This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

BOOSTXL-3PHGANINV: Not getting anything on the output of the BOOSTXL-3PHGANINV, VA, VB, V

Part Number: BOOSTXL-3PHGANINV
Other Parts Discussed in Thread: C2000WARE

Tool/software:

HI I am trying to generate a 3 phase pwm signal with 120 degree phase difference, I am getting the 3 phase pwm signal 120 degree apart from the F28379D board on which the BOOSTXL-3PHGANINV is mouted by using the code attached, however, I am not getting anything on the inverter out VA, VB and VC, can someone help if there is anything wrong with my code or I am missing something. I applied a 12v battery across the inverte with no motr as i just want to see the current or voltage across the o/p terminals of the inverter.

//###########################################################################
//
// FILE:   main.c
//
// TITLE:  3-Phase PWM Generation for F28379D with BOOSTXL-3PhGaNInv
//
// DESCRIPTION: This code generates 3-phase PWM signals with 50% duty cycle
//              for the BOOSTXL-3PhGaNInv evaluation module using F28379D
//
//###########################################################################

#include "F28x_Project.h"

// Function Prototypes
void InitEPwm1(void);
void InitEPwm2(void);
void InitEPwm3(void);
void ConfigurePwmGpio(void);
void ConfigureADC(void);
interrupt void epwm1_isr(void);

// Global Variables
Uint16 EPwm1TimerIntCount;
Uint16 EPwm2TimerIntCount;
Uint16 EPwm3TimerIntCount;

// PWM Configuration Parameters
#define EPWM1_TIMER_TBPRD  2500  // PWM frequency = SYSCLK/(2*TBPRD) = 200MHz/(2*2500) = 40kHz
#define EPWM2_TIMER_TBPRD  2500  // Same period for all three phases
#define EPWM3_TIMER_TBPRD  2500

#define EPWM_CMP_UP        1875  // 75% duty cycle for demonstration
#define EPWM_CMP_DOWN      625   // 25% duty cycle for demonstration

// For 50% duty cycle, use TBPRD/2 = 1250

void main(void)
{
    // Initialize System Control:
    // PLL, WatchDog, enable Peripheral Clocks
    InitSysCtrl();

    // Initialize GPIO
    ConfigurePwmGpio();

    // Clear all interrupts and initialize PIE vector table:
    DINT;
    InitPieCtrl();
    IER = 0x0000;
    IFR = 0x0000;
    InitPieVectTable();

    // Map ISR functions to PIE vector table
    EALLOW;
    PieVectTable.EPWM1_INT = &epwm1_isr;
    EDIS;

    // Initialize PWM modules
    InitEPwm1();
    InitEPwm2();
    InitEPwm3();

    // Configure ADC for current sensing (optional)
    ConfigureADC();

    // Enable CPU INT3 which is connected to EPWM1-3 INT:
    IER |= M_INT3;

    // Enable EPWM INTn in the PIE: Group 3 interrupt 1-3
    PieCtrlRegs.PIEIER3.bit.INTx1 = 1;  // EPWM1
    PieCtrlRegs.PIEIER3.bit.INTx2 = 1;  // EPWM2
    PieCtrlRegs.PIEIER3.bit.INTx3 = 1;  // EPWM3

    // Enable global Interrupts and higher priority real-time debug events:
    EINT;
    ERTM;

    // Main loop
    for(;;)
    {
        // Background tasks can be added here
        __asm("    NOP");
    }
}

void ConfigurePwmGpio(void)
{
    EALLOW;

    // Configure GPIO pins for EPWM1A and EPWM1B (Phase A)
    GpioCtrlRegs.GPAMUX1.bit.GPIO0 = 1;    // GPIO0 = EPWM1A
    GpioCtrlRegs.GPAMUX1.bit.GPIO1 = 1;    // GPIO1 = EPWM1B

    // Configure GPIO pins for EPWM2A and EPWM2B (Phase B)
    GpioCtrlRegs.GPAMUX1.bit.GPIO2 = 1;    // GPIO2 = EPWM2A
    GpioCtrlRegs.GPAMUX1.bit.GPIO3 = 1;    // GPIO3 = EPWM2B

    // Configure GPIO pins for EPWM3A and EPWM3B (Phase C)
    GpioCtrlRegs.GPAMUX1.bit.GPIO4 = 1;    // GPIO4 = EPWM3A
    GpioCtrlRegs.GPAMUX1.bit.GPIO5 = 1;    // GPIO5 = EPWM3B

    // Configure PWM enable pin - GPIO22 (J1 Pin 3)
    GpioCtrlRegs.GPAMUX2.bit.GPIO22 = 0;   // GPIO mode
    GpioCtrlRegs.GPADIR.bit.GPIO22 = 1;    // Output
    GpioDataRegs.GPACLEAR.bit.GPIO22 = 1;  // Set LOW to enable (active low)

