This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

CCS: TDA4x: Issue in image dumps on target(Standalone) for caffe based model

Tool/software: Code Composer Studio

Dear Sir,

We have used 

TIDL patch      : tidl_j7_01_01_01_01

MMA Library   : mmalib_01_01_00_02

We tried to import the Caffe based model with the below configuration 

numparambits=numfeaturebits= 16

quantizationStyle= 3 

On the PC emulation mode, results are correctly dumped i.e., images(output) but when tried to run the same model as Standalone on target the output images are not properly dumped.

Please find the attached zip file for your reference.output.zip 

Attached file has the PC Emulation and Target dumped results for the same input and same model.

What could be the possible reason for this?

Kindly help us to resolve the same.

Thanks and Regards,

Vyom Mishra 

  • Could you enable layer level traces and compare the same between PC emulation and Target. Share the details about the first mismatching layer.

  • Dear Sir,

    I have followed the guide 

    "set enableLayerPerfTraces = 1 in inference configuration file to enable layer level performance."

    Please find the inference config file for your reference 

    tidl_infer_mobilenet_flip_false.txt
    Fullscreen
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    inFileFormat = 2
    postProcType = 2
    netBinFile = "/home/sithara/ti/j8/psdk_rtos_auto_j7_06_02_00_21/tidl_j7_01_01_01_01/ti_dl/test/testvecs/config/tidl_models/caffe/mobilenet_flip_false_old/tidl_net_flip_false_l1.bin"
    ioConfigFile = "/home/sithara/ti/j8/psdk_rtos_auto_j7_06_02_00_21/tidl_j7_01_01_01_01/ti_dl/test/testvecs/config/tidl_models/caffe/mobilenet_flip_false_old/tidl_io_flip_false_l11.bin"
    outData = "testvecs/output/msi_mobilenet_flip_false.bin"
    inData = "/home/sithara/tidl_j7_01_01_00_10/ti_dl/test/testvecs/config/det.txt"
    debugTraceLevel = 1
    writeTraceLevel = 0
    numFrames = 10
    enableLayerPerfTraces = 1
    XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

    In PC Emulation side, We observed the Null values in the Performance traces please find it for your reference

    PC_Emul.txt
    Fullscreen
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    sithara@ubuntu:~/ti/j8/psdk_rtos_auto_j7_06_02_00_21/tidl_j7_01_01_01_01/ti_dl/test$ ./PC_dsp_test_dl_algo.out
    Processing config file #0 : testvecs/config/infer/public/caffe/tidl_infer_mobilenet_flip_false.txt
    Instance created for testvecs/config/infer/public/caffe/tidl_infer_mobilenet_flip_false.txt
    ----------------------- TIDL Process with REF_ONLY FLOW ------------------------
    # 0 . ..
    Network Cycles 0
    Layer, Layer Cycles,kernelOnlyCycles, coreLoopCycles,LayerSetupCycles,dmaPipeupCycles, dmaPipeDownCycles, PrefetchCycles,copyKerCoeffCycles,LayerDeinitCycles,LastBlockCycles, paddingTrigger, paddingWait,LayerWithoutPad,LayerHandleCopy, BackupCycles, RestoreCycles,
    1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    28, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    33, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    34, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    35, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    37, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    38, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    39, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    41, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    43, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    44, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    45, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    46, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    47, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    48, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    49, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    51, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    53, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    54, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    57, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

    In target Side:

    While using the same inference config file we got non-zero values, please find it for your reference 

