This thread has been locked.
If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.
Tool/software:
Hi team,
I am trying to run inference on a custom model following the steps below but encountered an issue:
Flow: ONNX file --> convert to TIDL format --> run inference
edgeai-tidl-tools/tidl_tools/tidl_model_import.out
to convert my ONNX model to TIDL format and then attempt to run inference, I encounter an error stating that param.yaml
does not exist.My convert model (on the left) differs from the example model in the Model Zoo (on the right).
Questions:
Is it possible to generate config.yaml
, dataset.yaml
, and param.yaml
using tidl_model_import.out
? If so, how can I configure them correctly?
Could you please provide an example of converting an ONNX file to TIDL format and running inference?
I also attempted the Custom Model Evaluation method.(github.com/.../custom_model_evaluation.md(github.com/.../custom_model_evaluation.md
EP Error Unknown Provider Type: TIDLCompilationProvider when using ['TIDLCompilationProvider', 'CPUExecutionProvider']
.import torch import onnx import onnxruntime as rt import subprocess import os # 定義參數 onnx_model_path = "model.onnx" simplified_onnx_model_path = "model_simplified.onnx" tidl_artifacts_folder = "./model-artifacts-dir/" tidl_tools_path = "./app/ken/tda4/TIDL10.00.06.00/edgeai-tidl-tools/tidl_tools/" # Step 1: 導出 ONNX 模型 (以 PyTorch 為例) def export_pytorch_model_to_onnx(model, input_shape): dummy_input = torch.randn(*input_shape) torch.onnx.export(model, dummy_input, onnx_model_path, opset_version=11) print(f"ONNX model exported to {onnx_model_path}") # Step 2: 檢查模型有效性並推斷形狀 def check_and_infer_shape(onnx_model_path): model = onnx.load(onnx_model_path) inferred_model = onnx.shape_inference.infer_shapes(model) onnx.save(inferred_model, "inferred_model.onnx") print("Shape inference complete and saved to inferred_model.onnx") # Step 3: 簡化 ONNX 模型 def simplify_onnx_model(onnx_model_path, simplified_model_path): subprocess.run(["python3", "-m", "onnxsim", onnx_model_path, simplified_model_path]) print(f"Simplified ONNX model saved to {simplified_model_path}") # Step 4: 設定 ONNX Runtime TIDL 編譯會話 def setup_tidl_session(simplified_model_path): # 設置編譯參數 options = { "artifacts_folder": tidl_artifacts_folder, "tidl_tools_path": tidl_tools_path } so = rt.SessionOptions() ep_list = ['TIDLCompilationProvider', 'CPUExecutionProvider'] # 設置編譯會話,使用 TIDLCompilationProvider 進行編譯 sess = rt.InferenceSession(simplified_model_path, providers=ep_list, provider_options=[options, {}], sess_options=so) print("TIDL model compilation session created.") return sess # Step 5: 驗證模型的輸出 def validate_model_output(sess, input_data): # 確保 TIDL 編譯模型可以產生正確輸出 input_name = sess.get_inputs()[0].name output_name = sess.get_outputs()[0].name output = sess.run([output_name], {input_name: input_data}) print(f"Model output: {output}") # 主流程 if __name__ == "__main__": # 假設這是 PyTorch 模型和輸入維度 model = torch.nn.Sequential( torch.nn.Conv2d(3, 16, 3, stride=2, padding=1), torch.nn.ReLU(), torch.nn.Flatten(), torch.nn.Linear(16 * 112 * 112, 10) ) input_shape = (1, 3, 224, 224) # 導出、檢查、簡化、編譯和驗證模型 export_pytorch_model_to_onnx(model, input_shape) check_and_infer_shape(onnx_model_path) simplify_onnx_model(onnx_model_path, simplified_onnx_model_path) session = setup_tidl_session(simplified_onnx_model_path) # 使用隨機數據進行驗證 input_data = torch.randn(*input_shape).numpy() validate_model_output(session, input_data) print("Available providers:", rt.get_available_providers())
Thanks for your kindly help.
Hi Ken; we will look into this. First we will do exact what you have done, to find out if we will have the same problem. Could you please provide the software version#; the command for each step, and your Linux environment? So we can replicate them on our side.
Thanks and regards
Wen Li
My TIDL version is 10.00.04.00, and Ubuntu version is 22.04
My setup TIDL sop below:
apt-get update apt-get upgrade apt install sudo sudo apt-get install libyaml-cpp-dev libglib2.0-dev apt install git apt install wget Pip3 install dlr pip3 install flatbuffers==2.0 Sudo apt install cmake sudo apt install libopencv-dev git clone https://github.com/TexasInstruments/edgeai-tidl-tools.git cd edgeai-tidl-tools/ git checkout 110634e30a121b6efdfba8faf75c347e21caa49e export SOC=am67a source ./setup.sh export SOC=<Your SOC name> export TIDL_TOOLS_PATH=$(pwd)/tidl_tools export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TIDL_TOOLS_PATH export ARM64_GCC_PATH=$(pwd)/gcc-arm-9.2-2019.12-x86_64-aarch64-none-linux-gnu mkdir build && cd build cmake ../examples && make -j && cd ..