    EDIS;
}

void InitEPwm1(void)
{
    EALLOW;
    CpuSysRegs.PCLKCR2.bit.EPWM1 = 1;  // Enable EPWM1 clock
    EDIS;

    EPwm1Regs.TBPRD = EPWM1_TIMER_TBPRD;           // Set timer period
    EPwm1Regs.TBPHS.bit.TBPHS = 0x0000;            // Phase is 0
    EPwm1Regs.TBCTR = 0x0000;                      // Clear counter

    // Setup TBCLK
    EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Count up and down
    EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE;        // Disable phase loading
    EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;       // Clock ratio to SYSCLKOUT
    EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV1;

    EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;    // Load registers every ZERO
    EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
    EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
    EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;

    // Setup compare values for 50% duty cycle
    EPwm1Regs.CMPA.bit.CMPA = EPWM1_TIMER_TBPRD/2;     // 50% duty cycle
    EPwm1Regs.CMPB.bit.CMPB = EPWM1_TIMER_TBPRD/2;     // 50% duty cycle

    // Set actions
    EPwm1Regs.AQCTLA.bit.CAU = AQ_SET;            // Set PWM1A on Zero
    EPwm1Regs.AQCTLA.bit.CAD = AQ_CLEAR;          // Clear PWM1A on Compare A

    EPwm1Regs.AQCTLB.bit.CBU = AQ_CLEAR;          // Clear PWM1B on Zero
    EPwm1Regs.AQCTLB.bit.CBD = AQ_SET;            // Set PWM1B on Compare B

    // Configure deadband
    EPwm1Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE; // Enable Dead-band module
    EPwm1Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC;      // Active Hi complementary
    EPwm1Regs.DBCTL.bit.IN_MODE = DBA_ALL;         // EPWMxA is source for both delays
    EPwm1Regs.DBRED.bit.DBRED = 50;                // Rising edge delay = 50 TBCLK cycles
    EPwm1Regs.DBFED.bit.DBFED = 50;                // Falling edge delay = 50 TBCLK cycles

    // Interrupt where we will change the Compare Values
    EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO;      // Select INT on Zero event
    EPwm1Regs.ETSEL.bit.INTEN = 1;                 // Enable INT
    EPwm1Regs.ETPS.bit.INTPRD = ET_1ST;            // Generate INT on 1st event
}

void InitEPwm2(void)
{
    EALLOW;
    CpuSysRegs.PCLKCR2.bit.EPWM2 = 1;  // Enable EPWM2 clock
    EDIS;

    EPwm2Regs.TBPRD = EPWM2_TIMER_TBPRD;           // Set timer period
    EPwm2Regs.TBPHS.bit.TBPHS = 0x0000;            // Phase is 0
    EPwm2Regs.TBCTR = 0x0000;                      // Clear counter

    // Setup TBCLK
    EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Count up and down
    EPwm2Regs.TBCTL.bit.PHSEN = TB_ENABLE;         // Enable phase loading
    EPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;       // Clock ratio to SYSCLKOUT
    EPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV1;

    // Set phase shift for 120 degrees (Phase B)
    EPwm2Regs.TBPHS.bit.TBPHS = (EPWM2_TIMER_TBPRD * 2) / 3;  // 120 degree phase shift

    EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;    // Load registers every ZERO
    EPwm2Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
    EPwm2Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
    EPwm2Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;

    // Setup compare values for 50% duty cycle
    EPwm2Regs.CMPA.bit.CMPA = EPWM2_TIMER_TBPRD/2;     // 50% duty cycle
    EPwm2Regs.CMPB.bit.CMPB = EPWM2_TIMER_TBPRD/2;     // 50% duty cycle

    // Set actions (same as EPWM1)
    EPwm2Regs.AQCTLA.bit.CAU = AQ_SET;            // Set PWM2A on Zero
    EPwm2Regs.AQCTLA.bit.CAD = AQ_CLEAR;          // Clear PWM2A on Compare A

    EPwm2Regs.AQCTLB.bit.CBU = AQ_CLEAR;          // Clear PWM2B on Zero
    EPwm2Regs.AQCTLB.bit.CBD = AQ_SET;            // Set PWM2B on Compare B

    // Configure deadband (same as EPWM1)
    EPwm2Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE; // Enable Dead-band module
    EPwm2Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC;      // Active Hi complementary
    EPwm2Regs.DBCTL.bit.IN_MODE = DBA_ALL;         // EPWMxA is source for both delays
    EPwm2Regs.DBRED.bit.DBRED = 50;                // Rising edge delay
    EPwm2Regs.DBFED.bit.DBFED = 50;                // Falling edge delay
}

void InitEPwm3(void)
{
    EALLOW;
    CpuSysRegs.PCLKCR2.bit.EPWM3 = 1;  // Enable EPWM3 clock
    EDIS;

