Dear TI:
From the VSDK tidl_OD (TI deep learning object detection) use case:
Alg_tidlpreproc (A15) -> Alg_tidl_Eve1 (EVE1) Alg_tidlpreproc (A15) -> Alg_tidl_Eve2 (EVE2) Alg_tidlpreproc (A15) -> Alg_tidl_Eve3 (EVE3) Alg_tidlpreproc (A15) -> Alg_tidl_Eve4 (EVE4)
so the trained caffe model will be automatically distribute and run on these 4 EVEs, e.g. some layer running on EVE1, and some layers running on EVE2, etc? Am my understating correct?
Is it recommend to use all of EVE (i.e. EVE1 to EVE4) to have maximum performance?
In the conversion tool configuration text, we can use layersGroupId to define whether it is EVE or DSP to run the algorithm:
for e.g. in the below from tidl_import_JDetNet_voc0712.txt:
layersGroupId = 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 0
If we have set the algorithm to be running on EVE ( in chains_tidlOD.txt), then "2" (DSP) we set in layersGroupId still get effect? And what is "0" means in layersGroupId referring to?
Thanks and best regards
He Wei