This thread has been locked.
If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.
Hello TI Forum
I am using yolov8 to perform object detection on TDA4VM, I am using edgeai tidl tools to obtain artifacts that can be ported using edgeai gst apps. But when I try to compile the model there are some issues:
Model dictionary:
{'yolov8' : {'artifacts_folder': '/home/mugu/edgeai-tidl-tools/model/', 'model_folder': '/home/mugu/edgeai-tidl-tools/model/', 'model_path': model_file_name, 'session_name': config['session_name']} , 'task_type' : model_type, 'target_device': 'pc', 'postprocess':{'data_layout' : layout }, 'preprocess' :{'data_layout' : layout , 'mean':config['mean'], 'scale':config['scale'], 'resize':640, 'crop':640 }
Contents in artifacts folder:
Issue:
Hi,
Due to limited bandwidth am unable to look into this thread at the moment.
I will try to circle back in 1 week.
Thank you for your patience.
HI Pratik
I could understand the issue from you side, kindly take your time and respond us back as soon as possible.
Thanks in advance
Hello Pratik
Any updates on this. I have uploaded the bin and some files produced during compilation in the zip, you can also find the model inside.
yolo.zip
thanks
Hi Ramaseshan,
I thought that the model has 3 operators that are not supported by TIDL. See the figure below:
-- Joy
Hello Joy Yang
I had put them on deny list and tried out the compilation, but I am facing a exception issue which I have mentioned in the starting, can you take a glance, and kindly try to look at our model, if there is an issue
Thanks in advance
Also I could find more number of subgraph created, can you guide as to solve that too, is there any tool to replace layers graphically?
Thank you
Hello Pratik Kedar
We have replaced unsupported ops of tidl with supported tidl layers, but still the compilation stops and crashes.
I have included the model link and logs for your reference.
Thanks!
mugu@mugu-ASUS:~/edgeai-tidl-tools$ python3 compile_model.py /home/mugu/edgeai-tidl-tools/last.onnx /home/mugu/edgeai-tidl-tools/test_data /home/mugu/edgeai-tidl-tools/model-artifacts/ Available execution providers : ['TIDLExecutionProvider', 'TIDLCompilationProvider', 'CPUExecutionProvider'] tidl_tools_path = /home/mugu/edgeai-tidl-tools/tidl_tools artifacts_folder = /home/mugu/edgeai-tidl-tools/model-artifacts/tidl_output tidl_tensor_bits = 8 debug_level = 3 num_tidl_subgraphs = 16 tidl_denylist = tidl_denylist_layer_name = tidl_denylist_layer_type = tidl_allowlist_layer_name = model_type = tidl_calibration_accuracy_level = 7 tidl_calibration_options:num_frames_calibration = 21 tidl_calibration_options:bias_calibration_iterations = 5 mixed_precision_factor = -1.000000 model_group_id = 0 power_of_2_quantization = 2 ONNX QDQ Enabled = 0 enable_high_resolution_optimization = 0 pre_batchnorm_fold = 1 add_data_convert_ops = 0 output_feature_16bit_names_list = m_params_16bit_names_list = reserved_compile_constraints_flag = 1601 ti_internal_reserved_1 = ****** WARNING : Network not identified as Object Detection network : (1) Ignore if network is not Object Detection network (2) If network is Object Detection network, please specify "model_type":"OD" as part of OSRT compilation options****** Supported TIDL layer type --- Conv -- /model.0/conv/Conv Supported TIDL layer type --- Relu -- /model.0/act/Relu Supported TIDL layer type --- Conv -- /model.1/conv/Conv Supported TIDL layer type --- Relu -- /model.1/act/Relu Supported TIDL layer type --- Conv -- /model.2/cv1/conv/Conv Supported TIDL layer type --- Relu -- /model.2/cv1/act/Relu Supported TIDL layer type --- Split -- /model.2/Split Supported TIDL layer type --- Conv -- /model.2/m.0/cv1/conv/Conv Supported TIDL layer type --- Relu -- /model.2/m.0/cv1/act/Relu Supported TIDL layer type --- Conv -- /model.2/m.0/cv2/conv/Conv Supported TIDL layer type --- Relu -- /model.2/m.0/cv2/act/Relu Supported TIDL layer type --- Add -- /model.2/m.0/Add Supported TIDL layer type --- Concat -- /model.2/Concat Supported TIDL layer type --- Conv -- /model.2/cv2/conv/Conv Supported TIDL layer type --- Relu -- /model.2/cv2/act/Relu Supported TIDL layer type --- Conv -- /model.3/conv/Conv Supported TIDL layer type --- Relu -- /model.3/act/Relu Supported TIDL layer type --- Conv -- /model.4/cv1/conv/Conv Supported TIDL layer type --- Relu -- /model.4/cv1/act/Relu Supported TIDL layer type --- Split -- /model.4/Split Supported TIDL layer type --- Conv -- /model.4/m.0/cv1/conv/Conv Supported TIDL layer type --- Relu -- /model.4/m.0/cv1/act/Relu