This thread has been locked.
If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.
Hi,
I have the Jacinto J7 EVM kit.
https://github.com/TexasInstruments/edgeai-yolov5 Using the relevant repo, I'm using my special data set to train the yolov5s6. After I do the onnx conversion, I have two files. "best.onnx" and "best.prototxt"
The contents of the "best.prototxt" file looks like this.
name: "yolo_v3" tidl_yolo { yolo_param { input: "370" anchor_width: 19.0 anchor_width: 44.0 anchor_width: 38.0 anchor_height: 27.0 anchor_height: 40.0 anchor_height: 94.0 } yolo_param { input: "426" anchor_width: 96.0 anchor_width: 86.0 anchor_width: 180.0 anchor_height: 68.0 anchor_height: 152.0 anchor_height: 137.0 } yolo_param { input: "482" anchor_width: 140.0 anchor_width: 303.0 anchor_width: 238.0 anchor_height: 301.0 anchor_height: 264.0 anchor_height: 542.0 } yolo_param { input: "538" anchor_width: 436.0 anchor_width: 739.0 anchor_width: 925.0 anchor_height: 615.0 anchor_height: 380.0 anchor_height: 792.0 } detection_output_param { num_classes: 36 share_location: true background_label_id: -1 nms_param { nms_threshold: 0.65 top_k: 30000 } code_type: CODE_TYPE_YOLO_V5 keep_top_k: 300 confidence_threshold: 0.005 } name: "yolo_v3" in_width: 640 in_height: 640 output: "detections" }
https://github.com/TexasInstruments/edgeai-benchmark I want to compile my custom model to run on TDA4VM using the corresponding repo.
For this, I set my pipeline_config settings in benchmark_custom.py as follows.
'imagedet-best': dict( task_type='detection', calibration_dataset=imagedet_calib_dataset, input_dataset=imagedet_val_dataset, preprocess=preproc_transforms.get_transform_onnx((640,640), (640,640), resize_with_pad=[True], backend='cv2'), session=sessions.ONNXRTSession(**onnx_session_cfg, runtime_options=utils.dict_update(settings.runtime_options_onnx_np2(), {'object_detection:meta_arch_type': 6, 'object_detection:meta_layers_names_list':'/home/sefau18/edgeai-modelzoo/models/vision/detection/coco/bests6v2/best.prototxt', 'advanced_options:output_feature_16bit_names_list':'370, 426, 482, 538' }), model_path='/home/sefau18/edgeai-modelzoo/models/vision/detection/coco/bests6v2/best.onnx', postprocess=postproc_transforms.get_transform_detection_yolov5_onnx(squeeze_axis=None, normalized_detections=False, resize_with_pad=True, formatter=postprocess.DetectionBoxSL2BoxLS()), metric=dict(label_offset_pred=datasets.coco_det_label_offset_90to90()), model_info=dict(metric_reference={'accuracy_ap[.5:.95]%':45.0}) ))
I am sharing the error I got.
(benchmark) sefau18@ubuntu:~/edgeai-benchmark$ ./run_custom_pc.sh Entering: ./work_dirs/modelartifacts/8bits/cl-3420_tvmdlr_imagenet1k_gluoncv-mxnet_resnet50_v1d-symbol_json.tar.gz.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/cl-3420_tvmdlr_imagenet1k_gluoncv-mxnet_resnet50_v1d-symbol_json.tar.gz.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/cl-3410_tvmdlr_imagenet1k_gluoncv-mxnet_mobilenetv2_1.0-symbol_json.tar.gz.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/cl-3410_tvmdlr_imagenet1k_gluoncv-mxnet_mobilenetv2_1.0-symbol_json.tar.gz.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/cl-3420_tvmdlr_imagenet1k_gluoncv-mxnet_resnet50_v1d-symbol_json.tar.gz.link.link.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/cl-3420_tvmdlr_imagenet1k_gluoncv-mxnet_resnet50_v1d-symbol_json.tar.gz.link.link.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/od-5040_tvmdlr_coco_gluoncv-mxnet_ssd_512_mobilenet1.0_coco-symbol_json.tar.gz.link.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/od-5040_tvmdlr_coco_gluoncv-mxnet_ssd_512_mobilenet1.0_coco-symbol_json.tar.gz.link.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/cl-3410_tvmdlr_imagenet1k_gluoncv-mxnet_mobilenetv2_1.0-symbol_json.tar.gz.link.link.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/cl-3410_tvmdlr_imagenet1k_gluoncv-mxnet_mobilenetv2_1.0-symbol_json.tar.gz.link.link.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/od-5040_tvmdlr_coco_gluoncv-mxnet_ssd_512_mobilenet1.0_coco-symbol_json.tar.gz.link.link.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/od-5040_tvmdlr_coco_gluoncv-mxnet_ssd_512_mobilenet1.0_coco-symbol_json.tar.gz.link.link.