacks have been registered, please ensure no errors are occurring within the create callback of this kernel
 25.424842s:  VX_ZONE_ERROR:[ownGraphNodeKernelInit:583] kernel init for node 0, kernel com.ti.tidl:1:1 ... failed !!!
 25.424843s:  VX_ZONE_ERROR:[vxVerifyGraph:2055] Node kernel init failed
 25.424844s:  VX_ZONE_ERROR:[vxVerifyGraph:2109] Graph verify failed
 25.424923s:  VX_ZONE_ERROR:[ownGraphScheduleGraphWrapper:799] graph is not in a state required to be scheduled
 25.424924s:  VX_ZONE_ERROR:[vxProcessGraph:734] schedule graph failed
 25.424925s:  VX_ZONE_ERROR:[vxProcessGraph:739] wait graph failed
ERROR: Running TIDL graph ... Failed !!!
Sub Graph Stats 16,000000 1857,000000 17581775893973498,000000 
*******  TIDL_subgraphRtInvoke done  ******** 
*******   In TIDL_subgraphRtInvoke  ******** 
 25.428447s:  VX_ZONE_ERROR:[tivxAlgiVisionCreate:363] Calling ialg.algAlloc failed with status = -1115
 25.428460s:  VX_ZONE_ERROR:[tivxKernelTIDLCreate:720] tivxAlgiVisionCreate returned NULL
 25.428951s:  VX_ZONE_ERROR:[ownContextSendCmd:801] Command ack message returned failure cmd_status: -1
 25.428952s:  VX_ZONE_ERROR:[ownContextSendCmd:835] tivxEventWait() failed.
 25.428954s:  VX_ZONE_ERROR:[ownNodeKernelInit:527] Target kernel, TIVX_CMD_NODE_CREATE failed for node TIDLNode
 25.428955s:  VX_ZONE_ERROR:[ownNodeKernelInit:528] Please be sure the target callbacks have been registered for this core
 25.428955s:  VX_ZONE_ERROR:[ownNodeKernelInit:529] If the target callbacks have been registered, please ensure no errors are occurring within the create callback of this kernel
 25.428957s:  VX_ZONE_ERROR:[ownGraphNodeKernelInit:583] kernel init for node 0, kernel com.ti.tidl:1:1 ... failed !!!
 25.428958s:  VX_ZONE_ERROR:[vxVerifyGraph:2055] Node kernel init failed
 25.428959s:  VX_ZONE_ERROR:[vxVerifyGraph:2109] Graph verify failed
 25.429033s:  VX_ZONE_ERROR:[ownGraphScheduleGraphWrapper:799] graph is not in a state required to be scheduled
 25.429034s:  VX_ZONE_ERROR:[vxProcessGraph:734] schedule graph failed
 25.429035s:  VX_ZONE_ERROR:[vxProcessGraph:739] wait graph failed
ERROR: Running TIDL graph ... Failed !!!
Sub Graph Stats 206,000000 2712,000000 17581775893973498,000000 
*******  TIDL_subgraphRtInvoke done  ******** 
Warning : Couldn't find corresponding ioBuf tensor for onnx tensor with matching name 
*******   In TIDL_subgraphRtInvoke  ******** 
 25.430469s:  VX_ZONE_ERROR:[tivxAlgiVisionCreate:363] Calling ialg.algAlloc failed with status = -1115
 25.430479s:  VX_ZONE_ERROR:[tivxKernelTIDLCreate:720] tivxAlgiVisionCreate returned NULL
 25.430965s:  VX_ZONE_ERROR:[ownContextSendCmd:801] Command ack message returned failure cmd_status: -1
 25.430967s:  VX_ZONE_ERROR:[ownContextSendCmd:835] tivxEventWait() failed.
 25.430968s:  VX_ZONE_ERROR:[ownNodeKernelInit:527] Target kernel, TIVX_CMD_NODE_CREATE failed for node TIDLNode
 25.430969s:  VX_ZONE_ERROR:[ownNodeKernelInit:528] Please be sure the target callbacks have been registered for this core
 25.430970s:  VX_ZONE_ERROR:[ownNodeKernelInit:529] If the target callbacks have been registered, please ensure no errors are occurring within the create callback of this kernel
 25.430971s:  VX_ZONE_ERROR:[ownGraphNodeKernelInit:583] kernel init for node 0, kernel com.ti.tidl:1:1 ... failed !!!
 25.430986s:  VX_ZONE_ERROR:Reshaping the image (462, 620, 3)
Shape of image is:********************************************** (1, 3, 224, 224) ****************************************