Supported TIDL layer type --- Conv -- /model.4/m.0/cv2/conv/Conv Supported TIDL layer type --- Relu -- /model.4/m.0/cv2/act/Relu Supported TIDL layer type --- Add -- /model.4/m.0/Add Supported TIDL layer type --- Conv -- /model.4/m.1/cv1/conv/Conv Supported TIDL layer type --- Relu -- /model.4/m.1/cv1/act/Relu Supported TIDL layer type --- Conv -- /model.4/m.1/cv2/conv/Conv Supported TIDL layer type --- Relu -- /model.4/m.1/cv2/act/Relu Supported TIDL layer type --- Add -- /model.4/m.1/Add Supported TIDL layer type --- Concat -- /model.4/Concat Supported TIDL layer type --- Conv -- /model.4/cv2/conv/Conv Supported TIDL layer type --- Relu -- /model.4/cv2/act/Relu Supported TIDL layer type --- Conv -- /model.5/conv/Conv Supported TIDL layer type --- Relu -- /model.5/act/Relu Supported TIDL layer type --- Conv -- /model.6/cv1/conv/Conv Supported TIDL layer type --- Relu -- /model.6/cv1/act/Relu Supported TIDL layer type --- Split -- /model.6/Split Supported TIDL layer type --- Conv -- /model.6/m.0/cv1/conv/Conv Supported TIDL layer type --- Relu -- /model.6/m.0/cv1/act/Relu Supported TIDL layer type --- Conv -- /model.6/m.0/cv2/conv/Conv Supported TIDL layer type --- Relu -- /model.6/m.0/cv2/act/Relu Supported TIDL layer type --- Add -- /model.6/m.0/Add Supported TIDL layer type --- Conv -- /model.6/m.1/cv1/conv/Conv Supported TIDL layer type --- Relu -- /model.6/m.1/cv1/act/Relu Supported TIDL layer type --- Conv -- /model.6/m.1/cv2/conv/Conv Supported TIDL layer type --- Relu -- /model.6/m.1/cv2/act/Relu Supported TIDL layer type --- Add -- /model.6/m.1/Add Supported TIDL layer type --- Concat -- /model.6/Concat Supported TIDL layer type --- Conv -- /model.6/cv2/conv/Conv Supported TIDL layer type --- Relu -- /model.6/cv2/act/Relu Supported TIDL layer type --- Conv -- /model.7/conv/Conv Supported TIDL layer type --- Relu -- /model.7/act/Relu Supported TIDL layer type --- Conv -- /model.8/cv1/conv/Conv Supported TIDL layer type --- Relu -- /model.8/cv1/act/Relu Supported TIDL layer type --- Split -- /model.8/Split Supported TIDL layer type --- Conv -- /model.8/m.0/cv1/conv/Conv Supported TIDL layer type --- Relu -- /model.8/m.0/cv1/act/Relu Supported TIDL layer type --- Conv -- /model.8/m.0/cv2/conv/Conv Supported TIDL layer type --- Relu -- /model.8/m.0/cv2/act/Relu Supported TIDL layer type --- Add -- /model.8/m.0/Add Supported TIDL layer type --- Concat -- /model.8/Concat Supported TIDL layer type --- Conv -- /model.8/cv2/conv/Conv Supported TIDL layer type --- Relu -- /model.8/cv2/act/Relu Supported TIDL layer type --- Conv -- /model.9/cv1/conv/Conv Supported TIDL layer type --- Relu -- /model.9/cv1/act/Relu Supported TIDL layer type --- MaxPool -- /model.9/m/MaxPool Supported TIDL layer type --- MaxPool -- /model.9/m_1/MaxPool Supported TIDL layer type --- MaxPool -- /model.9/m_2/MaxPool Supported TIDL layer type --- Concat -- /model.9/Concat Supported TIDL layer type --- Conv -- /model.9/cv2/conv/Conv Supported TIDL layer type --- Relu -- /model.9/cv2/act/Relu Supported TIDL layer type --- Resize -- /model.10/Resize Supported TIDL layer type --- Concat -- /model.11/Concat Supported TIDL layer type --- Conv -- /model.12/cv1/conv/Conv Supported TIDL layer type --- Relu -- /model.12/cv1/act/Relu Supported TIDL layer type --- Split -- /model.12/Split Supported TIDL layer type --- Conv -- /model.12/m.0/cv1/conv/Conv Supported TIDL layer type --- Relu -- /model.12/m.0/cv1/act/Relu Supported TIDL layer type --- Conv -- /model.12/m.0/cv2/conv/Conv Supported TIDL layer type --- Relu -- /model.12/m.0/cv2/act/Relu Supported TIDL layer type --- Concat -- /model.12/Concat Supported TIDL layer type --- Conv -- /model.12/cv2/conv/Conv Supported TIDL layer type --- Relu -- /model.12/cv2/act/Relu Supported TIDL layer type --- Resize -- /model.13/Resize Supported TIDL layer type --- Concat -- /model.14/Concat Supported TIDL layer type --- Conv -- /model.15/cv1/conv/Conv Supported TIDL layer type --- Relu -- /model.15/cv1/act/Relu Supported TIDL layer type --- Split -- /model.15/Split Supported TIDL layer type --- Conv -- /model.15/m.0/cv1/conv/Conv Supported TIDL layer type --- Relu -- /model.15/m.0/cv1/act/Relu Supported TIDL layer type --- Conv -- /model.15/m.0/cv2/conv/Conv Supported TIDL layer type --- Relu -- /model.15/m.0/cv2/act/Relu Supported TIDL layer type --- Concat -- /model.15/Concat Supported TIDL layer type --- Conv -- /model.15/cv2/conv/Conv Supported TIDL layer type --- Relu -- /model.15/cv2/act/Relu Supported TIDL layer type --- Conv -- /model.16/conv/Conv