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/ss-5818_tvmdlr_ti-robokit_edgeai-tv_deeplabv3plus_mobilenetv2_tv_edgeailite_robokit-zed1hd_768x432_qat-p2_onnx.tar.gz.link.link.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/ss-5818_tvmdlr_ti-robokit_edgeai-tv_deeplabv3plus_mobilenetv2_tv_edgeailite_robokit-zed1hd_768x432_qat-p2_onnx.tar.gz.link.link.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/ss-5720_tvmdlr_cocoseg21_edgeai-tv_fpn_aspp_regnetx800mf_edgeailite_512x512_20210405_onnx.tar.gz.link.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/ss-5720_tvmdlr_cocoseg21_edgeai-tv_fpn_aspp_regnetx800mf_edgeailite_512x512_20210405_onnx.tar.gz.link.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/cl-3480_tvmdlr_imagenet1k_gluoncv-mxnet_hrnet_w18_small_v2_c-symbol_json.tar.gz.link.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/cl-3480_tvmdlr_imagenet1k_gluoncv-mxnet_hrnet_w18_small_v2_c-symbol_json.tar.gz.link.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/od-5030_tvmdlr_coco_gluoncv-mxnet_ssd_512_resnet50_v1_coco-symbol_json.tar.gz.link.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/od-5030_tvmdlr_coco_gluoncv-mxnet_ssd_512_resnet50_v1_coco-symbol_json.tar.gz.link.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/cl-3430_tvmdlr_imagenet1k_gluoncv-mxnet_xception-symbol_json.tar.gz.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/cl-3430_tvmdlr_imagenet1k_gluoncv-mxnet_xception-symbol_json.tar.gz.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/od-5030_tvmdlr_coco_gluoncv-mxnet_ssd_512_resnet50_v1_coco-symbol_json.tar.gz.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/od-5030_tvmdlr_coco_gluoncv-mxnet_ssd_512_resnet50_v1_coco-symbol_json.tar.gz.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/od-5030_tvmdlr_coco_gluoncv-mxnet_ssd_512_resnet50_v1_coco-symbol_json.tar.gz.link.link.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/od-5030_tvmdlr_coco_gluoncv-mxnet_ssd_512_resnet50_v1_coco-symbol_json.tar.gz.link.link.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/cl-3430_tvmdlr_imagenet1k_gluoncv-mxnet_xception-symbol_json.tar.gz.link.link.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/cl-3430_tvmdlr_imagenet1k_gluoncv-mxnet_xception-symbol_json.tar.gz.link.link.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/ss-5720_tvmdlr_cocoseg21_edgeai-tv_fpn_aspp_regnetx800mf_edgeailite_512x512_20210405_onnx.tar.gz.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/ss-5720_tvmdlr_cocoseg21_edgeai-tv_fpn_aspp_regnetx800mf_edgeailite_512x512_20210405_onnx.tar.gz.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/od-5040_tvmdlr_coco_gluoncv-mxnet_ssd_512_mobilenet1.0_coco-symbol_json.tar.gz.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/od-5040_tvmdlr_coco_gluoncv-mxnet_ssd_512_mobilenet1.0_coco-symbol_json.tar.gz.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/ss-5818_tvmdlr_ti-robokit_edgeai-tv_deeplabv3plus_mobilenetv2_tv_edgeailite_robokit-zed1hd_768x432_qat-p2_onnx.tar.gz.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/ss-5818_tvmdlr_ti-robokit_edgeai-tv_deeplabv3plus_mobilenetv2_tv_edgeailite_robokit-zed1hd_768x432_qat-p2_onnx.tar.gz.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/od-5020_tvmdlr_coco_gluoncv-mxnet_yolo3_mobilenet1.0_coco-symbol_json.tar.gz.link.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/od-5020_tvmdlr_coco_gluoncv-mxnet_yolo3_mobilenet1.0_coco-symbol_json.tar.gz.link.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/cl-3420_tvmdlr_imagenet1k_gluoncv-mxnet_resnet50_v1d-symbol_json.tar.gz.link.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/cl-3420_tvmdlr_imagenet1k_gluoncv-mxnet_resnet50_v1d-symbol_json.tar.gz.link.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/od-5020_tvmdlr_coco_gluoncv-mxnet_yolo3_mobilenet1.0_coco-symbol_json.tar.gz.link.link.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/od-5020_tvmdlr_coco_gluoncv-mxnet_yolo3_mobilenet1.0_coco-symbol_json.tar.gz.link.link.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/cl-3480_tvmdlr_imagenet1k_gluoncv-mxnet_hrnet_w18_small_v2_c-symbol_json.tar.gz.