    EPwm3Regs.TBPRD = EPWM3_TIMER_TBPRD;           // Set timer period
    EPwm3Regs.TBPHS.bit.TBPHS = 0x0000;            // Phase is 0
    EPwm3Regs.TBCTR = 0x0000;                      // Clear counter

    // Setup TBCLK
    EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Count up and down
    EPwm3Regs.TBCTL.bit.PHSEN = TB_ENABLE;         // Enable phase loading
    EPwm3Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;       // Clock ratio to SYSCLKOUT
    EPwm3Regs.TBCTL.bit.CLKDIV = TB_DIV1;

    // Set phase shift for 240 degrees (Phase C)
    EPwm3Regs.TBPHS.bit.TBPHS = (EPWM3_TIMER_TBPRD * 4) / 3;  // 240 degree phase shift

    EPwm3Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;    // Load registers every ZERO
    EPwm3Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
    EPwm3Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
    EPwm3Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;

    // Setup compare values for 50% duty cycle
    EPwm3Regs.CMPA.bit.CMPA = EPWM3_TIMER_TBPRD/2;     // 50% duty cycle
    EPwm3Regs.CMPB.bit.CMPB = EPWM3_TIMER_TBPRD/2;     // 50% duty cycle

    // Set actions (same as EPWM1)
    EPwm3Regs.AQCTLA.bit.CAU = AQ_SET;            // Set PWM3A on Zero
    EPwm3Regs.AQCTLA.bit.CAD = AQ_CLEAR;          // Clear PWM3A on Compare A

    EPwm3Regs.AQCTLB.bit.CBU = AQ_CLEAR;          // Clear PWM3B on Zero
    EPwm3Regs.AQCTLB.bit.CBD = AQ_SET;            // Set PWM3B on Compare B

    // Configure deadband (same as EPWM1)
    EPwm3Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE; // Enable Dead-band module
    EPwm3Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC;      // Active Hi complementary
    EPwm3Regs.DBCTL.bit.IN_MODE = DBA_ALL;         // EPWMxA is source for both delays
    EPwm3Regs.DBRED.bit.DBRED = 50;                // Rising edge delay
    EPwm3Regs.DBFED.bit.DBFED = 50;                // Falling edge delay
}

void ConfigureADC(void)
{
    EALLOW;

    // Configure ADC-A for current sensing
    CpuSysRegs.PCLKCR13.bit.ADC_A = 1;  // Enable ADC-A clock

    // Configure ADC pins
    GpioCtrlRegs.GPAMUX1.bit.GPIO14 = 0;   // GPIO14 for IA (ADCINA2)
    GpioCtrlRegs.GPAMUX1.bit.GPIO15 = 0;   // GPIO15 for IB (ADCINA3)
    GpioCtrlRegs.GPAMUX2.bit.GPIO16 = 0;   // GPIO16 for IC (ADCINA4)

    GpioCtrlRegs.GPADIR.bit.GPIO14 = 0;    // Input
    GpioCtrlRegs.GPADIR.bit.GPIO15 = 0;    // Input
    GpioCtrlRegs.GPADIR.bit.GPIO16 = 0;    // Input

    GpioCtrlRegs.GPAQSEL1.bit.GPIO14 = 0;  // SYNC to SYSCLKOUT
    GpioCtrlRegs.GPAQSEL1.bit.GPIO15 = 0;  // SYNC to SYSCLKOUT
    GpioCtrlRegs.GPAQSEL2.bit.GPIO16 = 0;  // SYNC to SYSCLKOUT

    EDIS;

    // Initialize ADC without AdcSetMode (using manual configuration)
    AdcaRegs.ADCCTL2.bit.PRESCALE = 6;     // Set ADCCLK divider to /4
    AdcaRegs.ADCCTL2.bit.RESOLUTION = 0;   // 12-bit resolution
    AdcaRegs.ADCCTL2.bit.SIGNALMODE = 0;   // Single-ended mode

    // Power up the ADC
    AdcaRegs.ADCCTL1.bit.ADCPWDNZ = 1;

    // Delay for 1ms to allow ADC time to power up
    DELAY_US(1000);
}

// ISR for EPWM1
interrupt void epwm1_isr(void)
{
    EPwm1TimerIntCount++;

    // Clear INT flag for this timer
    EPwm1Regs.ETCLR.bit.INT = 1;

    // Acknowledge this interrupt to receive more interrupts from group 3
    PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
}

//===========================================================================
// End of file.
//===========================================================================