Supported TIDL layer type --- Relu -- /model.16/act/Relu Supported TIDL layer type --- Concat -- /model.17/Concat Supported TIDL layer type --- Conv -- /model.18/cv1/conv/Conv Supported TIDL layer type --- Relu -- /model.18/cv1/act/Relu Supported TIDL layer type --- Split -- /model.18/Split Supported TIDL layer type --- Conv -- /model.18/m.0/cv1/conv/Conv Supported TIDL layer type --- Relu -- /model.18/m.0/cv1/act/Relu Supported TIDL layer type --- Conv -- /model.18/m.0/cv2/conv/Conv Supported TIDL layer type --- Relu -- /model.18/m.0/cv2/act/Relu Supported TIDL layer type --- Concat -- /model.18/Concat Supported TIDL layer type --- Conv -- /model.18/cv2/conv/Conv Supported TIDL layer type --- Relu -- /model.18/cv2/act/Relu Supported TIDL layer type --- Conv -- /model.19/conv/Conv Supported TIDL layer type --- Relu -- /model.19/act/Relu Supported TIDL layer type --- Concat -- /model.20/Concat Supported TIDL layer type --- Conv -- /model.21/cv1/conv/Conv Supported TIDL layer type --- Relu -- /model.21/cv1/act/Relu Supported TIDL layer type --- Split -- /model.21/Split Supported TIDL layer type --- Conv -- /model.21/m.0/cv1/conv/Conv Supported TIDL layer type --- Relu -- /model.21/m.0/cv1/act/Relu Supported TIDL layer type --- Conv -- /model.21/m.0/cv2/conv/Conv Supported TIDL layer type --- Relu -- /model.21/m.0/cv2/act/Relu Supported TIDL layer type --- Concat -- /model.21/Concat Supported TIDL layer type --- Conv -- /model.21/cv2/conv/Conv Supported TIDL layer type --- Relu -- /model.21/cv2/act/Relu Supported TIDL layer type --- Conv -- /model.22/cv3.2/cv3.2.0/conv/Conv Supported TIDL layer type --- Relu -- /model.22/cv3.2/cv3.2.0/act/Relu Supported TIDL layer type --- Conv -- /model.22/cv3.2/cv3.2.1/conv/Conv Supported TIDL layer type --- Relu -- /model.22/cv3.2/cv3.2.1/act/Relu Supported TIDL layer type --- Conv -- /model.22/cv3.2/cv3.2.2/Conv Supported TIDL layer type --- Conv -- /model.22/cv2.2/cv2.2.0/conv/Conv Supported TIDL layer type --- Relu -- /model.22/cv2.2/cv2.2.0/act/Relu Supported TIDL layer type --- Conv -- /model.22/cv2.2/cv2.2.1/conv/Conv Supported TIDL layer type --- Relu -- /model.22/cv2.2/cv2.2.1/act/Relu Supported TIDL layer type --- Conv -- /model.22/cv2.2/cv2.2.2/Conv Supported TIDL layer type --- Concat -- /model.22/Concat_2 Supported TIDL layer type --- Reshape -- /model.22/Reshape_2 Supported TIDL layer type --- Conv -- /model.22/cv3.1/cv3.1.0/conv/Conv Supported TIDL layer type --- Relu -- /model.22/cv3.1/cv3.1.0/act/Relu Supported TIDL layer type --- Conv -- /model.22/cv3.1/cv3.1.1/conv/Conv Supported TIDL layer type --- Relu -- /model.22/cv3.1/cv3.1.1/act/Relu Supported TIDL layer type --- Conv -- /model.22/cv3.1/cv3.1.2/Conv Supported TIDL layer type --- Conv -- /model.22/cv2.1/cv2.1.0/conv/Conv Supported TIDL layer type --- Relu -- /model.22/cv2.1/cv2.1.0/act/Relu Supported TIDL layer type --- Conv -- /model.22/cv2.1/cv2.1.1/conv/Conv Supported TIDL layer type --- Relu -- /model.22/cv2.1/cv2.1.1/act/Relu Supported TIDL layer type --- Conv -- /model.22/cv2.1/cv2.1.2/Conv Supported TIDL layer type --- Concat -- /model.22/Concat_1 Supported TIDL layer type --- Reshape -- /model.22/Reshape_1 Supported TIDL layer type --- Conv -- /model.22/cv3.0/cv3.0.0/conv/Conv Supported TIDL layer type --- Relu -- /model.22/cv3.0/cv3.0.0/act/Relu Supported TIDL layer type --- Conv -- /model.22/cv3.0/cv3.0.1/conv/Conv Supported TIDL layer type --- Relu -- /model.22/cv3.0/cv3.0.1/act/Relu Supported TIDL layer type --- Conv -- /model.22/cv3.0/cv3.0.2/Conv Supported TIDL layer type --- Conv -- /model.22/cv2.0/cv2.0.0/conv/Conv Supported TIDL layer type --- Relu -- /model.22/cv2.0/cv2.0.0/act/Relu Supported TIDL layer type --- Conv -- /model.22/cv2.0/cv2.0.1/conv/Conv Supported TIDL layer type --- Relu -- /model.22/cv2.0/cv2.0.1/act/Relu Supported TIDL layer type --- Conv -- /model.22/cv2.0/cv2.0.2/Conv Supported TIDL layer type --- Concat -- /model.22/Concat Supported TIDL layer type --- Reshape -- /model.22/Reshape Supported TIDL layer type --- Concat -- /model.22/Concat_3 Supported TIDL layer type --- Split -- /model.22/Split Supported TIDL layer type --- Sigmoid -- /model.22/Sigmoid Supported TIDL layer type --- Reshape -- /model.22/dfl/Reshape Supported TIDL layer type --- Transpose -- /model.22/dfl/Transpose Supported TIDL layer type --- Softmax -- /model.22/dfl/Softmax Supported TIDL layer type --- Transpose -- /model.22/dfl/Transpose_1 Supported TIDL layer type --- Conv -- /model.22/dfl/conv/Conv Supported TIDL layer type --- Reshape -- /model.22/dfl/Reshape_1 Supported TIDL layer type --- Slice -- /model.22/Slice_1 Supported TIDL layer type --- Add -- /model.22/Add_1 Supported TIDL layer type --- Slice -- /model.22/Slice Supported TIDL layer type --- Sub -- /model.22/Sub Supported TIDL layer type --- Sub -- /model.22/Sub_1 Supported TIDL layer type --- Add -- /model.22/Add_2 Supported TIDL layer type --- Div -- /model.22/Div_1 Supported TIDL layer type --- Concat -- /model.22/Concat_4 Supported TIDL layer type --- Mul -- /model.22/Mul_2 Supported TIDL layer type --- Concat -- /model.22/Concat_5 Preliminary subgraphs created = 1 Final number of subgraphs created are : 1, - Offloaded Nodes - 177, Total Nodes - 177 INFORMATION -- [TIDL_ResizeLayer] Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize. INFORMATION -- [TIDL_ResizeLayer] Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize. Running runtimes graphviz - /home/mugu/edgeai-tidl-tools/tidl_tools/tidl_graphVisualiser_runtimes.out /home/mugu/edgeai-tidl-tools/model-artifacts/tidl_output/allowedNode.txt /home/mugu/edgeai-tidl-tools/model-artifacts/tidl_output/tempDir/graphvizInfo.txt /home/mugu/edgeai-tidl-tools/model-artifacts/tidl_output/tempDir/runtimes_visualization.svg *** In TIDL_createStateImportFunc *** Compute on node : TIDLExecutionProvider_TIDL_0_0 0, Conv, 3, 1, images, /model.0/conv/Conv_output_0 1, Relu, 1, 1, /model.0/conv/Conv_output_0, /model.0/act/Relu_output_0 2, Conv, 3, 1, /model.0/act/Relu_output_0, /model.1/conv/Conv_output_0 3, Relu, 1, 1, /model.1/conv/Conv_output_0, /model.1/act/Relu_output_0 4, Conv, 3, 1, /model.1/act/Relu_output_0, /model.2/cv1/conv/Conv_output_0 5, Relu, 1, 1, /model.2/cv1/conv/Conv_output_0, /model.2/cv1/act/Relu_output_0 6, Split, 1, 2, /model.2/cv1/act/Relu_output_0, /model.2/Split_output_0 7, Conv, 3, 1, /model.2/Split_output_1, /model.2/m.0/cv1/conv/Conv_output_0 8, Relu, 1, 1, /model.2/m.0/cv1/conv/Conv_output_0, /model.2/m.0/cv1/act/Relu_output_0 9, Conv, 3, 1, /model.2/m.0/cv1/act/Relu_output_0, /model.2/m.0/cv2/conv/Conv_output_0 10, Relu, 1, 1, /model.2/m.0/cv2/conv/Conv_output_0, /model.2/m.0/cv2/act/Relu_output_0 11, Add, 2, 1, /model.2/Split_output_1, /model.2/m.0/Add_output_0 12, Concat, 3, 1, /model.2/Split_output_0, /model.2/Concat_output_0 13, Conv, 3, 1, /model.2/Concat_output_0, /model.2/cv2/conv/Conv_output_0 14, Relu, 1, 1, /model.2/cv2/conv/Conv_output_0, /model.2/cv2/act/Relu_output_0 15, Conv, 3, 1, /model.2/cv2/act/Relu_output_0, /model.3/conv/Conv_output_0 16, Relu, 1, 1, /model.3/conv/Conv_output_0, /model.3/act/Relu_output_0 17, Conv, 3, 1, /model.3/act/Relu_output_0, /model.4/cv1/conv/Conv_output_0 18, Relu, 1, 1, /model.4/cv1/conv/Conv_output_0, /model.4/cv1/act/Relu_output_0 19, Split, 1, 2, /model.4/cv1/act/Relu_output_0, /model.4/Split_output_0 20, Conv, 3, 1, /model.4/Split_output_1, /model.4/m.0/cv1/conv/Conv_output_0 21, Relu, 1, 1, /model.4/m.0/cv1/conv/Conv_output_0, /model.4/m.0/cv1/act/Relu_output_0 22, Conv, 3, 1, /model.4/m.0/cv1/act/Relu_output_0, /model.4/m.0/cv2/conv/Conv_output_0 23, Relu, 1, 1, /model.4/m.0/cv2/conv/Conv_output_0, /model.4/m.0/cv2/act/Relu_output_0 24, Add, 2, 1, /model.4/Split_output_1, /model.4/m.0/Add_output_0 25, Conv, 3, 1, /model.4/m.0/Add_output_0, /model.4/m.1/cv1/conv/Conv_output_0 26, Relu, 1, 1, /model.4/m.1/cv1/conv/Conv_output_0, /model.4/m.1/cv1/act/Relu_output_0 27, Conv, 3, 1, /model.4/m.1/cv1/act/Relu_output_0, /model.4/m.1/cv2/conv/Conv_output_0 28, Relu, 1, 1, /model.4/m.1/cv2/conv/Conv_output_0, /model.4/m.1/cv2/act/Relu_output_0 29, Add, 2, 1, /model.4/m.0/Add_output_0, /model.4/m.1/Add_output_0 30, Concat, 4, 1, /model.4/Split_output_0, /model.4/Concat_output_0 31, Conv, 3, 1, /model.4/Concat_output_0, /model.4/cv2/conv/Conv_output_0 32, Relu, 1, 1, /model.4/cv2/conv/Conv_output_0, /model.4/cv2/act/Relu_output_0 33, Conv, 3, 1, /model.4/cv2/act/Relu_output_0, /model.5/conv/Conv_output_0 34, Relu, 1, 1, /model.5/conv/Conv_output_0, /model.5/act/Relu_output_0 35, Conv, 3, 1, /model.5/act/Relu_output_0, /model.6/cv1/conv/Conv_output_0 36, Relu, 1, 1, /model.6/cv1/conv/Conv_output_0, /model.6/cv1/act/Relu_output_0 37, Split, 1, 2, /model.6/cv1/act/Relu_output_0, /model.6/Split_output_0 38, Conv, 3, 1, /model.6/Split_output_1, /model.6/m.0/cv1/conv/Conv_output_0 39, Relu, 1, 1, /model.6/m.0/cv1/conv/Conv_output_0, /model.6/m.0/cv1/act/Relu_output_0 40, Conv, 3, 1, /model.6/m.0/cv1/act/Relu_output_0, /model.6/m.0/cv2/conv/Conv_output_0 41, Relu, 1, 1, /model.6/m.0/cv2/conv/Conv_output_0, /model.6/m.0/cv2/act/Relu_output_0 