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/cl-3480_tvmdlr_imagenet1k_gluoncv-mxnet_hrnet_w18_small_v2_c-symbol_json.tar.gz.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/cl-3430_tvmdlr_imagenet1k_gluoncv-mxnet_xception-symbol_json.tar.gz.link.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/cl-3430_tvmdlr_imagenet1k_gluoncv-mxnet_xception-symbol_json.tar.gz.link.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/od-5020_tvmdlr_coco_gluoncv-mxnet_yolo3_mobilenet1.0_coco-symbol_json.tar.gz.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/od-5020_tvmdlr_coco_gluoncv-mxnet_yolo3_mobilenet1.0_coco-symbol_json.tar.gz.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/ss-5720_tvmdlr_cocoseg21_edgeai-tv_fpn_aspp_regnetx800mf_edgeailite_512x512_20210405_onnx.tar.gz.link.link.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/ss-5720_tvmdlr_cocoseg21_edgeai-tv_fpn_aspp_regnetx800mf_edgeailite_512x512_20210405_onnx.tar.gz.link.link.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/ss-5818_tvmdlr_ti-robokit_edgeai-tv_deeplabv3plus_mobilenetv2_tv_edgeailite_robokit-zed1hd_768x432_qat-p2_onnx.tar.gz.link.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/ss-5818_tvmdlr_ti-robokit_edgeai-tv_deeplabv3plus_mobilenetv2_tv_edgeailite_robokit-zed1hd_768x432_qat-p2_onnx.tar.gz.link.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/cl-3410_tvmdlr_imagenet1k_gluoncv-mxnet_mobilenetv2_1.0-symbol_json.tar.gz.link.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/cl-3410_tvmdlr_imagenet1k_gluoncv-mxnet_mobilenetv2_1.0-symbol_json.tar.gz.link.link/artifacts: Not a directory Entering: ./work_dirs/modelartifacts/8bits/cl-3480_tvmdlr_imagenet1k_gluoncv-mxnet_hrnet_w18_small_v2_c-symbol_json.tar.gz.link.link.link run_set_target_device.sh: line 59: cd: ./work_dirs/modelartifacts/8bits/cl-3480_tvmdlr_imagenet1k_gluoncv-mxnet_hrnet_w18_small_v2_c-symbol_json.tar.gz.link.link.link/artifacts: Not a directory TIDL_TOOLS_PATH=/home/sefau18/edgeai-benchmark/tidl_tools LD_LIBRARY_PATH=/home/sefau18/edgeai-benchmark/tidl_tools PYTHONPATH=: =================================================================== work_dir = ./work_dirs/modelartifacts/8bits loading annotations into memory... Done (t=0.30s) creating index... index created! loading annotations into memory... Done (t=0.37s) creating index... index created! configs to run: ['imagedet-20_onnxrt_coco_bests6v2_best_onnx'] number of configs: 1 TASKS | | 0% 0/1| [< ] INFO:20220727-224225: starting process on parallel_device - 0 0%| || 0/1 [00:00<?, ?it/s INFO:20220727-224229: model_path - /home/sefau18/edgeai-modelzoo/models/vision/detection/coco/bests6v2/best.onnx INFO:20220727-224229: model_file - /home/sefau18/edgeai-benchmark/work_dirs/modelartifacts/8bits/imagedet-20_onnxrt_coco_bests6v2_best_onnx/model/best.onnx INFO:20220727-224229: running - imagedet-20_onnxrt_coco_bests6v2_best_onnx INFO:20220727-224229: pipeline_config - {'task_type': 'detection', 'calibration_dataset': <jai_benchmark.datasets.coco_det.COCODetection object at 0x7ff6d0597c88>, 'input_dataset': <jai_benchmark.datasets.coco_det.COCODetection object at 0x7ff6d89e7780>, 'preprocess': <jai_benchmark.preprocess.PreProcessTransforms object at 0x7ff6d89e74e0>, 'session': <jai_benchmark.sessions.onnxrt_session.ONNXRTSession object at 0x7ff6ca7ed588>} INFO:20220727-224229: import - imagedet-20_onnxrt_coco_bests6v2_best_onnxTIDL Meta PipeLine (Proto) File : /home/sefau18/edgeai-benchmark/work_dirs/modelartifacts/8bits/imagedet-20_onnxrt_coco_bests6v2_best_onnx/model/best.prototxt yolo_v3 yolo_v3 Number of OD backbone nodes = 195 Size of odBackboneNodeIds = 195 Preliminary subgraphs created = 1 Final number of subgraphs created are : 1, - Offloaded Nodes - 298, Total Nodes - 298 TIDL Meta PipeLine (Proto) File : /home/sefau18/edgeai-benchmark/work_dirs/modelartifacts/8bits/imagedet-20_onnxrt_coco_bests6v2_best_onnx/model/best.prototxt yolo_v3 yolo_v3 **************************************************** ** All the Input Tensor Dimensions has to be greater then Zero ** DIM Error - For Tensor 196, Dim 1 is -1 ****************************************************
Editing the prototxt file according to the original doesn't make any sense.