Reshaping the image (462, 620, 3)
Shape of image is:********************************************** (1, 3, 224, 224) ****************************************
[vxVerifyGraph:2055] Node kernel init failed
 25.431008s:  VX_ZONE_ERROR:[vxVerifyGraph:2109] Graph verify failed
 25.431086s:  VX_ZONE_ERROR:[ownGraphScheduleGraphWrapper:799] graph is not in a state required to be scheduled
 25.431087s:  VX_ZONE_ERROR:[vxProcessGraph:734] schedule graph failed
 25.431087s:  VX_ZONE_ERROR:[vxProcessGraph:739] wait graph failed
ERROR: Running TIDL graph ... Failed !!!
Sub Graph Stats 7,000000 2005,000000 17581775893973498,000000 
*******  TIDL_subgraphRtInvoke done  ******** 
*******   In TIDL_subgraphRtInvoke  ******** 
 25.434487s:  VX_ZONE_ERROR:[tivxAlgiVisionCreate:363] Calling ialg.algAlloc failed with status = -1115
 25.434498s:  VX_ZONE_ERROR:[tivxKernelTIDLCreate:720] tivxAlgiVisionCreate returned NULL
 25.435273s:  VX_ZONE_ERROR:[ownContextSendCmd:801] Command ack message returned failure cmd_status: -1
 25.435275s:  VX_ZONE_ERROR:[ownContextSendCmd:835] tivxEventWait() failed.
 25.435276s:  VX_ZONE_ERROR:[ownNodeKernelInit:527] Target kernel, TIVX_CMD_NODE_CREATE failed for node TIDLNode
 25.435276s:  VX_ZONE_ERROR:[ownNodeKernelInit:528] Please be sure the target callbacks have been registered for this core
 25.435276s:  VX_ZONE_ERROR:[ownNodeKernelInit:529] If the target callbacks have been registered, please ensure no errors are occurring within the create callback of this kernel
 25.435277s:  VX_ZONE_ERROR:[ownGraphNodeKernelInit:583] kernel init for node 0, kernel com.ti.tidl:1:1 ... failed !!!
 25.435278s:  VX_ZONE_ERROR:[vxVerifyGraph:2055] Node kernel init failed
 25.435279s:  VX_ZONE_ERROR:[vxVerifyGraph:2109] Graph verify failed
 25.435303s:  VX_ZONE_ERROR:[ownGraphScheduleGraphWrapper:799] graph is not in a state required to be scheduled
 25.435303s:  VX_ZONE_ERROR:[vxProcessGraph:734] schedule graph failed
 25.435304s:  VX_ZONE_ERROR:[vxProcessGraph:739] wait graph failed
ERROR: Running TIDL graph ... Failed !!!
Sub Graph Stats 258,000000 2874,000000 17581775893973498,000000 
*******  TIDL_subgraphRtInvoke done  ******** 
Warning : Couldn't find corresponding ioBuf tensor for onnx tensor with matching name 
*******   In TIDL_subgraphRtInvoke  ******** 
 25.436668s:  VX_ZONE_ERROR:[tivxAlgiVisionCreate:363] Calling ialg.algAlloc failed with status = -1115
 25.436680s:  VX_ZONE_ERROR:[tivxKernelTIDLCreate:720] tivxAlgiVisionCreate returned NULL
 25.437088s:  VX_ZONE_ERROR:[ownContextSendCmd:801] Command ack message returned failure cmd_status: -1
 25.437090s:  VX_ZONE_ERROR:[ownContextSendCmd:835] tivxEventWait() failed.
 25.437091s:  VX_ZONE_ERROR:[ownNodeKernelInit:527] Target kernel, TIVX_CMD_NODE_CREATE failed for node TIDLNode
 25.437092s:  VX_ZONE_ERROR:[ownNodeKernelInit:528] Please be sure the target callbacks have been registered for this core
 25.437093s:  VX_ZONE_ERROR:[ownNodeKernelInit:529] If the target callbacks have been registered, please ensure no errors are occurring within the create callback of this kernel
 25.437094s:  VX_ZONE_ERROR:[ownGraphNodeKernelInit:583] kernel init for node 0, kernel com.ti.tidl:1:1 ... failed !!!
 25.437096s:  VX_ZONE_ERROR:[vxVerifyGraph:2055] Node kernel init failed
 25.437097s:  VX_ZONE_ERROR:[vxVerifyGraph:2109] Graph verify failed
 25.437178s:  VX_ZONE_ERROR:[ownGraphScheduleGraphWrapper:799] graph is not in a state required to be scheduled