I try two way to convert onnx to TIDL format:
[1]
- cd <local path>/tidl_tools
- ./tidl_model_import.out ../ken_test_model/test.txt
- test.txt :
#### lenet modelType = 2 numParamBits = 8 numFeatureBits = 8 quantizationStyle = 3 #quantizationStyle = 2 inputNetFile = "/app/ken/tda4/TIDL10.00.06.00/edgeai-tidl-tools/ken_test_model/lenet.onnx" outputNetFile = "/app/ken/tda4/TIDL10.00.06.00/edgeai-tidl-tools/ken_test_model/lenet_res/lenet.bin" outputParamsFile = "/app/ken/tda4/TIDL10.00.06.00/edgeai-tidl-tools/ken_test_model/lenet_res/lenet_" inDataNorm = 0 inDataFormat = 1 inWidth = 28 inHeight = 28 inNumChannels = 1 numFrames = 1 inData = "/app/ken/tda4/TIDL10.00.06.00/edgeai-tidl-tools/ken_test_model/0003.jpg" # 0 = JPEG/PNG/BMP; 1 = binary; 2 = list inFileFormat = 0 perfSimConfig = /app/ken/tda4/TIDL10.00.06.00/edgeai-tidl-tools/tidl_tools/device_config.cfg inElementType = 0 metaArchType = 4 postProcType = 3
- log below: (but can't fnd param.yaml / dataset.yaml, can't run inference)
root@914dec19bac9:/app/ken/tda4/TIDL10.00.06.00/edgeai-tidl-tools/tidl_tools# ./tidl_model_import.out ../ken_test_model/test.txt ========================= [Model Compilation Started] ========================= Model compilation will perform the following stages: 1. Parsing 2. Graph Optimization 3. Quantization & Calibration 4. Memory Planning ============================== [Version Summary] ============================== ------------------------------------------------------------------------------- | TIDL Tools Version | 10_00_04_00 | ------------------------------------------------------------------------------- | C7x Firmware Version | 10_00_02_00 | ------------------------------------------------------------------------------- No Meta Arch layer to parse ONNX model (Proto) file : /app/ken/tda4/TIDL10.00.06.00/edgeai-tidl-tools/ken_test_model/lenet.onnx TIDL network file : /app/ken/tda4/TIDL10.00.06.00/edgeai-tidl-tools/ken_test_model/lenet_res/lenet.bin TIDL IO info file : /app/ken/tda4/TIDL10.00.06.00/edgeai-tidl-tools/ken_test_model/lenet_res/lenet_ Current ONNX OpSet version : 9 ============================ [Optimization started] ============================ ----------------------------- Optimization Summary ----------------------------- --------------------------------------------------------------------------------- | Layer | Nodes before optimization | Nodes after optimization | --------------------------------------------------------------------------------- | TIDL_CropLayer | 0 | 2 | | TIDL_ConvolutionLayer | 2 | 2 | | TIDL_ReLULayer | 1 | 0 | | TIDL_InnerProductLayer | 2 | 2 | | TIDL_SoftMaxLayer | 1 | 1 | | TIDL_PoolingLayer | 2 | 2 | --------------------------------------------------------------------------------- =========================== [Optimization completed] =========================== Couldn't open tidlStatsTool file: ../../test/PC_dsp_test_dl_algo.out ------------------ Fixed-point Calibration Iteration [1 / 1]: ------------------ Couldn't open tidlStatsTool file: ../../test/PC_dsp_test_dl_algo.out ==================== [Quantization & Calibration Completed] ==================== [TIDL Import] WARNING: Couldn't open perfSimTool file: ../../utils/perfsim/ti_cnnperfsim.out. Skipping Performance Simulation. Rerunning network compiler... [TIDL Import] WARNING: Couldn't open perfSimTool file: ../../utils/perfsim/ti_cnnperfsim.out. Skipping Performance Simulation. [TIDL Import] WARNING: Couldn't open graphVizTool file: ../../utils/tidlModelGraphviz/out/tidl_graphVisualiser.out . Skipping Graph Visualization. [TIDL Import] WARNING: Couldn't open graphVizTool file: ../../utils/tidlModelGraphviz/out/tidl_graphVisualiser.out . Skipping Graph Visualization. [TIDL Import] [PARSER] WARNING: ******************************************************************** * Network compiler returned with error or didn't executed * * This model can only be used on PC/Host emulation mode * * It is not expected to work on target/EVM * ******************************************************************** ======================== Subgraph Compiled Successfully ========================
[2]
- cd <local path>/examples/jupyter_notebooks
- source ./launch_notebook.sh
- python3 tidl_model_convert_onnx.py
- tidl_model_convert_onnx.py below:
import os import tqdm import cv2 import numpy as np import onnxruntime as rt import shutil from scripts.utils import imagenet_class_to_name, download_model import matplotlib.pyplot as plt from pathlib import Path from IPython.display import Markdown as md from scripts.utils import loggerWritter from scripts.utils import get_svg_path import onnx def preprocess(image_path): # read the image using openCV img = cv2.imread(image_path) # convert to RGB img = img[:,:,::-1] # Most of the onnx models are trained using # 224x224 images. The general rule of thumb # is to scale the input image while preserving # the original aspect ratio so that the # short edge is 256 pixels, and then # center-crop the scaled image to 224x224 orig_height, orig_width, _ = img.shape short_edge = min(img.shape[:2]) new_height = (orig_height * 256) // short_edge new_width = (orig_width * 256) // short_edge img = cv2.resize(img, (new_width, new_height), interpolation=cv2.INTER_CUBIC) startx = new_width//2 - (224//2) starty = new_height//2 - (224//2) img = img[starty:starty+224,startx:startx+224] # apply scaling and