42, Add, 2, 1, /model.6/Split_output_1, /model.6/m.0/Add_output_0 43, Conv, 3, 1, /model.6/m.0/Add_output_0, /model.6/m.1/cv1/conv/Conv_output_0 44, Relu, 1, 1, /model.6/m.1/cv1/conv/Conv_output_0, /model.6/m.1/cv1/act/Relu_output_0 45, Conv, 3, 1, /model.6/m.1/cv1/act/Relu_output_0, /model.6/m.1/cv2/conv/Conv_output_0 46, Relu, 1, 1, /model.6/m.1/cv2/conv/Conv_output_0, /model.6/m.1/cv2/act/Relu_output_0 47, Add, 2, 1, /model.6/m.0/Add_output_0, /model.6/m.1/Add_output_0 48, Concat, 4, 1, /model.6/Split_output_0, /model.6/Concat_output_0 49, Conv, 3, 1, /model.6/Concat_output_0, /model.6/cv2/conv/Conv_output_0 50, Relu, 1, 1, /model.6/cv2/conv/Conv_output_0, /model.6/cv2/act/Relu_output_0 51, Conv, 3, 1, /model.6/cv2/act/Relu_output_0, /model.7/conv/Conv_output_0 52, Relu, 1, 1, /model.7/conv/Conv_output_0, /model.7/act/Relu_output_0 53, Conv, 3, 1, /model.7/act/Relu_output_0, /model.8/cv1/conv/Conv_output_0 54, Relu, 1, 1, /model.8/cv1/conv/Conv_output_0, /model.8/cv1/act/Relu_output_0 55, Split, 1, 2, /model.8/cv1/act/Relu_output_0, /model.8/Split_output_0 56, Conv, 3, 1, /model.8/Split_output_1, /model.8/m.0/cv1/conv/Conv_output_0 57, Relu, 1, 1, /model.8/m.0/cv1/conv/Conv_output_0, /model.8/m.0/cv1/act/Relu_output_0 58, Conv, 3, 1, /model.8/m.0/cv1/act/Relu_output_0, /model.8/m.0/cv2/conv/Conv_output_0 59, Relu, 1, 1, /model.8/m.0/cv2/conv/Conv_output_0, /model.8/m.0/cv2/act/Relu_output_0 60, Add, 2, 1, /model.8/Split_output_1, /model.8/m.0/Add_output_0 61, Concat, 3, 1, /model.8/Split_output_0, /model.8/Concat_output_0 62, Conv, 3, 1, /model.8/Concat_output_0, /model.8/cv2/conv/Conv_output_0 63, Relu, 1, 1, /model.8/cv2/conv/Conv_output_0, /model.8/cv2/act/Relu_output_0 64, Conv, 3, 1, /model.8/cv2/act/Relu_output_0, /model.9/cv1/conv/Conv_output_0 65, Relu, 1, 1, /model.9/cv1/conv/Conv_output_0, /model.9/cv1/act/Relu_output_0 66, MaxPool, 1, 1, /model.9/cv1/act/Relu_output_0, /model.9/m/MaxPool_output_0 67, MaxPool, 1, 1, /model.9/m/MaxPool_output_0, /model.9/m_1/MaxPool_output_0 68, MaxPool, 1, 1, /model.9/m_1/MaxPool_output_0, /model.9/m_2/MaxPool_output_0 69, Concat, 4, 1, /model.9/cv1/act/Relu_output_0, /model.9/Concat_output_0 70, Conv, 3, 1, /model.9/Concat_output_0, /model.9/cv2/conv/Conv_output_0 71, Relu, 1, 1, /model.9/cv2/conv/Conv_output_0, /model.9/cv2/act/Relu_output_0 72, Resize, 3, 1, /model.9/cv2/act/Relu_output_0, /model.10/Resize_output_0 73, Concat, 2, 1, /model.10/Resize_output_0, /model.11/Concat_output_0 74, Conv, 3, 1, /model.11/Concat_output_0, /model.12/cv1/conv/Conv_output_0 75, Relu, 1, 1, /model.12/cv1/conv/Conv_output_0, /model.12/cv1/act/Relu_output_0 76, Split, 1, 2, /model.12/cv1/act/Relu_output_0, /model.12/Split_output_0 77, Conv, 3, 1, /model.12/Split_output_1, /model.12/m.0/cv1/conv/Conv_output_0 78, Relu, 1, 1, /model.12/m.0/cv1/conv/Conv_output_0, /model.12/m.0/cv1/act/Relu_output_0 79, Conv, 3, 1, /model.12/m.0/cv1/act/Relu_output_0, /model.12/m.0/cv2/conv/Conv_output_0 80, Relu, 1, 1, /model.12/m.0/cv2/conv/Conv_output_0, /model.12/m.0/cv2/act/Relu_output_0 81, Concat, 3, 1, /model.12/Split_output_0, /model.12/Concat_output_0 82, Conv, 3, 1, /model.12/Concat_output_0, /model.12/cv2/conv/Conv_output_0 83, Relu, 1, 1, /model.12/cv2/conv/Conv_output_0, /model.12/cv2/act/Relu_output_0 84, Resize, 3, 1, /model.12/cv2/act/Relu_output_0, /model.13/Resize_output_0 85, Concat, 2, 1, /model.13/Resize_output_0, /model.14/Concat_output_0 86, Conv, 3, 1, /model.14/Concat_output_0, /model.15/cv1/conv/Conv_output_0 87, Relu, 1, 1, /model.15/cv1/conv/Conv_output_0, /model.15/cv1/act/Relu_output_0 88, Split, 1, 2, /model.15/cv1/act/Relu_output_0, /model.15/Split_output_0 89, Conv, 3, 1, /model.15/Split_output_1, /model.15/m.0/cv1/conv/Conv_output_0 90, Relu, 1, 1, /model.15/m.0/cv1/conv/Conv_output_0, /model.15/m.0/cv1/act/Relu_output_0 91, Conv, 3, 1, /model.15/m.0/cv1/act/Relu_output_0, /model.15/m.0/cv2/conv/Conv_output_0 92, Relu, 1, 1, /model.15/m.0/cv2/conv/Conv_output_0, /model.15/m.0/cv2/act/Relu_output_0 93, Concat, 3, 1, /model.15/Split_output_0, /model.15/Concat_output_0 94, Conv, 3, 1, /model.15/Concat_output_0, /model.15/cv2/conv/Conv_output_0 95, Relu, 1, 1, /model.15/cv2/conv/Conv_output_0, /model.15/cv2/act/Relu_output_0 96, Conv, 3, 1, /model.15/cv2/act/Relu_output_0, /model.22/cv2.0/cv2.0.0/conv/Conv_output_0 97, Relu, 1, 1, /model.22/cv2.0/cv2.0.0/conv/Conv_output_0, /model.22/cv2.0/cv2.0.0/act/Relu_output_0 98, Conv, 3, 1, /model.22/cv2.0/cv2.0.0/act/Relu_output_0, /model.22/cv2.0/cv2.0.1/conv/Conv_output_0 