This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

TDA2SX: Make runtest fail at Jacinto-Caffe

Part Number: TDA2SX

Dear Champs,

When my customer tried to make using Jacinto-caffe, they faced error while cuda run test as below attached log.

Could you please let me know if there is any issue in their setup or what is the issue?

5557.debug.txt
Fullscreen
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
.build_release/tools/caffe
I0212 16:33:57.105792 3278 caffe.cpp:902] This is NVCaffe 0.17.0 started at Wed Feb 12 16:33:57 2020
I0212 16:33:57.257547 3278 caffe.cpp:904] CuDNN version: 7605
I0212 16:33:57.257551 3278 caffe.cpp:905] CuBLAS version: 9010
I0212 16:33:57.257553 3278 caffe.cpp:906] CUDA version: 10020
I0212 16:33:57.257555 3278 caffe.cpp:907] CUDA driver version: 10020
I0212 16:33:57.257556 3278 caffe.cpp:908] Arguments:
[0]: .build_release/tools/caffe
caffe: command line brew
usage: caffe <command> <args>
commands:
train train or finetune a model
test score a model
device_query show GPU diagnostic information
time benchmark model execution time
Flags from tools/caffe.cpp:
-ap_version (Average Precision type for object detection) type: string
default: "11point"
-display_sparsity (Display the amount of sparsity) type: bool
default: false
-gpu (Optional; run in GPU mode on given device IDs separated by ', '.Use
'-gpu all' to run on all available GPUs. The effective training batch
size is multiplied by the number of devices.) type: string default: ""
-iterations (The number of iterations to run.) type: int32 default: 50
-level (Optional; network level.) type: int32 default: 0
-model (The model definition protocol buffer text file.) type: string
default: ""
-optimize_net (Optimize the Net (Merge BN to Conv) before test) type: bool
default: false
-output_model (Prefix for output prototxt and caffemodel) type: string
default: ""
-phase (Optional; network phase (TRAIN or TEST). Only used for 'time'.)
type: string default: ""
-show_per_class_result (Show per class result for object detection)
type: bool default: true
-sighup_effect (Optional; action to take when a SIGHUP signal is received:
snapshot, stop or none.) type: string default: "snapshot"
-sigint_effect (Optional; action to take when a SIGINT signal is received:
snapshot, stop or none.) type: string default: "stop"
-snapshot (Optional; the snapshot solver state to resume training.)
type: string default: ""
-solver (The solver definition protocol buffer text file.) type: string
default: ""
-stage (Optional; network stages (not to be confused with phase), separated
by ','.) type: string default: ""
-weights (Optional; the pretrained weights to initialize finetuning,
separated by ', '. Cannot be set simultaneously with snapshot.)
type: string default: ""
.build_release/test/test_all.testbin 0 --gtest_shuffle
Cuda number of devices: 1
Setting to use device 0
Current device id: 0
Current device name: GeForce RTX 2080 Ti
Note: Randomizing tests' orders with a seed of 82163 .
[==========] Running 2101 tests from 283 test cases.
[----------] Global test environment set-up.
[----------] 8 tests from SliceLayerTest/1, where TypeParam = caffe::CPUDevice<double>
[ RUN ] SliceLayerTest/1.TestSetupNum
[ OK ] SliceLayerTest/1.TestSetupNum (0 ms)
[ RUN ] SliceLayerTest/1.TestTrivialSlice
[ OK ] SliceLayerTest/1.TestTrivialSlice (0 ms)
[ RUN ] SliceLayerTest/1.TestSliceAcrossChannels
[ OK ] SliceLayerTest/1.TestSliceAcrossChannels (0 ms)
[ RUN ] SliceLayerTest/1.TestGradientAcrossChannels
[ OK ] SliceLayerTest/1.TestGradientAcrossChannels (18 ms)
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

There was no issue with Caffe, and their Host PC is Ubuntu18.04 and graphic card is 2080 TI.

Thanks and Best Regards,

SI.