    target.txt
    Fullscreen
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    Sciclient Dev Group 00 initilization done
    Sciclient Dev Group 01 initilization started
    DMSC Board Configuration with Debug enable
    DMSC Firmware Version 19.12.1-v··19.12a (Terrific Lla
    Firmware revision 0x13
    ABI revision 2.9
    [C71X_0] SCICLIENT: DMSC FW version [19.12.1-v··19.12a (Terrific Lla]
    SCICLIENT: DMSC FW revision 0x13
    SCICLIENT: DMSC FW ABI revision 2.9
    Processing config file #0 : testvecs/config/infer/public/caffe/tidl_infer_mobilenet_flip_false.txt
    Syncd
    Instance created for testvecs/config/infer/public/caffe/tidl_infer_mobilenet_flip_false.txt
    ----------------------- TIDL Process with TARGET DATA FLOW ------------------------
    # 0 . ..
    Network Cycles 33125822
    Layer, Layer Cycles,kernelOnlyCycles, coreLoopCycles,LayerSetupCycles,dmaPipeupCycles, dmaPipeDownCycles, PrefetchCycles,copyKerCoeffCycles,LayerDeinitCycles,LastBlockCycles, paddingTrigger, paddingWait,LayerWithoutPad,LayerHandleCopy, BackupCycles, RestoreCycles,
    1, 24016982, 23985029, 23985301, 228, 64, 16, 0, 0, 36, 23985029, 19393, 63, 23992844, 0, 0, 0,
    2, 159336, 120353, 121661, 8170, 3649, 18, 874, 14, 505, 4125, 16580, 185, 139904, 5400, 0, 0,
    3, 138620, 119253, 124428, 4339, 2799, 10, 0, 0, 584, 6686, 690, 186, 135335, 1854, 0, 0,
    4, 115890, 98782, 100639, 5701, 3412, 18, 17, 17, 239, 4741, 1079, 36, 112769, 3749, 0, 0,
    5, 133396, 112902, 122103, 3913, 2852, 10, 0, 0, 183, 3385, 126, 100, 131468, 1336, 0, 0,
    6, 140506, 123298, 124126, 5676, 4332, 18, 10, 7, 508, 4084, 1591, 36, 137201, 3643, 0, 0,
    7, 122431, 108941, 111776, 2691, 2786, 3, 0, 0, 265, 6663, 112, 100, 120226, 1296, 0, 0,
    8, 140754, 125150, 126846, 5387, 4482, 18, 10, 7, 211, 4143, 112, 29, 139057, 3502, 0, 0,
    9, 67437, 53961, 56736, 3321, 2786, 3, 0, 0, 356, 3320, 142, 29, 65283, 1469, 0, 0,
    10, 77770, 60997, 61492, 5260, 5457, 11, 10, 7, 89, 14062, 1412, 29, 74329, 3345, 0, 0,
    11, 66908, 55343, 56698, 3191, 3225, 3, 0, 0, 93, 6825, 111, 117, 65202, 1510, 0, 0,
    12, 110672, 92970, 93820, 5325, 6806, 18, 10, 7, 231, 7284, 112, 29, 108986, 3186, 0, 0,
    13, 41438, 29577, 30875, 3648, 3192, 3, 0, 0, 222, 3568, 150, 29, 39605, 1688, 0, 0,
    14, 65810, 45688, 45942, 5030, 9315, 11, 10, 7, 89, 15195, 1152, 29, 62399, 3387, 0, 0,
    15, 43020, 30185, 30858, 2649, 4428, 3, 0, 0, 82, 7351, 126, 1140, 39933, 1313, 0, 0,
    16, 106200, 82921, 83688, 4936, 13470, 11, 10, 7, 87, 2914, 112, 29, 104716, 3374, 0, 0,
    17, 41635, 29788, 30605, 3078, 4005, 3, 0, 0, 287, 7349, 140, 29, 39945, 1203, 0, 0,
    18, 105500, 82726, 83382, 4718, 13601, 11, 10, 7, 190, 2914, 112, 29, 104003, 3201, 0, 0,