 25.437179s:  VX_ZONE_ERROR:[vxProcessGraph:734] schedule graph failed
 25.437180s:  VX_ZONE_ERROR:[vxProcessGraph:739] wait graph failed
ERROR: Running TIDL graph ... Failed !!!
Sub Graph Stats 5,000000 1833,000000 17581775893973498,000000 
*******  TIDL_subgraphRtInvoke done  ******** 
*******   In TIDL_subgraphRtInvoke  ******** 
 25.440859s:  VX_ZONE_ERROR:[tivxAlgiVisionCreate:363] Calling ialg.algAlloc failed with status = -1115
 25.440871s:  VX_ZONE_ERROR:[tivxKernelTIDLCreate:720] tivxAlgiVisionCreate returned NULL
 25.441401s:  VX_ZONE_ERROR:[ownContextSendCmd:801] Command ack message returned failure cmd_status: -1
 25.441403s:  VX_ZONE_ERROR:[ownContextSendCmd:835] tivxEventWait() failed.
 25.441405s:  VX_ZONE_ERROR:[ownNodeKernelInit:527] Target kernel, TIVX_CMD_NODEReshaping the image (462, 620, 3)
Shape of image is:********************************************** (1, 3, 224, 224) ****************************************
_CREATE failed for node TIDLNode
 25.441427s:  VX_ZONE_ERROR:[ownNodeKernelInit:528] Please be sure the target callbacks have been registered for this core
 25.441428s:  VX_ZONE_ERROR:[ownNodeKernelInit:529] If the target callbacks have been registered, please ensure no errors are occurring within the create callback of this kernel
 25.441430s:  VX_ZONE_ERROR:[ownGraphNodeKernelInit:583] kernel init for node 0, kernel com.ti.tidl:1:1 ... failed !!!
 25.441431s:  VX_ZONE_ERROR:[vxVerifyGraph:2055] Node kernel init failed
 25.441432s:  VX_ZONE_ERROR:[vxVerifyGraph:2109] Graph verify failed
 25.441514s:  VX_ZONE_ERROR:[ownGraphScheduleGraphWrapper:799] graph is not in a state required to be scheduled
 25.441515s:  VX_ZONE_ERROR:[vxProcessGraph:734] schedule graph failed
 25.441516s:  VX_ZONE_ERROR:[vxProcessGraph:739] wait graph failed
ERROR: Running TIDL graph ... Failed !!!
Sub Graph Stats 235,000000 2952,000000 17581775893973498,000000 
*******  TIDL_subgraphRtInvoke done  ******** 
Warning : Couldn't find corresponding ioBuf tensor for onnx tensor with matching name 
*******   In TIDL_subgraphRtInvoke  ******** 
 25.443032s:  VX_ZONE_ERROR:[tivxAlgiVisionCreate:363] Calling ialg.algAlloc failed with status = -1115
 25.443043s:  VX_ZONE_ERROR:[tivxKernelTIDLCreate:720] tivxAlgiVisionCreate returned NULL
 25.443448s:  VX_ZONE_ERROR:[ownContextSendCmd:801] Command ack message returned failure cmd_status: -1
 25.443451s:  VX_ZONE_ERROR:[ownContextSendCmd:835] tivxEventWait() failed.
 25.443452s:  VX_ZONE_ERROR:[ownNodeKernelInit:527] Target kernel, TIVX_CMD_NODE_CREATE failed for node TIDLNode
 25.443453s:  VX_ZONE_ERROR:[ownNodeKernelInit:528] Please be sure the target callbacks have been registered for this core
 25.443454s:  VX_ZONE_ERROR:[ownNodeKernelInit:529] If the target callbacks have been registered, please ensure no errors are occurring within the create callback of this kernel
 25.443455s:  VX_ZONE_ERROR:[ownGraphNodeKernelInit:583] kernel init for node 0, kernel com.ti.tidl:1:1 ... failed !!!
 25.443457s:  VX_ZONE_ERROR:[vxVerifyGraph:2055] Node kernel init failed
 25.443458s:  VX_ZONE_ERROR:[vxVerifyGraph:2109] Graph verify failed
 25.443542s:  VX_ZONE_ERROR:[ownGraphScheduleGraphWrapper:799] graph is not in a state required to be scheduled
 25.443543s:  VX_ZONE_ERROR:[vxProcessGraph:734] schedule graph failed
 25.443544s:  VX_ZONE_ERROR:[vxProcessGraph:739] wait graph failed
ERROR: Running TIDL graph ... Failed !!!
Sub Graph Stats 7,000000 1983,000000 17581775893973498,000000 