mean subtraction. # if your model is built with an input # normalization layer, then you might # need to skip this img = img.astype('float32') for mean, scale, ch in zip([128, 128, 128], [0.0078125, 0.0078125, 0.0078125], range(img.shape[2])): img[:,:,ch] = ((img.astype('float32')[:,:,ch] - mean) * scale) img = np.expand_dims(img,axis=0) img = np.transpose(img, (0, 3, 1, 2)) return img calib_images = [ 'sample-images/elephant.bmp', 'sample-images/bus.bmp', 'sample-images/bicycle.bmp', 'sample-images/zebra.bmp', ] output_dir = 'custom-artifacts/onnx/resnet18_opset9.onnx' onnx_model_path = 'models/public/onnx/resnet18_opset9.onnx' download_model(onnx_model_path) onnx.shape_inference.infer_shapes_path(onnx_model_path, onnx_model_path) #compilation options - knobs to tweak num_bits =8 accuracy =1 log_dir = Path("logs").mkdir(parents=True, exist_ok=True) # stdout and stderr saved to a *.log file. #with loggerWritter("logs/custon-model-onnx"): # model compilation options compile_options = { 'tidl_tools_path' : os.environ['TIDL_TOOLS_PATH'], 'artifacts_folder' : output_dir, 'tensor_bits' : num_bits, 'accuracy_level' : accuracy, 'advanced_options:calibration_frames' : len(calib_images), 'advanced_options:calibration_iterations' : 3, # used if accuracy_level = 1 'advanced_options:add_data_convert_ops' : 1, 'debug_level' : 1, #'deny_list' : "MaxPool" #Comma separated string of operator types as defined by ONNX runtime, ex "MaxPool, Concat" } # create the output dir if not present # clear the directory os.makedirs(output_dir, exist_ok=True) for root, dirs, files in os.walk(output_dir, topdown=False): [os.remove(os.path.join(root, f)) for f in files] [os.rmdir(os.path.join(root, d)) for d in dirs] so = rt.SessionOptions() EP_list = ['TIDLCompilationProvider','CPUExecutionProvider'] sess = rt.InferenceSession(onnx_model_path ,providers=EP_list, provider_options=[compile_options, {}], sess_options=so) input_details = sess.get_inputs() for num in tqdm.trange(len(calib_images)): output = list(sess.run(None, {input_details[0].name : preprocess(calib_images[num])}))[0] ##optional #subgraph_link =get_svg_path(output_dir) #for sg in subgraph_link: # hl_text = os.path.join(*Path(sg).parts[4:]) # sg_rel = os.path.join('../', sg) # display(md("[{}]({})".format(hl_text,sg_rel))) # #EP_list = ['TIDLExecutionProvider','CPUExecutionProvider'] #print("[ken debug] 5 ") #sess = rt.InferenceSession(onnx_model_path ,providers=EP_list, provider_options=[compile_options, {}], sess_options=so) ##Running inference several times to get an stable performance output #for i in range(5): # output = list(sess.run(None, {input_details[0].name : preprocess('sample-images/elephant.bmp')})) # #for idx, cls in enumerate(output[0].squeeze().argsort()[-5:][::-1]): # print('[%d] %s' % (idx, '/'.join(imagenet_class_to_name(cls)))) # #from scripts.utils import plot_TI_performance_data, plot_TI_DDRBW_data, get_benchmark_output #stats = sess.get_TI_benchmark_data() #fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(10,5)) #plot_TI_performance_data(stats, axis=ax) #plt.show() #print("[ken debug] 6 ") #tt, st, rb, wb = get_benchmark_output(stats) #print(f'Statistics : \n Inferences Per Second : {1000.0/tt :7.2f} fps') #print(f' Inference Time Per Image : {tt :7.2f} ms \n DDR BW Per Image : {rb+ wb : 7.2f} MB')
- log below (If this successfully, will convert param.yaml and dataset.yaml?, inference code need these two files):
root@914dec19bac9:/app/ken/tda4/TIDL10.00.06.00/edgeai-tidl-tools/examples/jupyter_notebooks# ls README.md custom-artifacts custom-model-tvm-dlr.ipynb evm-console-log.ipynb lidar-3dod-onnx.ipynb prebuilt-models tidl_model_convert_onnx.py vcls-hr.ipynb vcls-tfl-arm.ipynb vdet-onnx.ipynb vseg-onnx.ipynb colab custom-model-onnx.ipynb debug_tips.ipynb human-pose-estimation-onnx.ipynb logs sample-images tidl_model_convert_tflite.py vcls-onnx-arm.ipynb vcls-tfl.ipynb vdet-tfl.ipynb vseg-tfl.ipynb configs custom-model-tfl.ipynb docs launch_notebook.sh models scripts vcls-dlr.ipynb vcls-onnx.ipynb vdet-dlr.ipynb vseg-dlr.ipynb root@914dec19bac9:/app/ken/tda4/TIDL10.00.06.00/edgeai-tidl-tools/examples/jupyter_notebooks# python3 tidl_model_convert_onnx.py /usr/local/lib/python3.10/dist-packages/onnxruntime/capi/onnxruntime_inference_collection.py:115: UserWarning: Specified provider 'TIDLCompilationProvider' is not in available provider names.Available providers: 'AzureExecutionProvider, CPUExecutionProvider' warnings.warn( 2024-11-08 01:54:33.885035952 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer4.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.885066086 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer4.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.885073018 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer3.0.downsample.1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.885080827 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer4.0.downsample.1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.885086808 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer3.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.885092786 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer3.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.885099389 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer2.0.downsample.1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.885105336 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer3.