    19, 41622, 29806, 30486, 2683, 4067, 3, 0, 0, 533, 7349, 126, 29, 40027, 1152, 0, 0,
    20, 105946, 82850, 83515, 4944, 13669, 11, 10, 7, 87, 2914, 112, 29, 104402, 3107, 0, 0,
    21, 41391, 30050, 30715, 2632, 4157, 3, 0, 0, 82, 7351, 112, 29, 39379, 1345, 0, 0,
    22, 105554, 82523, 83179, 4875, 13656, 11, 11, 7, 190, 2914, 112, 29, 103858, 3129, 0, 0,
    23, 41368, 29940, 30605, 2422, 4135, 3, 0, 0, 225, 7351, 112, 29, 39322, 1058, 0, 0,
    24, 105857, 82640, 83328, 4783, 13811, 11, 10, 7, 87, 2914, 112, 29, 104101, 3257, 0, 0,
    25, 42638, 31250, 32076, 2653, 4115, 3, 0, 0, 82, 7494, 137, 29, 40834, 1332, 0, 0,
    26, 80656, 45803, 46193, 5125, 24026, 11, 10, 7, 89, 5383, 1472, 29, 77373, 3356, 0, 0,
    27, 50837, 33450, 33961, 3156, 6668, 3, 0, 0, 186, 16546, 109, 3177, 46026, 1394, 0, 0,
    28, 170240, 106566, 114911, 4822, 3067, 18, 10, 42443, 102, 1119, 881, 102, 167532, 2894, 0, 0,
    29, 43799, 5462, 9196, 1988, 4103, 16, 0, 0, 252, 2539, 6407, 3735, 32027, 0, 0, 0,
    30, 22453, 2266, 4528, 1446, 2401, 9, 0, 0, 66, 1130, 3770, 123, 16657, 0, 0, 0,
    31, 18813, 1252, 3159, 793, 2055, 9, 0, 0, 138, 613, 3013, 296, 13366, 0, 0, 0,
    32, 25631, 12486, 12994, 2976, 4016, 3, 0, 0, 185, 5750, 112, 1004, 22927, 1652, 0, 0,
    33, 76345, 16564, 18959, 5282, 4059, 11, 10, 42384, 201, 996, 1248, 36, 73465, 2593, 0, 0,
    34, 31783, 5616, 5711, 3398, 14825, 11, 10, 14, 192, 5616, 170, 3288, 26641, 2335, 0, 0,
    35, 9787, 0, 0, 0, 0, 0, 0, 0, 0, 0, 249, 36, 7578, 0, 0, 0,
    36, 24634, 5230, 5384, 5235, 9401, 11, 10, 7, 307, 5230, 112, 29, 22975, 3042, 0, 0,
    37, 6969, 0, 0, 0, 0, 0, 0, 0, 0, 0, 112, 29, 4937, 0, 0, 0,
    38, 28595, 15584, 16065, 3238, 4788, 3, 0, 0, 162, 7315, 112, 29, 26472, 1875, 0, 0,
    39, 74979, 16071, 18601, 4374, 4110, 11, 10, 42473, 203, 982, 1289, 29, 71946, 2345, 0, 0,
    40, 32276, 5225, 5405, 4144, 15187, 11, 10, 7, 87, 5225, 112, 3184, 27024, 2361, 0, 0,
    41, 12642, 0, 0, 0, 0, 0, 0, 0, 0, 0, 274, 29, 10946, 0, 0, 0,
    42, 24500, 5431, 5668, 4722, 9752, 11, 10, 7, 87, 5431, 181, 29, 22566, 2519, 0, 0,
    43, 8108, 0, 0, 0, 0, 0, 0, 0, 0, 0, 253, 29, 6466, 0, 0, 0,
    44, 34284, 21223, 21593, 3068, 5140, 3, 0, 0, 95, 10396, 125, 29, 32465, 1362, 0, 0,
    45, 103017, 43253, 48291, 4847, 2109, 11, 10, 42782, 100, 1056, 1367, 29, 100189, 2580, 0, 0,
    46, 48215, 15150, 15331, 4866, 18294, 11, 2220, 7, 203, 15150, 112, 2651, 43162, 2975, 0, 0,
    47, 30170, 0, 0, 0, 0, 0, 0, 0, 0, 0, 119, 29, 28473, 0, 0, 0,
    48, 35961, 14555, 14708, 4520, 10174, 71, 2190, 7, 89, 14555, 171, 29, 34261, 2627, 0, 0,
    XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