99, Relu, 1, 1, /model.22/cv2.0/cv2.0.1/conv/Conv_output_0, /model.22/cv2.0/cv2.0.1/act/Relu_output_0 100, Conv, 3, 1, /model.22/cv2.0/cv2.0.1/act/Relu_output_0, /model.22/cv2.0/cv2.0.2/Conv_output_0 101, Conv, 3, 1, /model.15/cv2/act/Relu_output_0, /model.22/cv3.0/cv3.0.0/conv/Conv_output_0 102, Relu, 1, 1, /model.22/cv3.0/cv3.0.0/conv/Conv_output_0, /model.22/cv3.0/cv3.0.0/act/Relu_output_0 103, Conv, 3, 1, /model.22/cv3.0/cv3.0.0/act/Relu_output_0, /model.22/cv3.0/cv3.0.1/conv/Conv_output_0 104, Relu, 1, 1, /model.22/cv3.0/cv3.0.1/conv/Conv_output_0, /model.22/cv3.0/cv3.0.1/act/Relu_output_0 105, Conv, 3, 1, /model.22/cv3.0/cv3.0.1/act/Relu_output_0, /model.22/cv3.0/cv3.0.2/Conv_output_0 106, Concat, 2, 1, /model.22/cv2.0/cv2.0.2/Conv_output_0, /model.22/Concat_output_0 107, Reshape, 2, 1, /model.22/Concat_output_0, /model.22/Reshape_output_0 108, Conv, 3, 1, /model.15/cv2/act/Relu_output_0, /model.16/conv/Conv_output_0 109, Relu, 1, 1, /model.16/conv/Conv_output_0, /model.16/act/Relu_output_0 110, Concat, 2, 1, /model.16/act/Relu_output_0, /model.17/Concat_output_0 111, Conv, 3, 1, /model.17/Concat_output_0, /model.18/cv1/conv/Conv_output_0 112, Relu, 1, 1, /model.18/cv1/conv/Conv_output_0, /model.18/cv1/act/Relu_output_0 113, Split, 1, 2, /model.18/cv1/act/Relu_output_0, /model.18/Split_output_0 114, Conv, 3, 1, /model.18/Split_output_1, /model.18/m.0/cv1/conv/Conv_output_0 115, Relu, 1, 1, /model.18/m.0/cv1/conv/Conv_output_0, /model.18/m.0/cv1/act/Relu_output_0 116, Conv, 3, 1, /model.18/m.0/cv1/act/Relu_output_0, /model.18/m.0/cv2/conv/Conv_output_0 117, Relu, 1, 1, /model.18/m.0/cv2/conv/Conv_output_0, /model.18/m.0/cv2/act/Relu_output_0 118, Concat, 3, 1, /model.18/Split_output_0, /model.18/Concat_output_0 119, Conv, 3, 1, /model.18/Concat_output_0, /model.18/cv2/conv/Conv_output_0 120, Relu, 1, 1, /model.18/cv2/conv/Conv_output_0, /model.18/cv2/act/Relu_output_0 121, Conv, 3, 1, /model.18/cv2/act/Relu_output_0, /model.22/cv2.1/cv2.1.0/conv/Conv_output_0 122, Relu, 1, 1, /model.22/cv2.1/cv2.1.0/conv/Conv_output_0, /model.22/cv2.1/cv2.1.0/act/Relu_output_0 123, Conv, 3, 1, /model.22/cv2.1/cv2.1.0/act/Relu_output_0, /model.22/cv2.1/cv2.1.1/conv/Conv_output_0 124, Relu, 1, 1, /model.22/cv2.1/cv2.1.1/conv/Conv_output_0, /model.22/cv2.1/cv2.1.1/act/Relu_output_0 125, Conv, 3, 1, /model.22/cv2.1/cv2.1.1/act/Relu_output_0, /model.22/cv2.1/cv2.1.2/Conv_output_0 126, Conv, 3, 1, /model.18/cv2/act/Relu_output_0, /model.22/cv3.1/cv3.1.0/conv/Conv_output_0 127, Relu, 1, 1, /model.22/cv3.1/cv3.1.0/conv/Conv_output_0, /model.22/cv3.1/cv3.1.0/act/Relu_output_0 128, Conv, 3, 1, /model.22/cv3.1/cv3.1.0/act/Relu_output_0, /model.22/cv3.1/cv3.1.1/conv/Conv_output_0 129, Relu, 1, 1, /model.22/cv3.1/cv3.1.1/conv/Conv_output_0, /model.22/cv3.1/cv3.1.1/act/Relu_output_0 130, Conv, 3, 1, /model.22/cv3.1/cv3.1.1/act/Relu_output_0, /model.22/cv3.1/cv3.1.2/Conv_output_0 131, Concat, 2, 1, /model.22/cv2.1/cv2.1.2/Conv_output_0, /model.22/Concat_1_output_0 132, Reshape, 2, 1, /model.22/Concat_1_output_0, /model.22/Reshape_1_output_0 133, Conv, 3, 1, /model.18/cv2/act/Relu_output_0, /model.19/conv/Conv_output_0 134, Relu, 1, 1, /model.19/conv/Conv_output_0, /model.19/act/Relu_output_0 135, Concat, 2, 1, /model.19/act/Relu_output_0, /model.20/Concat_output_0 136, Conv, 3, 1, /model.20/Concat_output_0, /model.21/cv1/conv/Conv_output_0 137, Relu, 1, 1, /model.21/cv1/conv/Conv_output_0, /model.21/cv1/act/Relu_output_0 138, Split, 1, 2, /model.21/cv1/act/Relu_output_0, /model.21/Split_output_0 139, Conv, 3, 1, /model.21/Split_output_1, /model.21/m.0/cv1/conv/Conv_output_0 140, Relu, 1, 1, /model.21/m.0/cv1/conv/Conv_output_0, /model.21/m.0/cv1/act/Relu_output_0 141, Conv, 3, 1, /model.21/m.0/cv1/act/Relu_output_0, /model.21/m.0/cv2/conv/Conv_output_0 142, Relu, 1, 1, /model.21/m.0/cv2/conv/Conv_output_0, /model.21/m.0/cv2/act/Relu_output_0 143, Concat, 3, 1, /model.21/Split_output_0, /model.21/Concat_output_0 144, Conv, 3, 1, /model.21/Concat_output_0, /model.21/cv2/conv/Conv_output_0 145, Relu, 1, 1, /model.21/cv2/conv/Conv_output_0, /model.21/cv2/act/Relu_output_0 146, Conv, 3, 1, /model.21/cv2/act/Relu_output_0, /model.22/cv2.2/cv2.2.0/conv/Conv_output_0 147, Relu, 1, 1, /model.22/cv2.2/cv2.2.0/conv/Conv_output_0, /model.22/cv2.2/cv2.2.0/act/Relu_output_0 148, Conv, 3, 1, /model.22/cv2.2/cv2.2.0/act/Relu_output_0, /model.22/cv2.2/cv2.2.1/conv/Conv_output_0 149, Relu, 1, 1, /model.22/cv2.2/cv2.2.1/conv/Conv_output_0, /model.22/cv2.2/cv2.2.1/act/Relu_output_0 