*******  TIDL_subgraphRtInvoke done  ******** 
*******   In TIDL_subgraphRtInvoke  ******** 
 25.447230s:  VX_ZONE_ERROR:[tivxAlgiVisionCreate:363] Calling ialg.algAlloc failed with status = -1115
 25.447243s:  VX_ZONE_ERROR:[tivxKernelTIDLCreate:720] tivxAlgiVisionCreate returned NULL
 25.447812s:  VX_ZONE_ERROR:[ownContextSendCmd:801] Command ack message returned failure cmd_status: -1
 25.447814s:  VX_ZONE_ERROR:[ownContextSendCmd:835] tivxEventWait() failed.
 25.447815s:  VX_ZONE_ERROR:[ownNodeKernelInit:527] Target kernel, TIVX_CMD_NODE_CREATE failed for node TIDLNode
 25.447816s:  VX_ZONE_ERROR:[ownNodeKernelInit:528] Please be sure the target callbacks have been registered for this core
 25.447816s:  VX_ZONE_ERROR:[ownNodeKernelInit:529] If the target callbacks have been registered, please ensure no errors are occurring within the create callback of this kernel
 25.447818s:  VX_ZONE_ERROR:[ownGraphNodeKernelInit:583] kernel init for node 0, kernel com.ti.tidl:1:1 ... failed !!!
 25.447819s:  VX_ZONE_ERROR:[vxVerifyGraph:2055] Node kernel init failed
 25.447820s:  VX_ZONE_ERROR:[vxVerifyGraph:2109] Graph verify failed
 25.447894s:  VX_ZONE_ERROR:[ownGraphScheduleGraphWrapper:799] graph is not in a state required to be scheduled
 25.447895s:  VX_ZONE_ERROR:[vxProcessGraph:734] schedule graph failed
 25.447896s:  VX_ZONE_ERROR:[vxProcessGraph:739] wait graph failed
ERROR: Running TIDL graph ... Failed !!!
Sub Graph Stats 259,000000 2907,000000 17581775893973498,000000 
*******  TIDL_subgraphRtInvoke done  ******** 
Warning : Couldn't find corresponding ioBuf tensor for onnx tensor with matching name 
*******   In TIDL_subgraphRtInvoke  ******** 
 25.449203s:  VX_ZONE_ERROR:[tivxAlgiVisionCreate:363] Calling ialg.algAlloc failed with status = -1115
 25.449213s:  VX_ZONE_ERROR:[tivxKernelTIDLCreate:720] tivxAlgiVisionCreate returned NULL
 25.449627s:  VX_ZONE_ERROR:[ownContextSendCmd:801] Command ack message returned failure cmd_status: -1
 25.449630s:  VX_ZONE_ERROR:[ownContextSendCmd:835] tivxEventWait() failed.
 25.449631s:  VX_ZONE_ERROR:[ownNodeKernelInit:527] Target kernel, TIVX_CMD_NODE_CREATE failed for node TIDLNode
 25.449632s:  VX_ZONE_ERROR:[ownNodeKernelInit:528] Please be sure the target callbacks have been registered for this core
 25.449632s:  VX_ZONE_ERROR:[ownNodeKernelInit:529] If the target callbacks have been registered, please ensure no errors are occurring within the create callback of this kernel
 25.449634s:  VX_ZONE_ERROR:[ownGraphNodeKernelInit:583] kernel init for node 0, kernel com.ti.tidl:1:1 ... failed !!!
 25.449635s:  VX_ZONE_ERROR:[vxVerifyGraph:2055] Node kernel init failed
 25.449636s:  VX_ZONE_ERROR:[vxVerifyGraph:2109] Graph verify failed
 25.449710s:  VX_ZONE_ERROR:[ownGraphScheduleGraphWrapper:799] graph is not in a state required to be scheduled
 25.449711s:  VX_ZONE_ERROR:[vxProcessGraph:734] schedule graph failed
 25.449712s:  VX_ZONE_ERROR:[vxProcessGraph:739] wait graph failed
ERROR: Running TIDL graph ... Failed !!!
Sub Graph Stats 7,000000 1748,000000 17581775893973498,000000 
*******  TIDL_subgraphRtInvoke done  ******** 
************ in TIDL_subgraphRtDelete ************ 
 ************ in TIDL_subgraphRtDelete ************ 
 ************ in TIDL_subgraphRtDelete ************ 
 ************ in TIDL_subgraphRtDelete ************ 
 MEM: Deinit ... !!!
MEM: Alloc's: 102 alloc's of 162827725 bytes 
MEM: Free's : 102 free's  of 162827725 bytes 
MEM: Open's : 0 allocs  of 0 bytes 
MEM: Deinit ... Done !!!