Is there a step-by-step documentation on how to compile a custom yolov5 model and perform inference using "edgeai apps" on the TDA4VM?
Thanks already for your help.
Can you zip your onnx model and prototxt and attach here. We can try it out at our end.
Hi Mathew,
Thank you for the answer.
https://github.com/TexasInstruments/edgeai-yolov5
Below are the files you requested for two different trainings I made using the same data set.
1- $ python3 train.py --data data.yaml --cfg yolov5s6.yaml --weights 'yolov5s6.pt' --batch-size 128
yolov5s6.yaml file
only nc number edited
# Parameters nc: 36 # number of classes depth_multiple: 0.33 # model depth multiple width_multiple: 0.50 # layer channel multiple anchors: - [ 19,27, 44,40, 38,94 ] # P3/8 - [ 96,68, 86,152, 180,137 ] # P4/16 - [ 140,301, 303,264, 238,542 ] # P5/32 - [ 436,615, 739,380, 925,792 ] # P6/64 # YOLOv5 backbone backbone: # [from, number, module, args] [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 [ -1, 3, C3, [ 128 ] ], [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 [ -1, 9, C3, [ 256 ] ], [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 [ -1, 9, C3, [ 512 ] ], [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 [ -1, 3, C3, [ 768 ] ], [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], [ -1, 3, C3, [ 1024, False ] ], # 11 ] # YOLOv5 head head: [ [ -1, 1, Conv, [ 768, 1, 1 ] ], [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 [ -1, 3, C3, [ 768, False ] ], # 15 [ -1, 1, Conv, [ 512, 1, 1 ] ], [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 [ -1, 3, C3, [ 512, False ] ], # 19 [ -1, 1, Conv, [ 256, 1, 1 ] ], [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) [ -1, 1, Conv, [ 256, 3, 2 ] ], [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) [ -1, 1, Conv, [ 512, 3, 2 ] ], [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) [ -1, 1, Conv, [ 768, 3, 2 ] ], [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 [ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge) [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) ]
2- $ python3 train.py --data data.yaml --cfg yolov5s6.yaml --weights '' --batch-size 128
Training started with no initial weight given and change to anchors in yaml file. Anchor values were created automatically by the software during conversion.
yolov5s6.yaml file
only anchors edited
# Parameters nc: 36 # number of classes depth_multiple: 0.33 # model depth multiple width_multiple: 0.50 # layer channel multiple anchors: 3 # YOLOv5 backbone backbone: # [from, number, module, args] [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 [ -1, 3, C3, [ 128 ] ], [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 [ -1, 9, C3, [ 256 ] ], [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 [ -1, 9, C3, [ 512 ] ], [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 [ -1, 3, C3, [ 768 ] ], [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], [ -1, 3, C3, [ 1024, False ] ], # 11 ] # YOLOv5 head head: [ [ -1, 1, Conv, [ 768, 1, 1 ] ], [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 [ -1, 3, C3, [ 768, False ] ], # 15 [ -1, 1, Conv, [ 512, 1, 1 ] ], [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 [ -1, 3, C3, [ 512, False ] ], # 19 [ -1, 1, Conv, [ 256, 1, 1 ] ], [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) [ -1, 1, Conv, [ 256, 3, 2 ] ], [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) [ -1, 1, Conv, [ 512, 3, 2 ] ], [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) [ -1, 1, Conv, [ 768, 3, 2 ] ], [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 [ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge) [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) ]
Thanks for the help.
I have added an example for this model in the custom script
https://github.com/TexasInstruments/edgeai-benchmark/blob/master/scripts/benchmark_custom.py#L260
(notice that input_optimization is switched off for this model - you can put the path of your model from 2best.zip here - I tried it and it worked)
It is also possible to switch off input_optimization globally for all models.
input_optimization: False
in edgeai-benchmark/settings_base.yaml
(https://github.com/TexasInstruments/edgeai-benchmark/blob/master/settings_base.yaml#L88)