150, Conv, 3, 1, /model.22/cv2.2/cv2.2.1/act/Relu_output_0, /model.22/cv2.2/cv2.2.2/Conv_output_0 151, Conv, 3, 1, /model.21/cv2/act/Relu_output_0, /model.22/cv3.2/cv3.2.0/conv/Conv_output_0 152, Relu, 1, 1, /model.22/cv3.2/cv3.2.0/conv/Conv_output_0, /model.22/cv3.2/cv3.2.0/act/Relu_output_0 153, Conv, 3, 1, /model.22/cv3.2/cv3.2.0/act/Relu_output_0, /model.22/cv3.2/cv3.2.1/conv/Conv_output_0 154, Relu, 1, 1, /model.22/cv3.2/cv3.2.1/conv/Conv_output_0, /model.22/cv3.2/cv3.2.1/act/Relu_output_0 155, Conv, 3, 1, /model.22/cv3.2/cv3.2.1/act/Relu_output_0, /model.22/cv3.2/cv3.2.2/Conv_output_0 156, Concat, 2, 1, /model.22/cv2.2/cv2.2.2/Conv_output_0, /model.22/Concat_2_output_0 157, Reshape, 2, 1, /model.22/Concat_2_output_0, /model.22/Reshape_2_output_0 158, Concat, 3, 1, /model.22/Reshape_output_0, /model.22/Concat_3_output_0 159, Split, 1, 2, /model.22/Concat_3_output_0, /model.22/Split_output_0 160, Reshape, 2, 1, /model.22/Split_output_0, /model.22/dfl/Reshape_output_0 161, Transpose, 1, 1, /model.22/dfl/Reshape_output_0, /model.22/dfl/Transpose_output_0 162, Softmax, 1, 1, /model.22/dfl/Transpose_output_0, /model.22/dfl/Softmax_output_0 163, Transpose, 1, 1, /model.22/dfl/Softmax_output_0, /model.22/dfl/Transpose_1_output_0 164, Conv, 2, 1, /model.22/dfl/Transpose_1_output_0, /model.22/dfl/conv/Conv_output_0 165, Reshape, 2, 1, /model.22/dfl/conv/Conv_output_0, /model.22/dfl/Reshape_1_output_0 166, Slice, 4, 1, /model.22/dfl/Reshape_1_output_0, /model.22/Slice_output_0 167, Sub, 2, 1, /model.22/Constant_9_output_0, /model.22/Sub_output_0 168, Slice, 4, 1, /model.22/dfl/Reshape_1_output_0, /model.22/Slice_1_output_0 169, Add, 2, 1, /model.22/Constant_9_output_0, /model.22/Add_1_output_0 170, Add, 2, 1, /model.22/Sub_output_0, /model.22/Add_2_output_0 171, Div, 2, 1, /model.22/Add_2_output_0, /model.22/Div_1_output_0 172, Sub, 2, 1, /model.22/Add_1_output_0, /model.22/Sub_1_output_0 173, Concat, 2, 1, /model.22/Div_1_output_0, /model.22/Concat_4_output_0 174, Mul, 2, 1, /model.22/Concat_4_output_0, /model.22/Mul_2_output_0 175, Sigmoid, 1, 1, /model.22/Split_output_1, /model.22/Sigmoid_output_0 176, Concat, 2, 1, /model.22/Mul_2_output_0, output0 Input tensor name - images Output tensor name - output0 Input shape: [1, 3, 640, 640] Input "images": tensor(float) Graph Domain TO version : 11In TIDL_onnxRtImportInit subgraph_name=output0 Layer 0, subgraph id output0, name=output0 Layer 1, subgraph id output0, name=images In TIDL_runtimesOptimizeNet: LayerIndex = 179, dataIndex = 187 WARNING: Batch Norm Layer /model.22/Sub's coeff cannot be found(or not match) in coef file, Random bias will be generated! Only for evaluation usage! Results are all random! WARNING: Batch Norm Layer /model.22/Div_1's coeff cannot be found(or not match) in coef file, Random bias will be generated! Only for evaluation usage! Results are all random! Error: Layer 126, /model.22/Sub_1:/model.22/Sub_1_output_0 is missing inputs in the network and cannot be topologically sorted Input 0: /model.22/Add_1_output_0, dataId=124 Input 1: /model.22/Sub_output_0, dataId=254 ************** Frame index 1 : Running float import ************* In TIDL_runtimesPostProcessNet In TIDL_runtimesPostProcessNet 1 In TIDL_runtimesPostProcessNet 2 In TIDL_runtimesPostProcessNet 3 INFORMATION: [TIDL_ResizeLayer] /model.10/Resize Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize. INFORMATION: [TIDL_ResizeLayer] /model.13/Resize Any resize ratio which is power of 2 and greater than 4 will be placed by combination of 4x4 resize layer and 2x2 resize layer. For example a 8x8 resize will be replaced by 4x4 resize followed by 2x2 resize. **************************************************** ** 2 WARNINGS 0 ERRORS ** **************************************************** In TIDL_runtimesPostProcessNet 4 ************ in TIDL_subgraphRtCreate ************ The soft limit is 2048 The hard limit is 2048 MEM: Init ... !!! MEM: Init ... Done !!! 0.0s: VX_ZONE_INIT:Enabled 0.4s: VX_ZONE_ERROR:Enabled 0.5s: VX_ZONE_WARNING:Enabled 0.1382s: VX_ZONE_INIT:[tivxInit:185] Initialization Done !!! ************ TIDL_subgraphRtCreate done ************ Warning : Couldn't find corresponding ioBuf tensor for onnx tensor with matching name 2024-03-22 12:05:15.362450533 [W:onnxruntime:, execution_frame.cc:835 VerifyOutputSizes] Expected shape from model of {1,5,8400} does not match actual shape of {} for output output0 ******* In TIDL_subgraphRtInvoke ******** Segmentation fault (core dumped)
Hi, Thanks for continued interest in this issue.