Any pointers as to how to proceed?

Best Regards

Ashay

  • HI Ashay,

    Mobilenetv2 is a pretty standard and well tested model and I don't expect it to run into issues. Can you help me understand the reason for having so many layer types in deny_list?

    Also, in case you are looking for model-zoo, https://github.com/TexasInstruments/edgeai-modelzoo has better coverage of models and frameworks compared to the link you are referring to, so would recommend to look at these models as well for your applications.

    Regards,

    Anand

  • Hi Anand,

    I agree with you that the model is pretty standard and hence it is even more baffling to me. I had just tried it, assuming it would run and provide me with a check if everything is working well.

    Regarding deny list, I was testing another model and these layers were unsupported, hence I added them and later forgot to remove them. Now, they have been removed and I still obtain the same result.

    I also took the model from here: https://github.com/TexasInstruments/edgeai-modelzoo/tree/master/models/vision/classification/imagenet1k/onnx-models

    and get the same result with the error. What am I missing? Would be great to hear your insights into this.

    Thanks and Regards

    Ashay

  • Hi Ashay,

    Can you try running this network with EP_list = ["CPUExecutionProvider"], which just runs the native onnx runtime without TIDL delegation. That should help checkif there are any script/setup related issues. 

    Regards,

    Anand

  • Hi Anand, with native ONNX runtime (CPUExecutionProvider) it works and produces output as well.

    Regards

    Ashay

  • Hi Ashay,

    Thanks for confirming. I have some follow-up questions:

    1) Can you let me know which release version you are using

    2) Can you share this file : /home/xyz/TestCode/output_dir/tempDir/mobilenetv20_features_relu1_fwd_tidl_io_.qunat_stats_config.txt

    3) Couldn't find corresponding ioBuf tensor for onnx tensor with matching name - Do you see this warning even after removing the layers in deny_list?

    Regards,

    Anand

  • Hi Anand,

    sorry for the late response. I was initially trying this on a VirtualBox. Somewhere, I read that this has not been tested for VM's and docker would be a better solution.

    I tried this and I was able to get the model to compile. I am testing some pre-trained models now, and if this works I will close the issue. Thanks for your support.

    Best

    Ashay

  • Update: I was trying to test a ResNet50 model, which I took from tensorflow, converted it to onnx and tried to compile it. I received the following message:

    **********  Frame Index 1 : Running float inference **********
    [libprotobuf FATAL ./google/protobuf/repeated_field.h:1537] CHECK failed: (index) < (current_size_): 
    2023-05-02 07:10:14.332733645 [E:onnxruntime:, sequential_executor.cc:339 Execute] Non-zero status code returned while running TIDL_1 node. Name:'TIDLExecutionProvider_TIDL_1_1' Status Message: CHECK failed: (index) < (current_size_): 
    Traceback (most recent call last):
      File "keypointnet_compilation.py", line 245, in <module>
        run_model("/home/TestCode/ResNet50/ResNet50Keras_without_preprocesing_fixed.onnx", 1)
      File "keypointnet_compilation.py", line 204, in run_model
        imgs, output, height, width  = infer_image(sess, input_images, config)
      File "keypointnet_compilation.py", line 128, in infer_image
        output = list(sess.run(None, {input_name: input_data}))
      File "/usr/local/lib/python3.6/dist-packages/onnxruntime/capi/onnxruntime_inference_collection.py", line 188, in run
        return self._sess.run(output_names, input_feed, run_options)
    onnxruntime.capi.onnxruntime_pybind11_state.RuntimeException: [ONNXRuntimeError] : 6 : RUNTIME_EXCEPTION : Non-zero status code returned while running TIDL_1 node. Name:'TIDLExecutionProvider_TIDL_1_1' Status Message: CHECK failed: (index) < (current_size_): 
    MEM: Deinit ... !!!
    MEM: Alloc's: 26 alloc's of 37492824 bytes 
    MEM: Free's : 26 free's  of 37492824 bytes 
    MEM: Open's : 0 allocs  of 0 bytes 
    MEM: Deinit ... Done !!!
    Segmentation fault

    I had to add "Slice, Pad " to the deny list, apparently, they were not supported. For your reference, I am attaching the model here: https://drive.google.com/file/d/1J8tx6-z4tPF_pOpnD3DHZDKRCDg75Rp_/view?usp=sharing

    Thank you for your support.

    Best

    Ashay 

  • Thanks for the feedback Ashay, will check on my end as well. I don't see slice layer in this model, can you please confirm you have shared the correct model?

    Regards,

    Anand

  • Sorry, I accidentally marked it as "This resolved my issue". I had two models:

    1.) took from tensorflow, converted it to onnx and tried to compile it which is the one which I shared before

    2.) took from tensorflow, applied pre-processing method(also available in tf), converted to ONNX and tried to compile. This model has slice layers. I will attach this model also. Essentially this is the kind of backbone we would want to use, but to keep things simple I created model 1.

    https://drive.google.com/file/d/132qdgNEkNJYqgcNtKyZJTBJn8VZ4M_PX/view?usp=sharing Link to model 2

  • Exporting the model "with channel first" as an option using tf2onnx helped me to compile the model. Unfortunately "Slice" operation is not supported, I had to add it to the deny_list.

    Thank you for your support :)

    Best

    Ashay

  • Hi Ashay,

    I took a look at the slice layer in this network, TIDL doesn't support slice across multiple axes (slice along axes 1,2,3 is supported individually). Slice should have been automatically pushed to ARM (native runtime), we will fix that.

    One question here though : I see the input and output dimensions of the slice layer are same, what is the purpose of having this layer in the network? In case this is a dummy layer for testing purpose, one solution I could suggest is have 2 slice layers one after the other, one for each of the axes you need to slice.

    Regards,
    Anand

  • Hi Anand,

    yeah, I had a look at the documentation, and also the logs and then added Slice to deny_list. This Slice is generated in Tensorflow when I use the inbuilt pre-processing for ResNets. At the moment it is okay for us to carry this in the deny_list. We have hit a roadblock with a quantized model in ONNX. Hence, I am trying with TFLite as an execution provider. The 16-bit quantized model gives decent results. However, this does not show any C7xMMA utilization, also the info logs mention: "INFO: Created TensorFlow Lite XNNPACK delegate for CPU." Is there any way in which I can make sure if C7xMMA is being utilized and if so how much?

    Attaching the image for ref:

    Code:

    def plot_TI_performance_data(stats, axis=None):
        do_show = False
    
        if axis is None:
            import matplotlib.pyplot as plt
            fig, axis = plt.subplots()
            do_show = True
    
        # ---- processing the data -----
        records = []
    
        # extract the timestamps and normalize to run_start
        perfstats = {k.replace('ts:', '') : v for k, v in stats.items() if k.startswith('ts:')}
        d = {k : (v - perfstats['run_start']) / 1000000 for k, v in perfstats.items()}
    
        # get number of subgraphs and sort in order of execution
        subn = set([elem.replace('_copy_in_start', '') for elem in d.keys() if elem.startswith('subgraph_') and elem.endswith('_copy_in_start')])
        subn = sorted(list(subn), key=lambda x : d[f'{x}_copy_in_start'])
    