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.885110886 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer1.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.885117031 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer1.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.885123454 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.885130440 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer1.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.885137239 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer2.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.885143287 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer1.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.885149198 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer4.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.885155127 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer4.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.885161162 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer2.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.885167884 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer3.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.885173780 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer2.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.885180693 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer2.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. *************** EP Error *************** EP Error Unknown Provider Type: TIDLCompilationProvider when using ['TIDLCompilationProvider', 'CPUExecutionProvider'] Falling back to ['CPUExecutionProvider'] and retrying. **************************************** 2024-11-08 01:54:33.927323820 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer4.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.927345830 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer4.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.927350568 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer3.0.downsample.1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.927354911 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer4.0.downsample.1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.927359205 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer3.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.927364325 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer3.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.927371761 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer2.0.downsample.1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.927375518 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer3.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.927379046 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer1.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.927383303 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer1.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.927388536 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.927392920 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer1.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.927397340 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer2.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.927401788 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer1.1.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.927406226 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer4.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.927409846 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer4.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.927413522 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer2.0.bn1.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.927418452 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer3.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.927423215 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer2.0.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. 2024-11-08 01:54:33.927427769 [W:onnxruntime:, graph.cc:4285 CleanUnusedInitializersAndNodeArgs] Removing initializer 'layer2.1.bn2.num_batches_tracked'. It is not used by any node and should be removed from the model. 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:00<00:00, 104.86it/s]
Please help me to check,
Thanks for your kindly help.
Hello Ken; Thank you for the information. I will try to setup the same configuration/environment as you have; and will up you updated.
Regards
Wen Li
Hi Wen,
Thank you very much for your attention, and I look forward to receiving your reply.
Best regards
Hi Ken; I am still working on your one.
Meanwhile, have you look at this info yet?
Thanks and regards
Wen
Hi Wen:
I have followed the instructions from this link and implemented the process:
https://github.com/TexasInstruments/edgeai-tidl-tools/blob/master/examples/jupyter_notebooks/custom-model-onnx.ipynb,
but I encountered the error "EP Error Unknown Provider Type: TIDLCompilationProvider."
Thanks for your kindly help.
Best regards
Hi Ken;
I will run this
Jupyter book first to see if I will get the same result. if not we will compare our notes.
Thanks and regards
Wen
Hi Wen:
Sorry to bother you, do you get the same result after running the above steps?
Thanks for your kindly help.