    Kindly help us to resolve the PC Emulation issue.

    Thanks and Regards,

    Vyom Mishra

  • Vyom Mishra,

    The performance numbers on PC emulation mode are supposed to be zero, as PC emulation is not supposed to be a performance oriented

    - Subhajit 

  • Dear Sir,

    Thanks for the information!

    We will share all the details of the First layer mismatch soon.

    Thanks and Regards,

    Vyom Mishra

  • Dear Sir,

    I am sharing you the channels wise images for Layer-0, Layer-1 and Layer-2 dumps for you referencelayer-wise-channels_output.zip

    Please find the Netlog for your reference 

    tidl_net_flip_false_l1.bin_netLog.txt
    Fullscreen
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    Num of Layer Detected : 64
    --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    Num|TIDL Layer Name |Out Data Name |Group |#Ins |#Outs |Inbuf Ids |Outbuf Id |In NCHW |Out NCHW |MACS |
    --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    0|TIDL_DataLayer |data | 0| -1| 1| x x x x x x x x | 0 | 0 0 0 0 | 1 3 512 512 | 0 |
    1|TIDL_BatchNormLayer |data/bias | 0| 1| 1| 0 x x x x x x x | 1 | 1 3 512 512 | 1 3 512 512 | 786432 |
    2|TIDL_ConvolutionLayer |conv1 | 0| 1| 1| 1 x x x x x x x | 2 | 1 3 512 512 | 1 16 256 256 | 30408704 |
    3|TIDL_ConvolutionLayer |conv2_1/dw | 0| 1| 1| 2 x x x x x x x | 3 | 1 16 256 256 | 1 16 256 256 | 11534336 |
    4|TIDL_ConvolutionLayer |conv2_1/sep | 0| 1| 1| 3 x x x x x x x | 4 | 1 16 256 256 | 1 32 256 256 | 37748736 |
    5|TIDL_ConvolutionLayer |conv2_2/dw | 0| 1| 1| 4 x x x x x x x | 5 | 1 32 256 256 | 1 32 128 128 | 5767168 |
    6|TIDL_ConvolutionLayer |conv2_2/sep | 0| 1| 1| 5 x x x x x x x | 6 | 1 32 128 128 | 1 64 128 128 | 35651584 |
    7|TIDL_ConvolutionLayer |conv3_1/dw | 0| 1| 1| 6 x x x x x x x | 7 | 1 64 128 128 | 1 64 128 128 | 11534336 |
    8|TIDL_ConvolutionLayer |conv3_1/sep | 0| 1| 1| 7 x x x x x x x | 8 | 1 64 128 128 | 1 64 128 128 | 69206016 |
    9|TIDL_ConvolutionLayer |conv3_2/dw | 0| 1| 1| 8 x x x x x x x | 9 | 1 64 128 128 | 1 64 64 64 | 2883584 |
    10|TIDL_ConvolutionLayer |conv3_2/sep | 0| 1| 1| 9 x x x x x x x | 10 | 1 64 64 64 | 1 128 64 64 | 34603008 |
    11|TIDL_ConvolutionLayer |conv4_1/dw | 0| 1| 1| 10 x x x x x x x | 11 | 1 128 64 64 | 1 128 64 64 | 5767168 |
    12|TIDL_ConvolutionLayer |conv4_1/sep | 0| 1| 1| 11 x x x x x x x | 12 | 1 128 64 64 | 1 128 64 64 | 68157440 |
    13|TIDL_ConvolutionLayer |conv4_2/dw | 0| 1| 1| 12 x x x x x x x | 13 | 1 128 64 64 | 1 128 32 32 | 1441792 |
    14|TIDL_ConvolutionLayer |conv4_2/sep | 0| 1| 1| 13 x x x x x x x | 14 | 1 128 32 32 | 1 256 32 32 | 34078720 |
    15|TIDL_ConvolutionLayer |conv5_1/dw | 0| 1| 1| 14 x x x x x x x | 15 | 1 256 32 32 | 1 256 32 32 | 2883584 |
    16|TIDL_ConvolutionLayer |conv5_1/sep | 0| 1| 1| 15 x x x x x x x | 16 | 1 256 32 32 | 1 256 32 32 | 67633152 |
    17|TIDL_ConvolutionLayer |conv5_2/dw | 0| 1| 1| 16 x x x x x x x | 17 | 1 256 32 32 | 1 256 32 32 | 2883584 |
    18|TIDL_ConvolutionLayer |conv5_2/sep | 0| 1| 1| 17 x x x x x x x | 18 | 1 256 32 32 | 1 256 32 32 | 67633152 |
