Tool/software: Code Composer Studio
Dear Sir,
I am using "tidl_j7_01_00_00_00" for Importing the "mobilenet model".
With reference to the previous post, we resolved the random box and Bounding box localization issue by changing the threshold and using the "quantizationstyle=3' instead of '2'.
But when we are trying to run the same model trained on "Padded input data" we are facing the huge mismatch in PC and target side results.
I have attached PC and target board output below for comparison:
PC
Target
Please find the import and inference config files attached:
modelType = 0 inputNetFile = "/home/sithara/ti/j7/psdk_rtos_auto_j7_06_01_00_15/tidl_j7_01_00_00_00/ti_dl/test/testvecs/models/mando/fvc/od/new_padded/deploy.prototxt" inputParamsFile = "/home/sithara/ti/j7/psdk_rtos_auto_j7_06_01_00_15/tidl_j7_01_00_00_00/ti_dl/test/testvecs/models/mando/fvc/od/new_padded/mob.caffemodel" outputNetFile = "/home/sithara/ti/j7/psdk_rtos_auto_j7_06_01_00_15/tidl_j7_01_00_00_00/ti_dl/test/testvecs/config/tidl_models/caffe/tidl_net_msi_mobilenet_pd_padded.bin" outputParamsFile = "/home/sithara/ti/j7/psdk_rtos_auto_j7_06_01_00_15/tidl_j7_01_00_00_00/ti_dl/test/testvecs/config/tidl_models/caffe/tidl_io_msi_mobilenet_pd_padded" numParamBits = 12 numFeatureBits = 12 quantizationStyle = 2 inDataFormat = 0 inElementType = 0 inWidth = 512 inHeight = 512 inNumChannels = 3 perfSimConfig = "../../test/testvecs/config/import/perfsim_base.cfg" inData = "/home/sithara/ti/j7/psdk_rtos_auto_j7_06_01_00_15/tidl_j7_01_00_00_00/ti_dl/test/testvecs/config/det.txt" numFrames = 100 postProcType = 2 inFileFormat = 2
inFileFormat = 2 postProcType = 2 numFrames = 1 padInBuffInTB = 1 netBinFile = "testvecs/config/tidl_models/caffe/tidl_net_msi_mobilenet_pd_padded.bin" ioConfigFile = "testvecs/config/tidl_models/caffe/tidl_io_msi_mobilenet_pd_padded1.bin" outData = "testvecs/output/msi_mobilenet.bin" inData = "testvecs/config/det.txt" debugTraceLevel = 1 writeTraceLevel = 0 numFrames = 22 writeOutput = 1
We have used "quantizationstyle=2' for this model as results for this quantization is better than of quantizationstyle=3.
Confidence threshold: 0.3( as it has better detection as compared to other thresholds)
Kindly help us to improve our target side results.
Note: Model trained on normal input has the results shared in the related post as "results.zip"
or please find here for your reference 0434.results.zip
Thanks and Regards,
Vyom Mishra