        # populate subgraph records
        for pre, node in [(i, idx) for idx, i in enumerate(subn)]:
            records.append(
                ([(d[pre + el + '_start'], d[pre + el + '_end'] - d[pre + el + '_start']) for el in ['_copy_in', '_proc', '_copy_out']],
                 f'c7x_mma_op_{node}',
                 ('tab:orange', 'tab:green', 'tab:purple')))
    
        # populate records for ARM operations
        records.append(
            ([(d[f], d[l] - d[f]) for f, l in zip(['run_start'] + [f'{i}_copy_out_end' for i in subn], [f'{i}_copy_in_start' for i in subn] + ['run_end'])],
             'cpu_op',
             ('tab:blue')))
    
        # populate total runtime record
        #records.append(([(0, d['run_end'] - d['run_start'])], "total", ('tab:red')))
    
    
        # Set legend
        legends = [
            #mpatches.Patch(color='red', label='total'),
            mpatches.Patch(color='blue', label='cpu_operation'),
            mpatches.Patch(color='orange', label='in_tensor copy'),
            mpatches.Patch(color='green', label='c7x_mma_operation'),
            mpatches.Patch(color='purple', label='out_tensor copy')
        ]
        axis.legend(handles=legends, ncol = len(legends))
    
        # Set Y markers
        ticks = [i + (0.1 * i) + 0.5 for i in range(len(records))]
        names = [x[1] for x in records]
        axis.set_yticks(ticks)
        axis.set_yticklabels(names)
    
        # plot colored bars
        for i, r in enumerate(records):
            axis.broken_barh(r[0], (i + i * 0.1, 1), facecolors=r[2])
    
        axis.set_xlabel('ms')
        axis.set_ylabel('Processing Task location')
    
        # text annotation for total runtime
        #axis.text(d['run_end'] / 2, ticks[-1], '%.02f milliseconds' % (d['run_end'] - d['run_start']),
        #     {'color': 'white', 'fontsize': 24, 'ha': 'center', 'va': 'center'})
    
        if do_show:
            plt.show()
    
    
    
    tidl_delegate = [tflite.load_delegate(os.path.join(os.environ['TIDL_TOOLS_PATH'], 'libtidl_tfl_delegate.so'), 
                        {'artifacts_folder': args.artifacts_folder})]
    
    
    interpreter = tflite.Interpreter(model_path=tflite_model_path, experimental_delegates=tidl_delegate)
    
    interpreter.resize_tensor_input(0, (1, 256, 320, 3))
    interpreter.allocate_tensors()
    
    input_details = interpreter.get_input_details()
    output_details = interpreter.get_output_details()
    img_files = os.listdir(args.test_images)
    
    for i, img_file in enumerate(img_files):
        new_file_name = str(i)+".jpg"
        plot_name = str(i)+"_plot.jpg"
        ddrw_plot_name = str(i)+"_ddrwb.jpg"
        img = cv2.imread(os.path.join(args.test_images,img_file))
        processed_img = preprocess(img)
        interpreter.set_tensor(input_details[0]['index'], processed_img)
        net_output = {}
        #Running inference several times to get an stable performance output
        start_time = time()
        for i in range(5):
            interpreter.invoke()
        endtime = (time() - start_time)/5
        if args.benchmark:
            import matplotlib.pyplot as plt
            stats = interpreter.get_TI_benchmark_data()
            fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(10,5))
            plot_TI_performance_data(stats, axis=ax)
            plt.savefig(os.path.join(args.output_images,plot_name))

    Thank you.

    Best

    Ashay

  • Hi Ashay,

    Can you check the runtimes_visualization.svg generated in artifacts folder? Grayed out nodes indicate ARM delegation and colored boxes indicates c7x delegation. Please check if svg indicates correct delegation. Also, the compilation log mentions how many nodes are delegated to c7x, would be a good idea to confirm that as well.

    Regards,

    Anand

  • Hi Anand, I checked those. Seems most of the layers are delegated to C7x. Verified the same with the logs.

    Thank you.

    Best

    Ashay

  • Hi Ashay,

    Apologies for the delay. I am not very sure what could be causing this issue. I suspect this to be a plotting related issue. If the logs show layers getting delegated to c7x, then inference for those layers must be happening on c7x. Can you print out all the values in stats dictionary and share? The plotting script might not be plotting the c7x operation time. Just to reiterate, I don't think entire model is running on ARM as is seen in the plots, the plots seem to be incorrect for some reason.

    Regards,

    Anand