    19|TIDL_ConvolutionLayer |conv5_3/dw | 0| 1| 1| 18 x x x x x x x | 19 | 1 256 32 32 | 1 256 32 32 | 2883584 |
    20|TIDL_ConvolutionLayer |conv5_3/sep | 0| 1| 1| 19 x x x x x x x | 20 | 1 256 32 32 | 1 256 32 32 | 67633152 |
    21|TIDL_ConvolutionLayer |conv5_4/dw | 0| 1| 1| 20 x x x x x x x | 21 | 1 256 32 32 | 1 256 32 32 | 2883584 |
    22|TIDL_ConvolutionLayer |conv5_4/sep | 0| 1| 1| 21 x x x x x x x | 22 | 1 256 32 32 | 1 256 32 32 | 67633152 |
    23|TIDL_ConvolutionLayer |conv5_5/dw | 0| 1| 1| 22 x x x x x x x | 23 | 1 256 32 32 | 1 256 32 32 | 2883584 |
    24|TIDL_ConvolutionLayer |ctx_output1/dw | 0| 1| 1| 22 x x x x x x x | 24 | 1 256 32 32 | 1 256 32 32 | 2883584 |
    25|TIDL_ConvolutionLayer |conv5_5/sep | 0| 1| 1| 23 x x x x x x x | 25 | 1 256 32 32 | 1 256 32 32 | 67633152 |
    26|TIDL_ConvolutionLayer |ctx_output1/sep | 0| 1| 1| 24 x x x x x x x | 26 | 1 256 32 32 | 1 512 32 32 | 135266304 |
    27|TIDL_ConvolutionLayer |conv5_6/dw | 0| 1| 1| 25 x x x x x x x | 27 | 1 256 32 32 | 1 256 16 16 | 720896 |
    28|TIDL_ConvolutionLayer |ctx_output1/sep/relu_mbox_loc_perm | 0| 1| 1| 26 x x x x x x x | 28 | 1 512 32 32 | 1 16 32 32 | 75497472 |
    29|TIDL_ConvolutionLayer |ctx_output2/dw | 0| 1| 1| 25 x x x x x x x | 29 | 1 256 32 32 | 1 256 32 32 | 2883584 |
    30|TIDL_ConvolutionLayer |ctx_output1/sep/relu_mbox_conf_perm | 0| 1| 1| 26 x x x x x x x | 30 | 1 512 32 32 | 1 8 32 32 | 37748736 |
    31|TIDL_FlattenLayer |ctx_output1/sep/relu_mbox_loc_flat | 0| 1| 1| 28 x x x x x x x | 31 | 1 16 32 32 | 1 1 1 16384 | 16384 |
    32|TIDL_FlattenLayer |ctx_output1/sep/relu_mbox_conf_flat | 0| 1| 1| 30 x x x x x x x | 32 | 1 8 32 32 | 1 1 1 8192 | 8192 |
    33|TIDL_ConvolutionLayer |conv5_6/sep | 0| 1| 1| 27 x x x x x x x | 33 | 1 256 16 16 | 1 512 16 16 | 33816576 |
    34|TIDL_ConvolutionLayer |ctx_output2/sep | 0| 1| 1| 29 x x x x x x x | 34 | 1 256 32 32 | 1 512 32 32 | 135266304 |
    35|TIDL_ConvolutionLayer |conv6/dw | 0| 1| 1| 33 x x x x x x x | 35 | 1 512 16 16 | 1 512 16 16 | 1441792 |
    36|TIDL_ConvolutionLayer |ctx_output2/sep/relu_mbox_loc_perm | 0| 1| 1| 34 x x x x x x x | 36 | 1 512 32 32 | 1 16 32 32 | 75497472 |
    37|TIDL_ConvolutionLayer |ctx_output3/dw | 0| 1| 1| 33 x x x x x x x | 37 | 1 512 16 16 | 1 256 16 16 | 1310720 |
    38|TIDL_ConvolutionLayer |ctx_output2/sep/relu_mbox_conf_perm | 0| 1| 1| 34 x x x x x x x | 38 | 1 512 32 32 | 1 8 32 32 | 37748736 |
    39|TIDL_FlattenLayer |ctx_output2/sep/relu_mbox_loc_flat | 0| 1| 1| 36 x x x x x x x | 39 | 1 16 32 32 | 1 1 1 16384 | 16384 |
    40|TIDL_FlattenLayer |ctx_output2/sep/relu_mbox_conf_flat | 0| 1| 1| 38 x x x x x x x | 40 | 1 8 32 32 | 1 1 1 8192 | 8192 |
    41|TIDL_ConvolutionLayer |conv6/sep | 0| 1| 1| 35 x x x x x x x | 41 | 1 512 16 16 | 1 512 16 16 | 67371008 |
    42|TIDL_ConvolutionLayer |ctx_output3/sep | 0| 1| 1| 37 x x x x x x x | 42 | 1 256 16 16 | 1 512 16 16 | 33816576 |
    43|TIDL_PoolingLayer |pool6 | 0| 1| 1| 41 x x x x x x x | 43 | 1 512 16 16 | 1 512 8 8 | 131072 |
    44|TIDL_ConvolutionLayer |ctx_output3/sep/relu_mbox_loc_perm | 0| 1| 1| 42 x x x x x x x | 44 | 1 512 16 16 | 1 16 16 16 | 18874368 |