However due to limited bandwidth, i will circle back the in 1 week.
Thanks
Hello Pratik Kedar
We have some deadlines, kindly look out the issues and reply us soon!
Thank you
Hi,
Regarding prioritization of this issue can you please connect with local FAE.
Thanks
Hello Pratik Kedar
Where can I get the link or email for Local FAE? If possible kindly share here for reference.
Thank you
Hello
Is the TI team is available now, can anyone take over this issue kindly?
thank you
Per the discussion at: https://github.com/TexasInstruments/edgeai-modeloptimization/issues/2
Attached a sample yolov8 lite model and training script changes.
Also includes TIDL compilation options used in edgeai-benchmark in the config yaml file corresponding to thsi config: https://github.com/TexasInstruments/edgeai-benchmark/blob/main/configs/detection_v2.py#L169
Hello Manu Mathew
Can you please elaborate the changes you have made in yolov8 for my reference?
Thank you
Hello Manu mathew
One last doubt in my custom yolov8 model I had 3maxpool layers with kernal shape 5. So I replaced it with 3 maxpool layers with kernal shape 3. But in your example I could see 6 maxpool layers with 3 kernal shape. Can you please assist me regarding this. Also kindly look out my custom model zip I attached in this thread up
thank you
kernel_size 3 is what is supported for Maxpool currently in TIDL.
This was trained and by using the option --model-surgery 2 to the train.py script that I shared and the model optimization tool takes care of the layer changes such as changing activation layers from SiLU to ReLU and breaking down large Maxpool to 3x3.
Other wise you can compare both the onnx graphs and understand the exact changes.
Hello Manu Mathew
How many 3x3 max pool layers is required to replace one 5x5 maxpool layer?
Thanks
Hi
Two 3x3 max pool is required to replace one 5x5 maxpool. See more details at https://github.com/TexasInstruments/edgeai-yolov5.
--Joy
Corrected typo above but posting again to avoid confusion: changing activation layers from SiLU to ReLU and breaking down large Maxpool to 3x3.
Hello
Thanks for the reply!
One last question:
1. Can we use artifacts generated from tidl tools to run inference using edgeai gst apps for my custom pretrained model? My model has been successfully compiled using tidl tools.
2. I have model with number of channel as 1, I try to compile the model using edgeai benchmark, But I ended up by getting shape mismatch error. How can I can add or modify model dict to get number of channels as 1?
'imageseg-3': dict( task_type='segmentation', calibration_dataset=imageseg_calib_dataset, input_dataset=imageseg_val_dataset, preprocess=preproc_transforms.get_transform_jai((128,96), (128,96), backend='cv2', interpolation=cv2.INTER_LINEAR), session=sessions.ONNXRTSession(**jai_session_cfg, runtime_options=settings.runtime_options_onnx_np2(), model_path=f'/home/mugu/edgeai-benchmark/model/seat.onnx'), postprocess=postproc_transforms.get_transform_segmentation_onnx(), model_info=dict(metric_reference={'accuracy_mean_iou%':57.77}) )
Thanks in advance
>>> Can we use artifacts generated from tidl tools
What exactly do you mean by this? Did you compile by using edgeai-benchmark? If so generally it will work in edgeai-gst-apps. However, yolov8 has special post processing that is not yet support in edgeai-gist-apps - so you will have to modify the post processing in edgeai-gist-apps to support yolov8.
The logic is under the flag logits_bbox_to_bbox_ls in edgeai-benchmark postprocess - the logic under that flag is not yet implemented in edgeai-gst-apps:
Hello Manu Mathew
Here are the exact query:
1) Can we use artifacts compiled from edgeai tidl tools to deploy on target using gst apps?
2) I have successfully compiled my segmentation model using tidl tools, Can I compile the same model using edgeai benchmark too?I could see there is default preprocessing function processing images in RGB scale i.e, Number of channels=3. But my model has gray scale, i.e number of channels=1.
Thanks
The binaries generated in edgeai-tidl-tools and edgeai-benchmark are same, but currently there are some differences, which you can manually fix:
(1) The directly structure should be same as what is generated by edgeai-benchmark (i.e. with the model folder and the artifacts folder)
(2) param.yaml should be there in the format that edgeai-benchmark expects.
I suspect that these details may be a bit overwhelming for you. Why not use edgeai-benchmark itself to compile? Especially since there is an example YOLOV8 model in edgeai-benchark.
Hello Manu Mathew
This question is related to another model which is a pretrained segmentation model, this model has number of input channels as 1. I could see default configuration dictionary in edgeai benchmark preprocess images in RGB format. How can I changes to GRAY scaling that is num channel as 1
Thanks
Can you please open another e2e thread for that - mixing these two in same thread might be confusing.
Manu Mathewas per your advice I have created seperate thread regarding this :
e2e.ti.com/.../tda4vm-changing-input-channels-for-custom-model-in-edgeai-benchmark