    45|TIDL_ConvolutionLayer |ctx_output4/dw | 0| 1| 1| 41 x x x x x x x | 45 | 1 512 16 16 | 1 256 16 16 | 1310720 |
    46|TIDL_ConvolutionLayer |ctx_output5/dw | 0| 1| 1| 43 x x x x x x x | 46 | 1 512 8 8 | 1 256 8 8 | 327680 |
    47|TIDL_ConvolutionLayer |ctx_output3/sep/relu_mbox_conf_perm | 0| 1| 1| 42 x x x x x x x | 47 | 1 512 16 16 | 1 8 16 16 | 9437184 |
    48|TIDL_FlattenLayer |ctx_output3/sep/relu_mbox_loc_flat | 0| 1| 1| 44 x x x x x x x | 48 | 1 16 16 16 | 1 1 1 4096 | 4096 |
    49|TIDL_FlattenLayer |ctx_output3/sep/relu_mbox_conf_flat | 0| 1| 1| 47 x x x x x x x | 49 | 1 8 16 16 | 1 1 1 2048 | 2048 |
    50|TIDL_ConvolutionLayer |ctx_output4/sep | 0| 1| 1| 45 x x x x x x x | 50 | 1 256 16 16 | 1 512 16 16 | 33816576 |
    51|TIDL_ConvolutionLayer |ctx_output5/sep | 0| 1| 1| 46 x x x x x x x | 51 | 1 256 8 8 | 1 512 8 8 | 8454144 |
    52|TIDL_ConvolutionLayer |ctx_output4/sep/relu_mbox_loc_perm | 0| 1| 1| 50 x x x x x x x | 52 | 1 512 16 16 | 1 24 16 16 | 28311552 |
    53|TIDL_ConvolutionLayer |ctx_output5/sep/relu_mbox_loc_perm | 0| 1| 1| 51 x x x x x x x | 53 | 1 512 8 8 | 1 32 8 8 | 9437184 |
    54|TIDL_ConvolutionLayer |ctx_output4/sep/relu_mbox_conf_perm | 0| 1| 1| 50 x x x x x x x | 54 | 1 512 16 16 | 1 12 16 16 | 14155776 |
    55|TIDL_ConvolutionLayer |ctx_output5/sep/relu_mbox_conf_perm | 0| 1| 1| 51 x x x x x x x | 55 | 1 512 8 8 | 1 16 8 8 | 4718592 |
    56|TIDL_FlattenLayer |ctx_output4/sep/relu_mbox_loc_flat | 0| 1| 1| 52 x x x x x x x | 56 | 1 24 16 16 | 1 1 1 6144 | 6144 |
    57|TIDL_FlattenLayer |ctx_output5/sep/relu_mbox_loc_flat | 0| 1| 1| 53 x x x x x x x | 57 | 1 32 8 8 | 1 1 1 2048 | 2048 |
    58|TIDL_FlattenLayer |ctx_output4/sep/relu_mbox_conf_flat | 0| 1| 1| 54 x x x x x x x | 58 | 1 12 16 16 | 1 1 1 3072 | 3072 |
    59|TIDL_FlattenLayer |ctx_output5/sep/relu_mbox_conf_flat | 0| 1| 1| 55 x x x x x x x | 59 | 1 16 8 8 | 1 1 1 1024 | 1024 |
    60|TIDL_ConcatLayer |mbox_loc | 0| 5| 1| 31 39 48 56 57 x x x | 60 | 1 1 1 16384 | 1 1 1 45056 | 45056 |
    61|TIDL_ConcatLayer |mbox_conf_flatten | 0| 5| 1| 32 40 49 58 59 x x x | 61 | 1 1 1 8192 | 1 1 1 22528 | 22528 |
    62|TIDL_DetectionOutputLayer |detection_out | 0| 2| 1| 60 61 x x x x x x | 62 | 1 1 1 45056 | 1 1 1 1404 | 0 |
    XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

    Observations:

    a) Layer-0: It has no such pixels glitches

    b) Layer-1 and Layer 2: It has a series of pixels glitches which is also found in the output image dumps of the model at Target side only.

     Note: These glitches of pixels in the output are not observed on PC Emulation and Import side, it is present only at Target side.

    Kindly help us to resolve the same.

    Thanks and Regards,

    Vyom Mishra

  • Dear Sir,

    Gentle Reminder!

    Thanks and Regards,

    Vyom Mishra

  • We want to update this thread with some information. Subhajit will post further.

  • Vyom Mishra,

    I remember responding to this thread on 14th Jun, but I cannot see my response right now.

    We have recently released a new SDK. Can you try to reproduce the issue on that?

    - Subhajit

  • Closing this tread due to inactivity